## Routing and Transport in Wireless Sensor Networks

Ibrahim Matta (matta@bu.edu) Niky Riga (inki@bu.edu) Georgios Smaragdakis (gsmaragd@bu.edu) Wei Li (wli@bu.edu) Vijay Erramilli (evijay@bu.edu)







| Example Network Models |                          |                     |                         |                       |  |  |
|------------------------|--------------------------|---------------------|-------------------------|-----------------------|--|--|
| Sensors<br>(Sources)   | Users<br>(Sinks)         | Event               | Interest<br>Propagation | Data<br>Dissemination |  |  |
| Stationary             | Stationary               | Query               | Static                  | Unicast               |  |  |
|                        |                          | - Continuous        | Unicast                 | Multicast             |  |  |
|                        |                          |                     | Multicast               |                       |  |  |
| Mobile                 | Mobile                   | Target<br>Detection | Broadcast               | Broadcast             |  |  |
| 10/21/2003             | 10/21/2003 Ibrahim Matta |                     |                         |                       |  |  |



| Flooding Based Approaches                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flooding                                                                                                                                                            |
| <ul> <li><u>SPIN - Sensor Protocol for Information via</u><br/><u>Negotiation</u></li> </ul>                                                                        |
| "Adaptive Protocols for Information Dissemination in<br>Wireless Sensor Networks," Wendi Rabiner Heinzelman, J.<br>Kulik, and H. Balakrishnan, <i>MobiCom 1999.</i> |
| 10/21/2003 Ibrahim Matta                                                                                                                                            |

| SPIN                 |                  |                     |                         |                       |  |  |
|----------------------|------------------|---------------------|-------------------------|-----------------------|--|--|
| Sensors<br>(Sources) | Users<br>(Sinks) | Event               | Interest<br>Propagation | Data<br>Dissemination |  |  |
| Stationary           | Query Static     |                     | Unicast                 |                       |  |  |
|                      |                  | Continuous          | Unicast                 | Multicast             |  |  |
|                      |                  |                     | Multicast               |                       |  |  |
| Mobile               | Mobile           | Target<br>Detection | Broadcast               | Broadcast             |  |  |
| <u></u>              |                  |                     |                         |                       |  |  |
| 10/21/2003           |                  | Ibrahim Ma          | atta                    |                       |  |  |



| Directed Diffusion and GRAB |                                             |            |                         |                       |  |  |
|-----------------------------|---------------------------------------------|------------|-------------------------|-----------------------|--|--|
| Sensors<br>(Sources)        | Users<br>(Sinks)                            | Event      | Interest<br>Propagation | Data<br>Dissemination |  |  |
| Stationary                  | Stationary                                  | Query      | Static                  | Unicast               |  |  |
|                             |                                             | Continuous | Unicast                 | Multicast             |  |  |
|                             |                                             |            | Multicast               |                       |  |  |
| Mobile                      | Mobile Mobile Target<br>Detection Broadcast |            | Broadcast               |                       |  |  |
|                             |                                             |            |                         |                       |  |  |
| 10/21/2003                  | Ibrahim Matta                               |            |                         |                       |  |  |











| $\begin{tabular}{ c c c c } \hline {\bf Routing Scheme $H$} & {\bf Minimum Radius $R_H$} \\ \hline $H_1$ & $d$ \\ \hline $H_2$ & $d$ \\ \hline $H_3$ & $d\sqrt{2}$ \\ \hline \end{tabular}$ | Energy Cost $E_H$<br>$3d^{\alpha}$<br>$4d\alpha$                                                                    | $E_H (\alpha = 2)$ | $E_{II} (\alpha = 4)$ | <b>D</b> .1         |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|--------------------|-----------------------|---------------------|--|--|--|
| $\begin{array}{c cccc} H_1 & d \\ H_2 & d \\ H_3 & d\sqrt{2} \end{array}$                                                                                                                   | 3d <sup>a</sup>                                                                                                     |                    |                       | Kobustness II $\pi$ |  |  |  |
| $\begin{array}{c c} H_2 & d \\ H_3 & d\sqrt{2} \\ \end{array}$                                                                                                                              | 4.10                                                                                                                | 3d~                | 3d4                   | $(1-p)^2$           |  |  |  |
| $H_3$ $d\sqrt{2}$                                                                                                                                                                           | $4a^{\alpha}$                                                                                                       | $4d^{2}$           | 4d <sup>4</sup>       | $(1-p)(1-p^2)$      |  |  |  |
|                                                                                                                                                                                             | $2(d\sqrt{2})^{\alpha}$                                                                                             | $4d^2$             | 8d <sup>4</sup>       | (1 - p)             |  |  |  |
| $H_4$ $d\sqrt{2}$                                                                                                                                                                           | $3(d\sqrt{2})^{\alpha}$                                                                                             | $6d^{2}$           | 12d <sup>4</sup>      | (1 - p)             |  |  |  |
| $H_5$ $d\sqrt{2}$                                                                                                                                                                           | $4(d\sqrt{2})^{\alpha}$                                                                                             | $8d^{2}$           | 16d <sup>4</sup>      | (1 - p)             |  |  |  |
| $H_6 \qquad d\sqrt{2(1 + 1/\sqrt{2})}$                                                                                                                                                      | $3(d\sqrt{2(1+1/\sqrt{2})})^{\alpha}$                                                                               | $10.2d^{2}$        | $35.0d^{4}$           | $(1 - p^2)$         |  |  |  |
| $H_7 = d\sqrt{2(1+1/\sqrt{2})}$                                                                                                                                                             | $4(d\sqrt{2(1+1/\sqrt{2})})^{\alpha}$                                                                               | $13.7d^{2}$        | $46.6d^{4}$           | $(1 - p^3)$         |  |  |  |
| $H_8 = d(1 + \sqrt{2})$                                                                                                                                                                     | $\frac{1}{d(1+\sqrt{2})} = \frac{1}{(d(1+\sqrt{2}))^{\alpha}} = \frac{1}{5.2d^2} = \frac{1}{34.0d^4} = \frac{1}{1}$ |                    |                       |                     |  |  |  |
| TABLE I<br>ENERGY AND ROBUSTNESS MEASURES FOR ALTERNATIVE ROUTING CONFIGURATIONS                                                                                                            |                                                                                                                     |                    |                       |                     |  |  |  |



















|                              |                                            | Re                     | sults              | 5                    |                       |
|------------------------------|--------------------------------------------|------------------------|--------------------|----------------------|-----------------------|
| <ul> <li>Solved ι</li> </ul> | using LOQO                                 | _                      |                    | _                    |                       |
| Four no                      | des located                                | at (1,0),(             | 2,0),(3,0)         | ),(4,0), s           | ink - (0,0            |
|                              |                                            |                        |                    |                      |                       |
|                              | Experiment                                 | Node 1                 | Node 2             | Node 3               | Node 4                |
|                              | E1                                         | 1.0                    | 1.0                | 1.0                  | 1.0                   |
|                              | E2                                         | 0.5                    | 1.5                | 1.5                  | 0.5                   |
|                              | E3                                         | 0.4                    | 0.8                | 1.2                  | 1.6                   |
|                              | E4                                         | 0.0                    | 0.0                | 1.0                  | 3.0                   |
|                              | ES                                         | 1.6                    | 1.2                | 0.8                  | 0.4                   |
|                              | E0                                         | 3.0                    | 1.0                | 0.0                  | 0.0                   |
|                              |                                            | Т                      | ABLE I             |                      |                       |
| DESC                         | RIPTION OF EXI                             | PERIMENTS              | : MAXIMUI          | M SOURCE             | RATES FOI             |
|                              |                                            | NODE IN                | THE NETW           | ORK                  |                       |
| Reference<br>3.1             | <u>e:</u> R.J. Vand<br>0,″ <i>Optimiza</i> | erbei, "L<br>htion Met | OQO- A<br>hods and | User's N<br>d Softwa | 1anual- \<br>re, 1999 |
| 10/21/2003                   | /2003 Ibrahim Matta                        |                        |                    |                      |                       |

Ibrahim Matta







|                                               | LEACH                                                                     |  |
|-----------------------------------------------|---------------------------------------------------------------------------|--|
| <ul> <li>Motivation</li> </ul>                | of the work                                                               |  |
| <ul> <li>Direct tra<br/>and static</li> </ul> | nsmission to sink, min energy routing,<br>c clustering may not be optimal |  |
| <ul> <li>Single maj</li> </ul>                | jor idea in paper                                                         |  |
| - Clustering selected                         | g where cluster heads are randomly and rotated                            |  |
| - Cluster h                                   | leads send TDMA schedule to members                                       |  |
| - Cluster h                                   | leads aggregate and send directly to sink                                 |  |
| <ul> <li>Model prov</li> </ul>                | vided in paper                                                            |  |
| - Data deli                                   | ivery phase longer than setup phase                                       |  |
| <ul> <li>Related we</li> </ul>                | ork                                                                       |  |
| - Direct, mi                                  | in-energy routing, static clustering                                      |  |
| Which                                         | one, Direct or MER, is more efficient?                                    |  |
| 10/21/2003                                    | Ibrahim Matta                                                             |  |
|                                               |                                                                           |  |





|                                                                                                  | LEACH                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Ad</li> <li>Imp</li> <li>Imp</li> <li>Sir</li> <li>-</li> <li>Fur</li> <li>-</li> </ul> | vantages of the work<br>Scalability: local interactions<br>Energy-efficient: members only wake up during their<br>scheduled transmission<br>provements to the work<br>Cluster selection aware of energy left<br>ingle major result<br>Order of magnitude reduction in energy consumption and<br>network lifetime compared to direct, min-energy routing and<br>static clustering<br>ture research<br>How to dynamically use the "right" number of cluster heads? |
| -                                                                                                | Can it be extended to multiple levels of hierarchy?                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10/21/200                                                                                        | )3 Ibrahim Matta                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| LEACH                |                  |                               |                         |                       |  |  |
|----------------------|------------------|-------------------------------|-------------------------|-----------------------|--|--|
| Sensors<br>(Sources) | Users<br>(Sinks) | Event                         | Interest<br>Propagation | Data<br>Dissemination |  |  |
| Stationary           | Stationary       | , Query Static                |                         | Unicast               |  |  |
|                      |                  | Continuous                    | Unicast                 | Multicast             |  |  |
|                      |                  |                               | Multicast               | 1414616134            |  |  |
| Mobile               | Mobile           | Target<br>Detection Broadcast |                         | Broadcast             |  |  |
|                      |                  |                               |                         |                       |  |  |
| 10/21/2003           | 13 Ibrahim Matta |                               |                         |                       |  |  |











| TTDD                 |                  |                     |                          |                       |  |  |
|----------------------|------------------|---------------------|--------------------------|-----------------------|--|--|
| Sensors<br>(Sources) | Users<br>(Sinks) | Event               | Interest<br>Propagation  | Data<br>Dissemination |  |  |
| Stationary           | Stationary       | Query               | Static                   | Unicast               |  |  |
|                      |                  | Continuous          | Unicast                  | Multicast             |  |  |
|                      |                  |                     | Multicast                |                       |  |  |
| Mobile               | Mobile           | Target<br>Detection | Broadcast<br>(localized) | Broadcast             |  |  |
|                      |                  |                     |                          |                       |  |  |
| 10/21/2003           |                  | Ibrahim Ma          | atta                     |                       |  |  |



A review on Geographic Routing

> Wei Li Boston University Oct 21, 2003











Ibrahim Matta













