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In this class we gave a definition of leakage-resilient signatures in the bounded memory leakage model
and then gave a construction due to Katz and Vaikuntanathan [KV09].

1 Review of Leakage Models

Before constructing leakage-resilient signatures we will review and clarify the different leakage models
we’ve seen in class. Loosely, they fall into the following categories:

• Computational Leakage (aka the “Only Computation Leaks” Model) [MR04]: In this model
we assume there is trusted storage and the adversary can only obtain leakage from data used in
computation. The focus is usually on continual leakage, where the total leakage is unbounded
and we use new randomness to periodically refresh the key.

• Memory Leakage [AGV09]: In this model the adversary can obtain leakage from the entire
secret key and sometimes also from the entire internal state of the system. Memory leakage
comes in several flavors:

– Bounded Leakage: The adversary may obtain leakage that in some way does not
determine the entire secret key, either because the leakage is shrinking (as we saw in the
previous class), noisy [NS09] (in that the key still has min-entropy conditioned on the
leakage), or is hard to invert [DKL09] (in that the key may be statistically determined
but has computational entropy conditioned on the leakage).

– Continual Leakage: In which the total leakage may exceed the length of the secret key,
as mentioned above.

2 Digital Signatures in the Bounded Memory Leakage Model

We start by defining a leakage-resilient signature scheme in the bounded leakage model. A digital
signature scheme is a triple of PPT algorithms S = (Gen,Sign,Ver). Syntactically:

• Gen(1k) = (sk , vk) where k is a security parameter and (sk , vk) is a key-pair consisting of a
private signature key and a public verification key.

• Signsk (m) = σ where m is a message and σ is the signature.

• Vervk (m,σ) ∈ {0, 1} takes a message and a signature and chooses whether or not to accept.

We recall the standard properties of digital signature schemes:
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Correctness: The verifier accepts all honest signatures whp

Pr
(sk ,vk)←RGen(1k)

[Vervk (m,Signsk (m)) = 1] = 1− negl

Security under Chosen-Message Attack: We define the following forgery game between a
challenger C and attacker A

1. C → A: Generates (sk , vk) ←R Gen(1k) and sends vk to A.

2. A ↔ C: (Adaptively) chooses messages mi, receives signatures σi = Signsk (mi).

3. A → C: Outputs a message-signature pair (m∗
,σ

∗).

We say that A “wins” this game if 1) Vervk (m∗
,σ

∗) = 1 and 2) m∗ �= mi for every i. We say that
S is secure under adapative chosen-message attack if for every PPT A

Pr
(sk ,vk)←RGen(1k)

[A wins] = negl

In order to model leakage we make two simple modification to the forgery game. First we have the
attacker specify a (relatively short) leakage function, and then we have the challenger send back the
evaluation of the leakage function on the key-pair along with the public key. Specifically we add a
step 0 and modify step 1:

0. A → C: Chooses a function L : {0, 1}|vk |+|sk | → {0, 1}λ and sends it to C.

1’. C → A: Generates (sk , vk) ←R Gen(1k) and sends vk and L(vk , sk) to A.

Steps 2 and 3 are the same. The criteria for A to win the game is the same and, similarly, we say
that S is secure under adaptive chosen-message attack with λ bits of leakage (henceforth, “secure”)
if every PPT attacker A wins this game with negligible probability.

Remark 1 More generally, we can allow the adversary to make several leakage queries, and these
leakage queries can be chosen adaptively and arbitrarily interleaved with the queries to the signing
oracle (step 2 of the chosen-message attack). Specifically, at any point during the chosen-message
attack the adversary may request Li(vk , sk) ∈ {0, 1}λi subject to the constraint that

�
λi ≤ λ.

Although the definition we give is more restrictive, all the results presented will hold if we allow the
adversary several adaptive and arbitrarily interleaved leakage queries.

3 Overview of the Construction

In the next section we will begin describing the construction of leakage-resilient digital signatures
in [KV09]. However, to give some intuition for the construction, we will begin with some intuition for
why it is “impossible” to construct such a signature scheme. Suppose we want to prove that forging
digital signatures in our scheme is as hard as finding collisions in an arbitrary collision-resistant hash
family. The usual way to do this is assume there is a forger F and construct an algorithm AF that
can break collision resistance. More precisely
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1. A receives a hash function h ∈ H.

2. A plays the forgery game with F : F sends a leakage function L and A must send vk and some
leakage value (supposedly L(vk , sk)) to F .

3. Finally, F generates (m∗
,σ

∗).

4. A uses (m∗
,σ

∗) to find a collision in h.

Intuitively, since L may be given to A in an “obfuscated” manner, it seems that A can only use
L as a black-box, and thus must know (vk , sk) to answer the leakage query in a way that ensures
F will still be able to forge signatures. But if all we know is that (m∗

,σ
∗) given by F is a valid

message-signature pair under (vk , sk) that are known to A, then how can it help A find collisions?
Indeed, if A knows sk then it can generate (m∗

,σ
∗) itself! So the key idea is to construct the scheme

so as to make F produce (m∗
,σ

∗) that is valid under a different signing key sk �, and that (sk , sk �)
will be a collision in the hash function h.

The construction will make use of the following cryptographic primitives

• A standard semantically-secure encryption scheme E = (GenE ,Enc,Dec).

• A shrinking collision-resistant hash family H = {Hk} where Hk � h : {0, 1}k
t
→ {0, 1}k (for a

constant t > 1 to be chosen later).

• A simulation-sound NIZK proof system (�,P,V,S1,S2) for NP .

The first two primitives are standard, but we elaborate on the final one in the next section.

3.1 Non-Interactive Zero Knowledge Proofs

A non-interactive zero-knowledge proof system has all the standard properties of zero-knowledge
proofs except that the prover only sends one message to the verifier. Such proof systems are always
constructed in the common random string model, where both the prover and verifier are given
access to a shared string CRS ∈ {0, 1}�(k). A NIZK proof system for a language L consists
of (�,P,V,S1,S2) where � is a polynomial and P,V,S1,S2 are PPT algorithms. We require the
following properties:

Completeness: All true statements can be proven. Let RL denote the witness relation for L, that
is (x,w) ∈ RL if x ∈ L and w is an NP-witness for x. Then completeness states that ∀k, ∀x ∈ L

s.t. |x| = poly(k), ∀w s.t. (x,w) ∈ RL, and ∀CRS ∈ {0, 1}�(k)

V(x,P(x,w,CRS),CRS) = 1.

(Standard) Soundness: Only true statements can be proven. For every A

Pr
CRS←R{0,1}�(k)

coins

[A(CRS) = (x,π) s.t. x �∈ L and V(x,π,CRS) = 1] = negl
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Zero-Knowledge: Let REALA denote the distribution on transcripts of AP(·,·,CRS)(CRS). That
is, the interaction of A with the honest-prover, wrt to a given reference string. We want to claim
that REALA is computationally indistinguishable from the interaction of A with the simulators. Let
S �(x,w,CRS, τ) = S2(x,CRS, τ) whenever (x,w) ∈ RL, and S � = ⊥ otherwise.1 Let IDEALS1,S2

A
be the following distribution on transcripts: Use S1 to choose a reference string and a trapdoor
(CRS, τ) ←R S1(1k). Run AS�(·,·,CRS,τ)(CRS). We say the proof system is zero-knowledge if

REALA ≈C IDEALS1,S2

A

where ≈C denote computational indistinguishability.

Simulation-Soundness: For our scheme we require one additional security property called simulation-
soundness. Informally, we don’t want an adversary A to be able to violate the soundness of the
proof system even after interacting with the simulator (who knows the trapdoor). We formalize this
using the following game

1. (CRS, τ) ←R S1(1k).

2. AS2(·,CRS,τ)(CRS) makes queries xi to S2.

3. AS2(·,CRS,τ)(CRS) → (x∗
,π

∗).

We say A wins this game if 1) x
∗ �= xi for every i, 2) x

∗ �∈ L, and 3) V(x∗
,π

∗
,CRS) = 1. As

expected, we say the proof system is simulation-sound if for every A

Pr
(CRS,τ)←RS1(1k)

[A wins] = negl

4 Construction of Leakage-Resilient Signatures

We will now describe Katz and Vaikuntanathan’s construction of leakage-resilient digital signatures.
Recall we let E = (GenE ,Enc,Dec) be a semantically-secure encryption scheme and H = {Hk} be
a shrinking collision-resistant hash family from {0, 1}k

t
→ {0, 1}k. We also let (�,P,V,S1,S2) be a

simulation-sound NIZK proof-system for NP . Specifically the scheme needs to prove membership
in the language

L = {(m,h, y, pk , c) | ∃(x, r) c = Encpk (x; r), h(x) = y}.

Less formally, the signatures will include a proof that c is an encryption of a preimage of y under
the function h ∈ H. Notice that the message m is not used anywhere in specifying the language!
However, we will use the simulation-soundness of the NIZK to argue that its infeasible to produce
proofs for new statements (m�

, h, y, pk , c) ∈ L even when all the other inputs are the same!

We can now specify the scheme:

1
The reason we don’t simply use S2 in place of S�

is because we need S�
only to work for valid witnesses, as the

honest prover would.
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Gen(1k):
h ←R Hk, x ←R {0, 1}k

t
, CRS ←R {0, 1}�, pk ←R GenE(1k)2

y ← h(x)
Output the key pair (vk , sk) where sk = x, vk = (h, y, pk ,CRS)

Signsk (m):
r ←R {0, 1}∗, c ← Encpk (x; r)
π ← P((m,h, y, pk , c), (x, r),CRS)
Output the signature σ = (c,π)

Vervk (m,σ = (c,π)):
Output V((m,h, y, pk , c),π,CRS)

Theorem 2 The scheme above is secure under adaptive chosen-message attack with λ bits of leakage
when λ ≤ k

t − k = (1− k
1−t)|sk |.

Proof:

The security proof works by reduction to finding collisions in the hash family {Hk}. Let F be a
signature forger for this scheme. We construct an adversary A that takes as input h ∈ Hk and
uses F to find collisions in h (with non-negligible probability). To this end, A plays the role of the
challenger in the forgery game with F as follows: A computes a signature key sk = x ←R {0, 1}k

t

and y = h(x), a key pair (pkE , skE) ←R GenE(1k) for the encryption scheme, and a reference string
CRS ←R {0, 1}�. A sends vk = (h, y, pkE , CRS) and a leakage L(vk , sk) to F and answers F ’s
queries to the signing oracle. If F breaks the security of the signature-scheme, then it produces a
signature pair (m∗

,σ
∗) where σ

∗ contains an encryption of a preimage x
� such that h(x�) = y. We

prove that whp x �= x
� and thus A can use skE to decrypt x� and find a collision in h. This intuition

can be formalized in two steps:

Step 1: Suppose that A and F play the forgery game but F makes no chosen-message queries.
That is, F sends L to A, A generates a key-pair (vk , sk) for the signature scheme and sends
vk , L(vk , sk) to F and then F returns (m∗

,σ
∗) such that Vervk (m∗

,σ
∗) = 1.

Observe that, from the soundness of the NIZK proof, σ∗ = (c,π) such that c = Encpk (x�) where
h(x�) = y = h(x). Now if we can show that x� �= x whp then we’ll be done (at least in this scenario).
This fact follows from an information theoretic argument. Recall that x is a k

t-bit string, and the
only information that F has about x is L(vk , sk) = L(vk , x), which is λ bits long, and y = h(x),
which is k bits long. Now we invoke the following lemma that ensures x is still highly uncertain to
F given the k + λ bits of information F has seen.

Lemma 3 Let X be a random variable with H = H∞(X) and f be a function with �-bit range.
Then

Pr
X

[H∞(X|f(X)) ≤ 1] ≤ 2�−H−1
.

Applying this lemma where f is the leakage and the image y = h(x), H = k
t, � = k+λ ≤ k

t tells us
that with probability at least 1/2, x has at least 1 bit of min-entropy leftover in F ’s view. If x has
at least 1 bit of min-entropy then the probability that F produces x

� = x is at most 1/2. So with

2
Here we assume it is possible to sample a public-key pk from GenE with the correct marginal distribution.
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probability at least 1/4 times the success probability of F , A can produce a collision in h, violating
collision resistance when F has a non-negligible probability of success.

Step 2: Notice that, at least information theoretically, sending an encryption c = Encpk (x) deter-
mines x. Thus if we do allow F to do a chosen-message attack, from his view x will be determined
and we won’t be able to argue as in Step 1. We can fix this problem with two changes to the way
A responds to F ’s chosen-message queries:

• Instead of computing c = Encpk (x), compute c = Encpk (0).

• Instead of computing π = P((mi, h, y, pk , c), (x, r),CRS), have A generate (CRS, τ) ←R S1(1k)
and compute π = S2((mi, h, y, pk , c),CRS, τ).

Note that the first change has only a negligible affect on F ’s ability to forge a signature because
Enc is semantically-secure, and the second change has only a negligible affect on F ’s ability to forge
a signature because the zero-knowledge property of the NIZK says that the simulated proofs are
indistinguishable from the actual proofs.

More specifically, at the end of the chosen-message attack, F outputs a pair (m∗
,σ

∗) = (m∗
, c

∗
,π

∗)
and with non-negligible probability, this is a valid message-signature pair. Then π

∗ is an accepting
proof for the statement (m∗

, h, y, pk , c∗) ∈ L. But the conditions of a chosen-message attack say
that F must never have asked for a signature of m∗ and thus has never seen a proof of any statement
for which m

∗ is the message. By simulation-soundness, his proof is valid, and thus Decsk (c∗) = x
� ∈

h
−1(h(x)). Now, since Encpk (0) contains no information about x, we can repeat the argument from

Step 1 to show that x �= x
� with constant probability.

�

5 Preview of Continual Leakage Resilience

In the next class we will see how to construct cryptographic primitives that are secure even when the
adversary gets to see leakage that is larger than the secret key. More specifically, we will consider
a key-update function f and a sequence of secret keys sk1, sk2, sk3, . . . where sk i = f(sk i−1). The
adversary can specify a sequence of leakage functions L1, L2, L3, . . . and gets to see Li(sk i) after each
update. Here we assume a bound on the length of each leakage function Li but not on the number
of times we update the key and incur leakage. In other words, we only bound the rate of leakage
and not the total leakage. To make our job even harder, we’d like the adversary to be oblivious to
how many times the key has been updated. In particular, we don’t want the length of encryptions
or signatures to be growing with the number of updates and, more importantly, we don’t want to
have to change the public key every time we update.

Let’s give some intuition for why this notion of security might be hard to achieve. Consider the
scheme we just constructed in which the secret key is x and the public key contains y = h(x) where
h is from a collision-resistant hash family. Then in order to get a new secret key that works for the
public key y, we have to find x

� �= x such that y = h(x) = h(x�). But of course, that would violate
collision-resistance. In fact, this update would violate exactly the property we used to prove security
of the scheme! Similarly, if we recall the leakage-resilient encryption scheme of Gentry, Peikert, and
Vaikuntanathan [GPV08], the secret key was r ∈ {0, 1}k and the public key was (A, rA) where
A ∈ Zm×n

q
. Then to find a new secret key for the same public key we must find r

� �= r such that
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(r− r
�)A = 0. But again, the inability to find such an r

� was exactly what we used to prove security
of the GPV scheme!

In the next class we will see how to overcome this difficulty:

• Let A = Apk be the set of possible secret keys corresponding to a public key pk . Then the
scheme will make all its updates to the secret key occur in some neighborhood A

� = A
�
pk ,sk ⊆ A

around the initial secret key sk ∈ A. We want it to be feasible to do the updates (find new
secret keys sk1, sk2, · · · ∈ A

�, but infeasible to find a secret key sk �
∈ A \A�.

• From the view of the adversary, the location of A� is statistically hidden, so that an adversary
trying to break security of the protocol will have to produce sk ∈ A \A�.

Next class we will see a sketch of how this approach can be made into a working scheme.
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