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RT Scheduling Basics
�The notion of a task encompasses many 

instantiations of a specific job. Examples:
� The task of sensing temperature in a room involves the periodic 

execution of a job that measures the temperature
� The task of sending a video stream involves the periodic execution 

of a job that sends individual frames

�Aspects of task model:
� Preemptability: Once scheduled could a job be preempted?
� Periodicity: How are jobs dispatched? 
� Imprecision: Could job execution benefit from more time?  
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Real-Time Periodic Tasks

� A Periodic Task is specified by 
P: The “Period” (between) job submissions 
C: The “Time of Resource Usage per Period” 
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Schedulability Analysis
� Check if a given task set can execute without having any 

job miss its deadline.

� Schedulability analysis is used for admission control of real-
time task sets

Could a Video Sensing Element (VSE) accept a new streaming  
task?  
Can I open a new video-conferencing channel without degrading 
existing channels?
Can a video server accept a new VOD request without degrading 
service to established VOD requests?
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Dynamic Priority Scheduling 
�The Model: 

- Tasks are periodic. Task i has a period Pi. 
- Task i need to compute for up to Ci units of time every period Pi. 
- Jobs of task i are ready at the start of each period Pi. 
- Jobs of task i have deadlines by the end of period Pi. 
- Jobs are preemptable. 
- Tasks are scheduled according to their priorities, which are 

allowed to change dynamically. 

�The Problem
- Find a priority assignment and a schedulability test such that for 

any set of tasks that passes the schedulability test, it follows that 
using the priority assignment technique, each task in the set will 
meet its deadline.
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Earliest Deadline Scheduling
EDF Priority Assignment: Assign to task i a priority inversely 

proportional to the amount of time remaining until the task's 
deadline (ties broken arbitrarily). 
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Earliest Deadline Scheduling

Selection Function: Job with the closest deadline among 
all jobs ready to execute

Decision Mode: Preemptive (at job arrival)
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EDF Schedulability Analysis
� A task set is schedulable if

+ Obviously optimal (since when the equality holds, we are 
using 100% of the resource)

- But, uses dynamic priorities and is unpredictable under 
overload!
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Fixed Priority Scheduling 
�The Model: 

- Tasks are periodic. Task i has a period Pi. 
- Task i need to compute for up to Ci units of time every period Pi. 
- Jobs of task i are ready at the start of each period Pi. 
- Jobs of task i have deadlines by the end of period Pi. 
- Jobs are preemptable. 
- Tasks are scheduled according to their priorities, which must be 

fixed (i.e. they cannot change dynamically). 

�The Problem
- Find a priority assignment and a schedulability test such that for 

any set of tasks that passes the schedulability test, it follows that 
using the priority assignment technique, each task in the set will 
meet its deadline.
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Rate Monotonic Scheduling
RMS Priority Assignment: Assign to task i a priority inversely 

proportional to its period Pi (i.e. priority is proportional to rate). Ties 
are broken arbitrarily. 
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Rate Monotonic Scheduling

Selection: Job with highest rate that is ready to execute 
Decision: Preemptive (at job arrival times)
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RMS Schedulability Analysis
� A task set is schedulable if

+ Optimal among class of fixed-priority schedulers
+ Predictable under overload
- But, wastes upwards of 30% of the scheduled resource!
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Execution Time Variability
� Execution time per period can vary by as much as 

1 or 2 orders of magnitude

� Should one do schedulability analysis based on 
worst-case or based on some other combinatorial 
or statistical assumptions?
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Statistical RMS
�The Model: 

- Tasks are periodic. Task i has a period Pi. 
- Task i need to compute Ci units of time every period Pi and Ci

follows a known distribution.
- Jobs of task i are ready at the start of each period Pi. 
- Jobs of task i have deadlines by the end of period Pi. 
- Jobs are preemptable. 
- Tasks are scheduled according to their priorities, which must be

fixed (i.e. they cannot change dynamically). 
- Tasks need to satisfy some QoS (expressed as % deadlines met)

�The Problem
- Find a priority assignment and a schedulability test such that for 

any set of tasks that passes the schedulability test, it follows that 
using the priority assignment technique, each task in the set will 
meet its QoS constraints.
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RT Scheduling & Power
� CPU consumes 30%-50% of notebook power
� To conserve power, system could operate at 

lowest voltage/frequency possible, but: 
Embedded devices typically involve periodic, real-time tasks 
(e.g., measure x every t). 
DVS is constrained by the need to meet the deadlines of all 
periodic tasks in the system.

� Problem: Devise a scheduling algorithm and a 
DVS scheme that minimizes power consumption 
while satisfying temporal constraints on RT tasks.  
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Speed vs Power
� CMOS Chips

Power consumed is a function of voltage ~ Ceff.V2.f
Frequency (1/delay) is proportional to voltage ~ k. V2/(V-Vt)
Reducing voltage necessitates reducing frequency (MHz)

� Power consumption ~ O(V3)
A strictly increasing convex function
Dynamic Voltage Scaling (DVS) allows voltage to be set to a 
continuous spectrum (e.g. in increments of 33MHz)
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Speed vs Power
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When to Adjust Power
� Inter-Task Power Adjustments:

Only at job dispatch time
Done by the “dispatcher” and not by the “program”
Takes 10s of microseconds on today’s processors

� Intra-Task Power Adjustments:
Job may adjust its power consumption
Requires OS/compiler support to allow/use API 
power management API
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Problem Statement
� Model

- Tasks are periodic. Task i has a period Pi.
- Task i need to compute for up to Ci cycles every period Pi
- Jobs of task i are ready at the start of each period Pi
- Jobs of task i have deadlines by the end of period Pi
- Jobs are preemptable
- Tasks are scheduled according to dynamic priorities (a.k.a. EDF)
- ACi < Ci is actual # of cycles needed by task Ti
- Speed S can be set to continuous values between 0 and 1
- Speed can be changed at context switching times
- Power is given by a function g(S)

� Problem
Find speed setting that minimizes power 
consumption while satisfying all deadlines
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Overview of Solution(s)
1. Off-Line: Determine optimal speed at task level 

assuming worst-case execution time for each 
arrival.

2. On-Line: Reclaim “unused time” and use that to 
slow-down task speeds in a manner that 
guarantees meeting all deadlines.

3. On-Line: Predict future underutilization and use 
that to achieve better power consumption
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Off-Line Solution

� Proof follows directly from convexity argument
� Basically, if we use an optimal RT schedule that 

delivers a utilization Utot when S=1 then we are 
guaranteed a feasible schedule when S= Utot

� What about scheduler that do not fully utilize the 
processor (for good reasons) a la RMS or SRMS?
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Worst-Case vs Actual
� Actual execution times could be up to 2 orders of 

magnitude less than worst cases
� Possible benefit from slowing speed “on the fly”
� Doing the “dumb” thing (e.g., assign lowest speed 

to idle process) is not good due to convexity
� Greedily using “slack” is not good either
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On-Line Solution: Motivation

� Sum(Ci/Pi)=1; no power saving based on WCET
� If T3 is done at t=8, assigning the slack of 4 to T1 (making 

speed = 0.5 in [10-18]) would make T2 miss its deadline!
� Need a mechanism that recognizes that T1 and T2 must 

share the slack (i.e., making speed = 0.8 in [10-30])
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On-Line Solution
� Need to keep track of tasks likely to be affected by 

“reclamation”:
Assume EDF* (EDF with non-arbitrary tie-breaking)
Keep an efficient data structure (α-queue) that returns the set 
of tasks whose slack can be used by a task at time t
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On-Line Solution

� At t=10 neither T1 nor T2 can “inherit” the slack of 
T3

� At t=3, T2 can inherit T1’s slack 
� How about at t=23? Can T2 inherit T1’s slack? 
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Betting on the “future”
� We are still too pessimistic—assuming that all 

future jobs will request the worst-case utilization

� What if we “steal” time from the future? 
Clearly, we may be able to further reduce power by having 
more uniform (lower) speeds

� Can we steal time from the future “safely” (i.e., 
without the risk of missing any deadlines)?

Yes, as long as we can make up for it (by possibly pushing 
down on the accelerator beyond the statically-computed 
WCET speed)—i.e., as long as Utot < 1
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Amdahl Law
� A powerful system design principle is to make the 

common case efficient…
This translates (in settings where the worst-case workload occurs 
only rarely) into having a power-efficient schedule for average or 
close to average cases, which can be achieved by reducing further 
the CPU speed, but without sacrificing correctness (i.e., QoS).

� … and the rare case correct
This means that we should reduce speeds only to the extent 
that we can “recover” by increasing speeds later (if 
necessary).
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Performance Evaluation
� Simulations of proposed techniques and 

comparison with trivial and clairvoyant approaches

Static: Uses constant speed, switching to minimum speed when idle
OTE: Static speed scheme (with One Task Extension optimization)
CC-EDF: Prior art (Cycle-conserving EDF)
LA-EDF: Prior art (Look-ahead EDF)
DRA: Dynamic reclamation Algorithm 
AGR1: Speculative DRA with aggressiveness factor k is set to 1
AGR2: Speculative DRA with aggressiveness factor k is set to 0.9
Bound: Clairvoyant oracle
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Experimental Results

� Energy consumption independent of utilization 
� Variability in execution time a good differentiator 
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Thoughts
� CPU is an example resource—results could be 

equally applied to scheduling communication 
channels where cost/energy ~ convex function of 
link speed (e.g., flow = task, CPU cycle = packet)

� Paper does not make use of distributional 
characteristics of execution times and/or 
correlation in periodic resource utilization from one 
period to the next

� What about non-EDF schedulers? What about 
non-deadline-based RT task models (e.g. pinwheel 
model)?
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Thoughts
� Why insist on 100% QoS? What if the QoS per 

task is lower-bounded (a la SRMS)?
� Are all CPU cycles created equal (when it comes 

to power consumption)?
� Could prolonging a task execution be harmful (e.g., 

resulting in stale data)? Could it increase power 
consumption (e.g., increase probability of 
collisions)? 

� What other uses do we have for “elasticity” in 
scheduling?
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Fault Tolerance/Recovery 
� Overview of “The Interplay of Power Management 

and Fault Recovery in Real-Time Systems” by 
Kanishka Gupta
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Medium Access Control
� Wireless channel is a shared medium; need access 

control mechanism to avoid interference

� MAC protocols used to avoid collisions so that two 
interfering nodes do not transmit at the same time. 

� Two main approaches
Contention-based: e.g., 802.11, MACAW, PAMAS

Reservation and scheduling: e.g., TDMA, CDMA, Bluetooth

� Not as easy as it sounds!
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MAC in Sensor Nets
Important attributes of MAC protocols

1. Collision avoidance
2. Energy efficiency
3. Scalability in node density
4. Latency
5. Fairness
6. Throughput
7. Bandwidth utilization

Primary

Secondary
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A B C

Hidden Terminal Problem
� Node B can communicate with A and C both
� A and C cannot hear each other
� When A transmits to B, C cannot detect the 

transmission using the carrier sense mechanism
� If C transmits, collision will occur at node B
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MACAW Solution
� When node A wants to send a packet to node B, 

node A first sends a Request-to-Send (RTS) to A
� On receiving RTS, node A responds by sending 

Clear-to-Send (CTS), provided node A is able to 
receive the packet

� When a node (such as C) overhears a CTS, it 
keeps quiet for the duration of the transfer

Transfer duration is included in both RTS and CTS

A B C
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Energy Consumption 
� Packet collisions and retransmissions. Collisions 

increases latency as well. 
� Packet overhearing. A node picks up packets that 

are destined to other nodes.
� Control packet overhead. Sending and receiving 

control packets consumes energy too.
� Idle listening. Listening to receive possible traffic 

that is never sent. This is the major sink of energy  
(~ 50-100% of total required for communication).
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� Energy consumption of typical 802.11 WLAN cards
idle:receive ratio— 1:1.05 to 1:2 [Stemm97]

Idle Listening Energy Costs
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What to Trade for Energy?
� Per-Hop Fairness is not important for SN

In sensor networks, all nodes cooperate for a single common 
task; fairness is not important as long as application-level 
performance is not degraded. 
Advocates “message passing” (message as opposed to 
packet store-and-forward) 

- A node with a larger message gets more time to access the 
medium (LJF scheduling ☺). While this is unfair from a per-hop, 
MAC level perspective, it results in better energy profile since it 
reduces control overhead, avoids overhearing.

- Enables in-network processing (filtering, averaging, etc.) which could 
potentially improve latency as well!
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Sensor-MAC
Latency Fairness Energy Efficiency

Major components in S-MAC
Periodic listen and sleep
Collision avoidance
Overhearing avoidance
Massage passing
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Periodic Listen and Sleep
Problem: Idle listening consumes significant energy
Solution: Periodic listen and sleep

� Turn off radio when sleeping
� Reduce duty cycle to ~ 10% (200ms on/2s off)
� Clearly hurts latency

sleeplisten listen sleep
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Periodic Listen and Sleep
� Need to coordinate schedules of close-by nodes 

to avoid the “can you hear me now” syndrome ☺
Potential for improved latency
Lower control overhead

� Border nodes ?
Schedule 2

Schedule 1

Node 1

Node 2

sleeplisten listen sleep

sleeplisten listen sleep
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Periodic Listen and Sleep
Schedule Synchronization

Synchronizer node chooses and broadcasts a 
schedule, which is followed by all recipients
Nodes remember neighbors’ schedules (to know 
when to send to them)
Each node broadcasts its schedule every few 
periods of sleeping and listening
Re-sync when receiving a schedule update
Schedule packets also serve as beacons for new 
nodes to join a neighborhood
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Collision Avoidance
Problem: Multiple senders want to talk
Solution: Similar to IEEE 802.11 ad hoc mode (DCF)

Physical and virtual carrier sense
Randomized backoff time
RTS/CTS for hidden terminal problem
RTS/CTS/DATA/ACK sequence
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IEEE 802.11 DCF 
� Uses RTS-CTS to avoid hidden terminal problem
� Uses ACK for reliability
� Any node receiving the RTS cannot transmit for the 

duration of the transfer
To prevent collision with ACK when it arrives at the sender, 
when B is sending data to C, node A will keep quite
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IEEE 802.11

C FA B ED
RTS

RTS = Request-to-Send
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IEEE 802.11

C FA B ED
RTS

RTS = Request-to-Send
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IEEE 802.11

C FA B ED
CTS

CTS = Clear-to-Send



Computer Science

Sensor Networks Seminar 50

IEEE 802.11

C FA B ED
CTS

CTS = Clear-to-Send
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IEEE 802.11

C FA B ED
DATA
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IEEE 802.11

C FA B ED
ACK
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Overhearing Avoidance
Problem: Receive packets destined to others
Solution: Sleep when neighbors talk

Basic idea from PAMAS [SinghRaghavendra:1998]
But only use in-channel signaling

� Who should sleep?
All immediate neighbors of sender and receiver

� How long to sleep?
The duration field in each packet carries the sleep interval
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Message Passing
Problem: In-network processing requires entire msg
Solution: Don’t interleave different messages

Long message is fragmented & sent in burst
RTS/CTS reserve medium for entire message
Fragment-level error recovery
On retransmission, extend reservation

� Other nodes sleep for whole message time
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S-MAC vs. 802.11

RTS 21 ...
...

Data 19
ACK 18CTS 20

Data 17
ACK 16

Data  1
ACK 0

RTS  3 ...
...

Data  3
ACK  2CTS  2

Data  3
ACK  2

Data  1
ACK 0

Fragmentation in IEEE 802.11
No indication of length of msgÆ idle listening
If ACK is not received, give up TxÆ fairness

Message Passing in S-MAC
Each packet carries length of reservation Æ sleep length
If ACK is not received, extend reservation Æ unfair
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S-MAC Implementation
� Platform

Motes (UC Berkeley)
8-bit CPU at 4MHz,
8KB flash, 512B RAM
916MHz radio

TinyOS: event-driven

� Compared MAC modules
IEEE 802.11-like protocol w/o sleeping
Message passing with overhearing avoidance
S-MAC (2 + periodic listen/sleep)



Computer Science

Sensor Networks Seminar 57

Experiments (!)
Source 1

Source 2

Sink 1

Sink 2

� Source nodes send 10 msgs, 
each with 400B in 10 fragments

� Msg interarrivals determine 
offered load

� Measure total energy over 
time to send all messages
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Thoughts
� Effect of node unfairness on “quality” of results

Assumption (unsubstantiated) that node unfairness is OK in 
sensor networks is questionable

� Minimizing aggregate energy isn’t the problem
Need to look at issues of balancing energy consumption, or 
on MAC scheduling subject to node power constraintsÆ
maximize network lifetime

� Is schedule synchronization a good thing? 


