Calibration as Parameter Estimation in Sensor Networks

Brenda S. Zhuang CODES Lab Sept 23rd, 2003

Agenda

- Localization and Calibration Problems
- Literature Review
 - OCalibration function with linear regression
 - Olterative calibration
 - O Mean calibration
- Proposed Macro-calibration
 - Joint calibration
- Generalization as Parameter Estimation
 - Reflection on RBS
 - Relative Calibration
- Conclusion

Localization and Calibration Problem

- Awareness of location is important in ad-hoc sensor networks
 - Infrastructure to provide position and distance
 - GPS module and ultrasonic receivers
- Radio Frequency (RF) and acoustic pulse transmission introduce large variation
 - Simple hardware
 - Heavy duty calibration

Literature Review

- Device Calibration
 - Hardware tuning

$$r^* = f(r, \beta)$$

Calibration Function

- Valid to ONE TX/RX pair
- Complexity of n²
- Separation Problem
- Iterative Calibration
 - Declare one TX as reference to calibrate
 - Iterate with RX as reference
- Mean Calibration
 - Assume Gaussian distributed variation in device
 - Calibrate all TX/RX as mean value

$$r^* = \beta_1 + \beta_2 \times r$$

Joint Calibration

The model

 $d^{*} = B_{T} + B_{R} + G_{T} \times d + G_{R} \times d + |F_{T} - F_{R}| \times d + f_{o}(O_{T}, O_{R}) \times d$

Omit non-linear terms

OComplexity 4n var. in n²-n equations

 Parameter estimation avoids separation problem yet keeps TX/RX models

Generalization

- What if NOT distance we are concerned?
 Time/Sync [OSDI 2002]
 - Phase offset: Offset Matrix according to pair of receivers with Gaussian dist. parameters
 Clock Skew: least square linear regression

OMulti-hop time sync

Offset
$$(i, j) = \frac{1}{m} \sum_{k=1}^{m} (T_{j,k} - T_{i,k})$$

Conclusion

Existing Methods

- O Traditional linear regression: Separation Problem
- Olterative calibration: Error Propagation
- O Mean calibration: Ignore the errors with Gaussian model

Joint calibration

- O System model
- OParameter estimation

Generalization

○ Time Varying Model?

○ Extension to synchronization scenario...