
Soundness of the Formal Model for Active Adversaries

Kevin Donnelly

Much of the content of these notes (in particular most of the definitions) is taken verbatim from [3].

1 Introduction

There are two distinct models that are used to reason about cryptography:

1. The computational model, which we are quite familiar with, assumes messages are bit-strings
and adversaries are arbitrary (probabilistic polynomial-time) algorithms. This model uses com-
putational assumptions to prove (usually asymptotic) limits on the probability that an adversary
will be successful in some attack. This model is precise and low-level, and is well-suited to prov-
ing the security of cryptographic primitives. However, when analyzing cryptographic protocols,
such a low-level model is very difficult to use. Reductions from an attack on the protocol to an
attack on the cryptographic primitives must be produced by hand for each protocol, and this
can be a time-consuming and error-prone task.

2. The formal model, often called the Dolev-Yao model, assumes that messages are terms of some
free algebra (i.e. they are just syntax trees) and encryption is merely a term constructor. In this
model the adversary is a non-deterministic state machine which may only produce messages
that may be obtained by some restricted set of operations from the messages that it already
has access to. This model places strong limitations on the adversary, and is not appropriate for
reasoning about the security of primitives. However, its simplicity allows for automated analysis
of cryptographic protocols.

In 2000, Abadi and Rogaway [1] proved the first result linking security in the formal model with
security in the cryptographic model. This original result applied only to shared-key cryptography
and used stronger than usual assumptions about the properties of the cryptographic primitives
involved. Since this time, the soundness of formal models has been proven for several scenarios and
under various assumptions for the cryptographic primitives.

In these notes we primarily summarize Herzog [3]. We prove the result that when encryption
primitives are IND-CCA2 secure, indistinguishability in the Dolev-Yao model implies computational
indistinguishability, and go on to show that this implies that, when sufficiently strong primitives
are used, the Dolev-Yao adversary is not more limited than computational adversary.

2 The Formal Model

In the formal model, messages are merely formal pieces of syntax:

(messages) M ∈ A := I (identifiers, I ∈ I)
| R (nonces, R ∈ R)
| Kp (public keys, Kp ∈ KPub))
| Ks (private keys, Ks ∈ KPriv)
| (M1, M2) (pairing)
| {|M |}Kp

(encryption of M with Kp)

We use K ∈ (K = KPub ∪ KPriv) for a Kp or a Ks. There is a bijection inv : KPub → KPriv

which associates a public key with its private key. We write K−1 for inv(K) if K is a public key or
inv−1(K) if K is a private key.

Example 1.
(

{|R1|}K1
, K−1

1

)

∈ A

Protocols involve honest participants and the adversary. To model the possibility of active
attacks, the adversary has complete control over message propagation, honest participants send
messages to the adversary and the adversary sends messages back to the participants. Protocols
proceed in a sequence of rounds in which the adversary sends a message and receives responses
from the environment. Each execution of the protocol is modeled as an alternating sequence of
adversary messages (qi ∈ A) and participant responses (ri ⊆ A):

r0 q1 r1 q2 r2 . . . qn−1 rn−1 qn rn

The adversary is limited in that qi must be derivable with a limited set of operations from
what it initially knows and from r0, . . . , ri−1. In the setting of public-key cryptography, the initial
knowledge of the adversary consists of: The set of public keys (KPub), the private keys of cooperating
participants (KAdv), the identifiers of the principals (I), and the nonces that the adversary generates
(RAdv) which are distinct from the nonces of other participants. The operations that the adversary
may use to generate new messages are: decryption of known messages with known keys, encryptions
of known messages, pairing of known messages, and separations of known messages.

Definition 1 (Closure). The closure of S, written C [S], is the smallest subset of A such that:

1. S ⊆ C [S],
2. I ∪ KPub ∪ KAdv ∪RAdv ⊆ C [S],
3. If {|M |}Kp

∈ C [S] and K−1
p ∈ C [S], then M ∈ C [S],

4. If M ∈ C [S] and Kp ∈ C [S], then {|M |}Kp
∈ C [S],

5. If (M1, M2) ∈ C [S], then M1 ∈ C [S] and M2 ∈ C [S], and
6. If M1 ∈ C [S] and M2 ∈ C [S], then (M1, M2) ∈ C [S].

Example 2.

R1 ∈ C [{
(

{|R1|}K1
, K−1

1

)

}],

K1 ∈ C [{{|R1|}K1
}],

R1 /∈ C [{{|R1|}K1
}]

In the formal model, the adversary is assumed to only be able to produce messages that are in
the closure of the set of messages it has received from honest participants.

Definition 2 (Dolev-Yao Adversary). Suppose that

r0 q1 r1 q2 r2 . . . qn−1 rn−1 qn rn

is a protocol execution in the Dolev-Yao model, then for all i, qi ∈ C [r0 ∪ . . . ∪ ri−1].

3 Relating Formal and Computational Adversaries

In order to relate messages in the formal and computational models, we define a meaning function
that maps formal messages to probability distributions on bit-strings.

Definition 3 (Semantics of Messages). Let η ∈ N be the security parameter. Let t ∈ {0, 1}ω

be a random tape, partitioned into an η-length segment for each nonce and public key in A, and
let σM be the value of the tape associated with M . Let D be an adversary nonce distribution. Let

(G, E, D) be a public-key cryptography scheme. Then for any M ∈ A, the encoding of M , written
[[M]]tη is defined recursively by:

[[R]]tη =

{

〈σM , “nonce”〉 if R /∈ RAdv

〈D(σM), “nonce”〉 o.w.

[[Kp]]
t
η = 〈e, “pubkey”〉 (where (Kp, K

−1
p) is a public/private key pair

[[K−1
p]]tη = 〈d, “privkey”〉 and (e, d) is the output of G(1η, σKp).)

[[I]]tη = 〈mI , “id”〉 (mI is an arbitrary short bit-string uniquely associated to I)

[[(M1, M2)]]
t
η =

〈

[[M1]]
t
η, [[M2]]

t
η, “pair”

〉

[[{|M |}K]]tη =
〈

E([[M]]tη, [[K]]tη), [[K]]tη, “enc”
〉

Note that for fixed t and η, [[M]]tη remains a distribution, which depends on the coin flips of (G, E, D).
However, for X ∈ (R∪K) with fixed t and η, [[X]]tη is a singleton distribution. We briefly explain the
intuition behind parts of this definition. The meaning of each message includes a tag that identifies
what sort of message it is, so different sorts of messages have disjoint meanings. The meaning
of an honest participant’s nonce is a random bit-string, while the adversary’s nonces come from
whatever distribution the adversary chooses with algorithm D. The meaning of a public/private
key pair is the public/private key pair generated by G given the randomness assigned to the public
key. The meaning of an identity is just an arbitrary (but short and unique) identifying bit-string.
The meaning of an encryption, {|M |}K , includes the meaning of K because in general public-key
encryption does not hide what key was used to create it.

Encryption also does not generally hide the length of the message that was encrypted. In order
to accommodate this fact we will make use of the type tree of a message M, denoted by TM , which
is just the same as M with each atomic element replaced by its type (i.e. each R with R, each I
with I, each K with K). We assume each message of the same type tree has the same length.

In order to prove that security in the formal model implies security in the computational model,
we will need to assume that encryptions are acyclic in the following sense. (This strengthens the
definition as given in [3], which is a bit ambiguous.)

Definition 4 (Acyclic). For an expression M , construct a graph GM where the nodes are pub-
lic/private key pairs (where the public key is used in an encryption in M) and there is an edge from
p1 to p2 if the private key K−1

2 (or a term containing K−1
2 , including encryptions of K−1

2) from
pair p2 is encrypted with K1, the public key from pair p1. M is acyclic if the graph GM is acyclic.

Example 3.
(

{|K1|}K2
, {|K2|}K1

)

is acyclic, but

(

{∣

∣

∣K−1
1

∣

∣

∣

}

K2

,
{∣

∣

∣K−1
2

∣

∣

∣

}

K1

)

is not.

There has been recent work showing the soundness of the formal model without the acyclicity
assumption. However, this result requires a stronger encryption primitive that is key-dependent
message (KDM) secure and this is neither implied by nor implies IND-CCA2 security [2].

We can now formalize the computational interpretation of the limitations on the adversary
that is imposed by the formal model. Note that we assume that the adversary’s knowledge of
I,KPub ,KAdv ,RAdv is put into a canonical ordering and represented as a set of oracles, I

t
η(·),

PbK
t
η(·), PrK

t
η(·), R

t
η(·), which given a natural number i, return the ith element of the canonical

ordering of this knowledge. This is necessary so that the adversary does not get an unreasonable
running time (in particular it is possible that its knowledge is infinite).

Definition 5 (Weak Dolev-Yao public-key non-malleability). The encryption scheme (G, E, D)
provides weak Dolev-Yao public-key non-malleability if, when used in [[·]]tη:

∀PPT adversaries A, ∀nonce distributions D,
∀acyclic finite S ∈ A, ∀M /∈ C [S],
∀polynomials q, ∀sufficiently large η :
Pr[t← {0, 1}ω;

s← [[S]]tη;

m← A
I

t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :
m ∈ supp[[M]]tη] ≤ 1

q(η)

where suppD is the support of the distribution D (i.e. the smallest set of points whose complement
has zero probability).

This definition captures the computational meaning of Dolev-Yao adversaries because it says that
any adversary has a negligible chance of producing any particular message outside of the closure of
its knowledge.

4 Dolev-Yao Indistinguishability

Abadi and Rogaway [1] proved that formal messages that are equivalent in a certain sense have
computational meanings which are indistinguishable in the usual computational sense. In this sec-
tion, we state a related result for the public key case. In the next section we will show that this
indistinguishability result implies weak Dolev-Yao non-malleability as defined in the previous sec-
tion.

The following definition of the public-key pattern of a message captures what information can
be gained from a particular message. Let M be an arbitrary message. Note that M may contain
sub-terms that are encrypted and thus hidden from an adversary ({|M ′|}K). Let T be a set of public
keys. We will define patternpk(M, T) to have the following property. Given a set of public keys T ,

the set of sub-terms of patternpk(M, T) is exactly the set of things that an adversary learns from
M , if he is able to decrypt messages encrypted with public keys in T .

Definition 6 (Public-key pattern). Let T ⊆ KPub . We recursively define the function p(M, T)
by:

p(K, T) = K if K ∈ K
p(A, T) = A if A ∈ I
p(R, T) = R if R ∈ R

p((M1, M2) , T) = (p(M1, T), p(M2, T))

p({|M |}K , T) =

{

{|p(M, T)|}K if K ∈ T
〈|TM |〉K o.w. (where TM is the type tree of M)

Then we define patternpk(M, T) = p(M, (KPriv ∩C [{M}∪T−1])−1). (This definition is a corrected

version of the definition given in [3], which has a small bug). We also write patternpk(M) for

patternpk(M, ∅).

Example 4.

patternpk(
(

R1, {|R2|}K1

)

) =
(

R1, 〈|R|〉K1

)

patternpk(
(

R1, {|R2|}K1

)

, K1) =
(

R1, {|R2|}K1

)

patternpk(
(

K−1
1 , {|R2|}K1

)

) =
(

K−1
1 , {|R2|}K1

)

The following definition of ingredient, is the same as the usual formal notion of sub-term.

Definition 7 (Ingredient). If M , M ′ are two patterns, then M is an ingredient of M ′, written
M vM ′, if the parse tree of M is a sub-tree of the parse tree of M ′.

Example 5. (R1, R2) v ({|(R1, R2)|}K , I)

Note that messages are also patterns so this definition may be applied to messages as well. The
following theorem shows that the definition for public-key pattern has the desired property.

Theorem 1. If M , M ′ are messages and M ′ v patternpk(M), then M ′ ∈ C [M].

Definition 8 (Semantics of Patterns). Let:

– [[〈|TM |〉]]
t
η = mM , where mM is any fixed bit-string of length

∣

∣

∣[[M]]tη

∣

∣

∣, such as the all-zero string,

and
– [[〈|TM |〉K]]tη =

〈

E([[TM]]tη, [[K]]tη), [[K]]tη, “enc”
〉

.

The following definition is slightly more general than the usual notion of computational indis-
tinguishability in that it allows for an oracle.

Definition 9 (Computational indistinguishability). Suppose that {Dη}η and
{

D′
η

}

η
are two

families of distributions indexed by the security parameter. Then they are computationally indis-
tinguishable with respect to a family of oracles Ox, written Dη

∼=Ox D′
η, if

∀PPT adversaries A, ∀polynomials q, ∀sufficiently large η :
∣

∣

∣Pr[d← Dη : 1← A
Ox(·)(d, η)]− Pr[d← D′

η : 1← A
Ox(·)(d, η)]

∣

∣

∣ ≤ 1
q(η)

We will prove that if IND-CCA2 secure encryption is used, then for any formal message M ,
[[M]]tη

∼=Ox [[patternpk(M)]]tη. We will provide oracles that correspond to the oracles in the IND-CCA2
game. The following definition specifies the keys with respect to which the oracle will decrypt:

Definition 10. Let M be a pattern then M |KPub
= {K ∈ KPub : K vM}. If S is a set of messages

then S|KPub
= {K ∈ KPub : ∃M ∈ S.K vM}.

We must also specify the challenge ciphertexts which the oracle will not decrypt. These are the
ciphertexts which are different between [[M]]tη and [[patternpk(M)]]tη.

Definition 11 (Visible). Let σ be a bit-string and τ a set of computational public keys. Then let
visτ (σ) be the smallest set such that:

– σ ∈ visτ (σ),
– if 〈a, b, “pair”〉 ∈ visτ (σ), then a ∈ visτ (σ) and b ∈ visτ (σ),
– if 〈c, k, “enc”〉 ∈ visτ (σ), k ∈ τ , and k′ is the secret key corresponding to k, then D(c, k′) ∈

visτ (σ), and
– if 〈c, k, “enc”〉 ∈ visτ (σ), 〈k′, “privkey”〉 ∈ visτ (σ), and k′ is the secret key corresponding to k,

then D(c, k′) ∈ visτ (σ).

A bit-string m is a visible element in σ relative to τ if m ∈ vis τ (σ).

Intuitively if x is an encoding of X, σ is an encoding of M , τ is an encoding of T then x ∈ vis τ (σ)
iff X v patternpk(M, T). The decryption oracle we provide will not decrypt with respect to any

x ∈ visτ (σ). The following is a definition for formal indistinguishability, which closely mirrors that
given for the symmetric case by Abadi and Rogaway[1].

Definition 12 (Abadi-Rogaway public-key indistinguishability). An encryption scheme,
(G, E, D), provides Abadi-Rogaway public-key indistinguishability if, when used in [[·]]tη, for all nonce
distributions D, acyclic formal messages M , and finite T ⊆ KPub :

[[M]]tη
∼=

O
M,T
x

[[patternpk(M, T)]]tη

where O
M,T
x (σ, pk) returns ⊥ unless pk is a valid public key and

– either pk ∈ [[K]]tη for some K ∈ T , or

– pk ∈ [[K]]tη for some K ∈ (M |KPub
\ T) and σ /∈ vis [[T]]tη

(x).

This definition basically says that an adversary cannot distinguish between

[[M]]tη and [[patternpk(M, T)]]tη

when given an oracle that decrypts any messages encrypted with a key in [[T]]tη and decrypts any
ciphertexts that are not derived from [[M]]tη that are encrypted with any key used in M . Note that
for M = {|R|}K , we have [[{|R|}K]]tη

∼=
O

M,T
x

[[{|Z|}K]]tη (where Z is a message such that [[Z]]tη is an η

length bit-string of 0’s) which implies that (G, E, D) is IND-CCA2 secure.

We can now use this definition to prove a soundness result relating security in the formal model
with security in the computational model. Formally, we consider any message M equivalent to its
pattern patternpk(M, TAdv) where TAdv is the set of public keys for which the adversary knows
the corresponding private key. This notion of equivalence can be used to deductively prove that
an adversary cannot gain certain information by observing a cryptographic protocol (even given
powerful oracles). The following result says that this reasoning is valid if the public-key encryption
used in these protocols is IND-CCA2 secure.

Theorem 2. If (G, E, D) is IND-CCA2 secure then (G, E, D) provides Abadi-Rogaway public-key
indistinguishability.

Proof. (This is a corrected version of the proof in [3], which contains several errors.) Suppose that
[[·]]tη uses an encryption scheme (G, E, D), and there is a nonce distribution D, a message M , and set
of keys T and a PPT adversary A that can distinguish [[M]]tη from [[patternpk(M, T)]]tη when given

access to the oracle, OM,T
x , from Definition 12. Then (G, E, D) is not IND-CCA2 secure.

Since M is acyclic, we can order the key-pairs in the parse tree of M as K1, K2, ..., Kk so that if
Ki → Kj in the graph GM , then i ≥ j. So the deeper the key in encryptions, the smaller the number.
We construct a series of intermediate patterns, M0, ..., Mk between M and patternpk(M, T):

M0 = M = patternpk(M, T ∪ {K1, K2, ..., Kk})

Mk = patternpk(M, T)

Mi+1 is the same as Mi except that any encryptions with key Kk−i+1 are blobbed, if the equiva-
lent blob appears in patternpk(M, T). This is almost the same as saying Mi = patternpk(M, T ∪

{K1, K2, ..., Kk−i}) except that we only create blobs that appear at the same position in patternpk(M, T).

Setting up the hybrids this way (rather than the way proposed in [3]) is necessary to ensure that
A can distinguish some “top-level” encryption from its blob, which is necessary in order to be able
to properly answer oracle queries. Note that, because of the ordering on keys, whenever an encryp-
tion by key Ki has been blobbed, any encryptions of key K−1

i have already been blobbed, this is

necessary so that we can assume that [[Ki]]
t
η is the given public key (for which we do not know the

corresponding private key).

Since [[M]]tη 6
∼=

O
M,T
x

[[patternpk(M, T)]]tη, there must be i s.t. [[Mi]]
t
η 6
∼=

O
M,T
x

[[Mi+1]]
t
η. If there were

n > 1 encryptions blobbed between Mi and Mi+1, we construct a further n hybrids, N1, ..., Nn with
one further encryption being blobbed in each. There must be some j with [[Nj]]

t
η 6
∼=

O
M,T
x

[[Nj+1]]
t
η, and

let E = {|P |}Ki
be the encryption changed into 〈|TP |〉Ki

at this step.

We can use A to distinguish between m0 and m1 encrypted under key pk by first choosing a fresh
random take t and setting:

m0 ← [[P]]tη
m1 ← [[〈|TP |〉]]

t
η

And treating pk as the value of Ki. Note that [[Ki]]
t
η is a singleton distribution for fixed η and t.

We get as input some public key pk. We select a fresh random tape t, and sample p ←
[[P]]tη[pk/Ki] (where [[M]]tη[x/X] means [[M]]tη where we use c as [[X]]tη). It is fine to assume [[Ki]]

t
η =

{pk} because we know pk was generated by G and the acyclicity of M guarantees that K−1 does
not appear in P so we do not need to know the private key corresponding to pk in order to sample
[[P]]tη. Return p and [[〈|TP |〉]]

t
η as candidate plaintexts.

On input c, we sample s ← [[Nj]]
t
η[c/P, pk/Ki]. (Note that this is okay, because the ordering

on keys guarantees us that Nj does not depend on K−1
i). If c is an encryption of p then s comes

from the same distribution as Nj and if c in an encryption of [[〈|TP |〉]]
t
η then s comes from the same

distribution as Nj+1. We proceed by running A(s, 1η):

– If A makes an oracle query on (σ, pk), we check that {pk} = [[K]]tη for some K ∈M |KPub
∪ T . If

not we return ⊥, otherwise:

• If K = Ki, we check that σ is not visible in s relative to τ = [[T]]tη. If it is, we return ⊥ as
the oracle is supposed to. Otherwise, since σ is not visible in s relative to τ and c came from
a top-level encryption/blob so it is visible in s relative to τ , we know σ 6= c. Hence we can
use the CCA-2 decryption oracle to decrypt σ.

• If K 6= Ki, we can produce [[K−1]]tη ourselves from the take t. If K ∈ T , we decrypt σ using
[[K−1]]tη. If K ∈M |KPub

\T , we also check if σ is visible in s relative to τ = [[T]]tη. We return
⊥ if it is, and decrypt σ otherwise.

Corollary 1. Suppose that M , N are two acyclic messages, T ⊆ KPub , and M |KPub
= N |KPub

.
If patternpk(M, T) = patternpk(N, T) and the encoding operation [[·]]tη uses an IND-CCA2 secure

encryption scheme, then for any nonce distribution D, [[M]]tη
∼=

O
M,T
x

[[N]]tη.

It turns out that Theorem 2 implies that the Dolev-Yao abstraction of an active adversary is
not as limited as it first may seem. Because the Dolev-Yao indistinguishability definition allows for
a strong oracle to be used to try to decrypt, it requires that the encryption used be IND-CCA2
secure, which means it is also NM-CCA2 secure. If the encryption is non-malleable than it is just
as opaque to the computational adversary as to the Dolev-Yao adversary.

Theorem 3. Suppose that (G, E, D) is a computational public-key encryption scheme that provides
Abadi-Rogaway public-key indistinguishability. Then (G, E, D) provides weak Dolev-Yao public-key
non-malleability.

Proof. By contradiction.

Suppose there is an adversary that can produce a message outside the closure of its input set:

∃PPT adversary A, ∃nonce distributions D,
∃acyclic finite S ∈ A, ∃M /∈ C [S],
∃polynomial q, for infinitely large η :
Pr[t← {0, 1}ω;

s← [[S]]tη;

m← A
I

t
η(·),PbKt

η(·),PrKt
η(·),Rt

η(·)(1η, s) :
m ∈ supp[[M]]tη] ≥ 1

q(η)

We can construct A1 that contradicts Abadi-Rogaway public-key indistinguishability of (G, E, D)
(recall Definition 12). Consider the parse tree of M . There must be some leaf, Ml, that is not in
C [S] or else M itself would be in C [S] (since C [S] is closed under pairing and encryption which
are the only non-leaf constructors).

The essence of the argument is aw follows. A must be able to produce m ∈ supp[[Ml]]
t
η and it

must be that Ml is in R \RAdv or KPriv \ KAdv . We can then construct S ′ as:

S′ =

{

S ∪ {Ml} if Ml ∈ R \ RAdv

S ∪
{

Np, {|Np|}M−1

l

}

(where Np ∈ RAdv) if Ml ∈ KPriv \ KAdv

A1 can then use A to distinguish [[S ′]]tη from [[patternpk(S′)]]tη. There are a few more subtleties to

deal with, see [3] for details.

Theorem 3 shows that it is valid to consider adversaries in the Dolev-Yao model to encompass
all possible adversaries if IND-CCA2 secure encryption is used. This result means that it is valid
to enumerate all possible protocol runs in the Dolev-Yao model, and if each of these possible runs
satisfies some desired security property, then in the computational model all actual protocol runs
will satisfy this property as well.

References

1. Mart́ın Abadi and Phillip Rogaway. Reconciling two views of cryptography (the computational soundness of
formal encryption). In TCS ’00: Proceedings of the International Conference IFIP on Theoretical Computer
Science, Exploring New Frontiers of Theoretical Informatics, pages 3–22, London, UK, 2000. Springer-Verlag.

2. Pedro Adao, Gergei Bana, Jonathan Herzog, and Andre Scedrov. Soundness of formal encryption in the presence
of key-cycles. In Proceedings of the 10th European Symposium On Research In Computer Security (ESORICS
2005), September 2005.

3. Jonathan Herzog. A computational interpretation of Dolev-Yao adversaries. Theoretical Computer Science, 340:57–
81, June 2005.

