
Computer Science

1

Power-Aware “Scheduling”
Azer Bestavros

September 16, 2003

Scribe: Kanishka Gupta

CS-559: Sensor Networks

Computer Science

Sensor Networks Seminar 2

References (and quotations)
� H. Aydin, R. Melhem, D. Mosse and P. Mejia-Alvarez;

"Power-Aware Scheduling for Periodic Real-Time Tasks''.
TOCS'03.

� R. Melhem, D. Mosse and E.(Mootaz) Elnozahy; The
Interplay of Power Management and Fault Recovery in
Real-Time Systems''. IEEE TOCS, 2003.

� W. Ye, J. Heidemann and D. Estrin, An energy-efficient
MAC protocol for wireless sensor networks, IEEE
Infocom 2002.

Computer Science

Sensor Networks Seminar 3

RT Scheduling Basics
�The notion of a task encompasses many

instantiations of a specific job. Examples:
� The task of sensing temperature in a room involves the periodic

execution of a job that measures the temperature
� The task of sending a video stream involves the periodic execution

of a job that sends individual frames

�Aspects of task model:
� Preemptability: Once scheduled could a job be preempted?
� Periodicity: How are jobs dispatched?
� Imprecision: Could job execution benefit from more time?

Computer Science

Sensor Networks Seminar 4

Real-Time Periodic Tasks

� A Periodic Task is specified by
P: The “Period” (between) job submissions
C: The “Time of Resource Usage per Period”

Computer Science

Sensor Networks Seminar 5

Schedulability Analysis
� Check if a given task set can execute without having any

job miss its deadline.

� Schedulability analysis is used for admission control of real-
time task sets

Could a Video Sensing Element (VSE) accept a new streaming
task?
Can I open a new video-conferencing channel without degrading
existing channels?
Can a video server accept a new VOD request without degrading
service to established VOD requests?

Computer Science

Sensor Networks Seminar 6

Dynamic Priority Scheduling
�The Model:

- Tasks are periodic. Task i has a period Pi.
- Task i need to compute for up to Ci units of time every period Pi.
- Jobs of task i are ready at the start of each period Pi.
- Jobs of task i have deadlines by the end of period Pi.
- Jobs are preemptable.
- Tasks are scheduled according to their priorities, which are

allowed to change dynamically.

�The Problem
- Find a priority assignment and a schedulability test such that for

any set of tasks that passes the schedulability test, it follows that
using the priority assignment technique, each task in the set will
meet its deadline.

Computer Science

Sensor Networks Seminar 7

Earliest Deadline Scheduling
EDF Priority Assignment: Assign to task i a priority inversely

proportional to the amount of time remaining until the task's
deadline (ties broken arbitrarily).

Computer Science

Sensor Networks Seminar 8

Earliest Deadline Scheduling

Selection Function: Job with the closest deadline among
all jobs ready to execute

Decision Mode: Preemptive (at job arrival)

Computer Science

Sensor Networks Seminar 9

EDF Schedulability Analysis
� A task set is schedulable if

+ Obviously optimal (since when the equality holds, we are
using 100% of the resource)

- But, uses dynamic priorities and is unpredictable under
overload!

1
1

≤∑ =

N

i
i

i

P
C

Computer Science

Sensor Networks Seminar 10

Fixed Priority Scheduling
�The Model:

- Tasks are periodic. Task i has a period Pi.
- Task i need to compute for up to Ci units of time every period Pi.
- Jobs of task i are ready at the start of each period Pi.
- Jobs of task i have deadlines by the end of period Pi.
- Jobs are preemptable.
- Tasks are scheduled according to their priorities, which must be

fixed (i.e. they cannot change dynamically).

�The Problem
- Find a priority assignment and a schedulability test such that for

any set of tasks that passes the schedulability test, it follows that
using the priority assignment technique, each task in the set will
meet its deadline.

Computer Science

Sensor Networks Seminar 11

Rate Monotonic Scheduling
RMS Priority Assignment: Assign to task i a priority inversely

proportional to its period Pi (i.e. priority is proportional to rate). Ties
are broken arbitrarily.

Computer Science

Sensor Networks Seminar 12

Rate Monotonic Scheduling

Selection: Job with highest rate that is ready to execute
Decision: Preemptive (at job arrival times)

Computer Science

Sensor Networks Seminar 13

RMS Schedulability Analysis
� A task set is schedulable if

+ Optimal among class of fixed-priority schedulers
+ Predictable under overload
- But, wastes upwards of 30% of the scheduled resource!

ln(2) 1)-(2 N N
1

1
≈≤∑ =

N

i
i

i

P
C

Computer Science

Sensor Networks Seminar 14

Execution Time Variability
� Execution time per period can vary by as much as

1 or 2 orders of magnitude

� Should one do schedulability analysis based on
worst-case or based on some other combinatorial
or statistical assumptions?

Computer Science

Sensor Networks Seminar 15

Statistical RMS
�The Model:

- Tasks are periodic. Task i has a period Pi.
- Task i need to compute Ci units of time every period Pi and Ci

follows a known distribution.
- Jobs of task i are ready at the start of each period Pi.
- Jobs of task i have deadlines by the end of period Pi.
- Jobs are preemptable.
- Tasks are scheduled according to their priorities, which must be

fixed (i.e. they cannot change dynamically).
- Tasks need to satisfy some QoS (expressed as % deadlines met)

�The Problem
- Find a priority assignment and a schedulability test such that for

any set of tasks that passes the schedulability test, it follows that
using the priority assignment technique, each task in the set will
meet its QoS constraints.

Computer Science

Sensor Networks Seminar 16

RT Scheduling & Power
� CPU consumes 30%-50% of notebook power
� To conserve power, system could operate at

lowest voltage/frequency possible, but:
Embedded devices typically involve periodic, real-time tasks
(e.g., measure x every t).
DVS is constrained by the need to meet the deadlines of all
periodic tasks in the system.

� Problem: Devise a scheduling algorithm and a
DVS scheme that minimizes power consumption
while satisfying temporal constraints on RT tasks.

Computer Science

Sensor Networks Seminar 17

Speed vs Power
� CMOS Chips

Power consumed is a function of voltage ~ Ceff.V2.f
Frequency (1/delay) is proportional to voltage ~ k. V2/(V-Vt)
Reducing voltage necessitates reducing frequency (MHz)

� Power consumption ~ O(V3)
A strictly increasing convex function
Dynamic Voltage Scaling (DVS) allows voltage to be set to a
continuous spectrum (e.g. in increments of 33MHz)

Computer Science

Sensor Networks Seminar 18

Speed vs Power

Speed

Ti
m

e

Good Better Best

Computer Science

Sensor Networks Seminar 19

When to Adjust Power
� Inter-Task Power Adjustments:

Only at job dispatch time
Done by the “dispatcher” and not by the “program”
Takes 10s of microseconds on today’s processors

� Intra-Task Power Adjustments:
Job may adjust its power consumption
Requires OS/compiler support to allow/use API
power management API

Computer Science

Sensor Networks Seminar 20

Problem Statement
� Model

- Tasks are periodic. Task i has a period Pi.
- Task i need to compute for up to Ci cycles every period Pi
- Jobs of task i are ready at the start of each period Pi
- Jobs of task i have deadlines by the end of period Pi
- Jobs are preemptable
- Tasks are scheduled according to dynamic priorities (a.k.a. EDF)
- ACi < Ci is actual # of cycles needed by task Ti
- Speed S can be set to continuous values between 0 and 1
- Speed can be changed at context switching times
- Power is given by a function g(S)

� Problem
Find speed setting that minimizes power
consumption while satisfying all deadlines

Computer Science

Sensor Networks Seminar 21

Overview of Solution(s)
1. Off-Line: Determine optimal speed at task level

assuming worst-case execution time for each
arrival.

2. On-Line: Reclaim “unused time” and use that to
slow-down task speeds in a manner that
guarantees meeting all deadlines.

3. On-Line: Predict future underutilization and use
that to achieve better power consumption

Computer Science

Sensor Networks Seminar 22

Off-Line Solution

� Proof follows directly from convexity argument
� Basically, if we use an optimal RT schedule that

delivers a utilization Utot when S=1 then we are
guaranteed a feasible schedule when S= Utot

� What about scheduler that do not fully utilize the
processor (for good reasons) a la RMS or SRMS?

Computer Science

Sensor Networks Seminar 23

Worst-Case vs Actual
� Actual execution times could be up to 2 orders of

magnitude less than worst cases
� Possible benefit from slowing speed “on the fly”
� Doing the “dumb” thing (e.g., assign lowest speed

to idle process) is not good due to convexity
� Greedily using “slack” is not good either

Computer Science

Sensor Networks Seminar 24

On-Line Solution: Motivation

� Sum(Ci/Pi)=1; no power saving based on WCET
� If T3 is done at t=8, assigning the slack of 4 to T1 (making

speed = 0.5 in [10-18]) would make T2 miss its deadline!
� Need a mechanism that recognizes that T1 and T2 must

share the slack (i.e., making speed = 0.8 in [10-30])

Computer Science

Sensor Networks Seminar 25

On-Line Solution
� Need to keep track of tasks likely to be affected by

“reclamation”:
Assume EDF* (EDF with non-arbitrary tie-breaking)
Keep an efficient data structure (α-queue) that returns the set
of tasks whose slack can be used by a task at time t

Computer Science

Sensor Networks Seminar 26

On-Line Solution

� At t=10 neither T1 nor T2 can “inherit” the slack of
T3

� At t=3, T2 can inherit T1’s slack
� How about at t=23? Can T2 inherit T1’s slack?

Computer Science

Sensor Networks Seminar 27

Betting on the “future”
� We are still too pessimistic—assuming that all

future jobs will request the worst-case utilization

� What if we “steal” time from the future?
Clearly, we may be able to further reduce power by having
more uniform (lower) speeds

� Can we steal time from the future “safely” (i.e.,
without the risk of missing any deadlines)?

Yes, as long as we can make up for it (by possibly pushing
down on the accelerator beyond the statically-computed
WCET speed)—i.e., as long as Utot < 1

Computer Science

Sensor Networks Seminar 28

Amdahl Law
� A powerful system design principle is to make the

common case efficient…
This translates (in settings where the worst-case workload occurs
only rarely) into having a power-efficient schedule for average or
close to average cases, which can be achieved by reducing further
the CPU speed, but without sacrificing correctness (i.e., QoS).

� … and the rare case correct
This means that we should reduce speeds only to the extent
that we can “recover” by increasing speeds later (if
necessary).

Computer Science

Sensor Networks Seminar 29

Performance Evaluation
� Simulations of proposed techniques and

comparison with trivial and clairvoyant approaches

Static: Uses constant speed, switching to minimum speed when idle
OTE: Static speed scheme (with One Task Extension optimization)
CC-EDF: Prior art (Cycle-conserving EDF)
LA-EDF: Prior art (Look-ahead EDF)
DRA: Dynamic reclamation Algorithm
AGR1: Speculative DRA with aggressiveness factor k is set to 1
AGR2: Speculative DRA with aggressiveness factor k is set to 0.9
Bound: Clairvoyant oracle

Computer Science

Sensor Networks Seminar 30

Experimental Results

� Energy consumption independent of utilization
� Variability in execution time a good differentiator

Computer Science

Sensor Networks Seminar 31

Thoughts
� CPU is an example resource—results could be

equally applied to scheduling communication
channels where cost/energy ~ convex function of
link speed (e.g., flow = task, CPU cycle = packet)

� Paper does not make use of distributional
characteristics of execution times and/or
correlation in periodic resource utilization from one
period to the next

� What about non-EDF schedulers? What about
non-deadline-based RT task models (e.g. pinwheel
model)?

Computer Science

Sensor Networks Seminar 32

Thoughts
� Why insist on 100% QoS? What if the QoS per

task is lower-bounded (a la SRMS)?
� Are all CPU cycles created equal (when it comes

to power consumption)?
� Could prolonging a task execution be harmful (e.g.,

resulting in stale data)? Could it increase power
consumption (e.g., increase probability of
collisions)?

� What other uses do we have for “elasticity” in
scheduling?

Computer Science

Sensor Networks Seminar 33

Fault Tolerance/Recovery
� Overview of “The Interplay of Power Management

and Fault Recovery in Real-Time Systems” by
Kanishka Gupta

Computer Science

Sensor Networks Seminar 34

Medium Access Control
� Wireless channel is a shared medium; need access

control mechanism to avoid interference

� MAC protocols used to avoid collisions so that two
interfering nodes do not transmit at the same time.

� Two main approaches
Contention-based: e.g., 802.11, MACAW, PAMAS

Reservation and scheduling: e.g., TDMA, CDMA, Bluetooth

� Not as easy as it sounds!

Computer Science

Sensor Networks Seminar 35

MAC in Sensor Nets
Important attributes of MAC protocols

1. Collision avoidance
2. Energy efficiency
3. Scalability in node density
4. Latency
5. Fairness
6. Throughput
7. Bandwidth utilization

Primary

Secondary

Computer Science

Sensor Networks Seminar 36

A B C

Hidden Terminal Problem
� Node B can communicate with A and C both
� A and C cannot hear each other
� When A transmits to B, C cannot detect the

transmission using the carrier sense mechanism
� If C transmits, collision will occur at node B

Computer Science

Sensor Networks Seminar 37

MACAW Solution
� When node A wants to send a packet to node B,

node A first sends a Request-to-Send (RTS) to A
� On receiving RTS, node A responds by sending

Clear-to-Send (CTS), provided node A is able to
receive the packet

� When a node (such as C) overhears a CTS, it
keeps quiet for the duration of the transfer

Transfer duration is included in both RTS and CTS

A B C

Computer Science

Sensor Networks Seminar 38

Energy Consumption
� Packet collisions and retransmissions. Collisions

increases latency as well.
� Packet overhearing. A node picks up packets that

are destined to other nodes.
� Control packet overhead. Sending and receiving

control packets consumes energy too.
� Idle listening. Listening to receive possible traffic

that is never sent. This is the major sink of energy
(~ 50-100% of total required for communication).

Computer Science

Sensor Networks Seminar 39

� Energy consumption of typical 802.11 WLAN cards
idle:receive ratio— 1:1.05 to 1:2 [Stemm97]

Idle Listening Energy Costs

0

0.02

0.04

0.06

0.08

0.1
0.12

0.14

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d

En
er

gy

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

E
ve

nt
)

Network Size

Diffusion

Omniscient MulticastFlooding

0
0.002
0.004
0.006
0.008
0.01

0.012
0.014
0.016
0.018

0 50 100 150 200 250 300

A
ve

ra
ge

 D
is

si
pa

te
d

En
er

gy

(J
ou

le
s/

N
od

e/
R

ec
ei

ve
d

E
ve

nt
)

Network Size

Diffusion

Omniscient Multicast

Flooding

Always-listening MAC Energy-aware MAC

Computer Science

Sensor Networks Seminar 40

What to Trade for Energy?
� Per-Hop Fairness is not important for SN

In sensor networks, all nodes cooperate for a single common
task; fairness is not important as long as application-level
performance is not degraded.
Advocates “message passing” (message as opposed to
packet store-and-forward)

- A node with a larger message gets more time to access the
medium (LJF scheduling ☺). While this is unfair from a per-hop,
MAC level perspective, it results in better energy profile since it
reduces control overhead, avoids overhearing.

- Enables in-network processing (filtering, averaging, etc.) which could
potentially improve latency as well!

Computer Science

Sensor Networks Seminar 41

Sensor-MAC
Latency Fairness Energy Efficiency

Major components in S-MAC
Periodic listen and sleep
Collision avoidance
Overhearing avoidance
Massage passing

Computer Science

Sensor Networks Seminar 42

Periodic Listen and Sleep
Problem: Idle listening consumes significant energy
Solution: Periodic listen and sleep

� Turn off radio when sleeping
� Reduce duty cycle to ~ 10% (200ms on/2s off)
� Clearly hurts latency

sleeplisten listen sleep

Computer Science

Sensor Networks Seminar 43

Periodic Listen and Sleep
� Need to coordinate schedules of close-by nodes

to avoid the “can you hear me now” syndrome ☺
Potential for improved latency
Lower control overhead

� Border nodes ?
Schedule 2

Schedule 1

Node 1

Node 2

sleeplisten listen sleep

sleeplisten listen sleep

Computer Science

Sensor Networks Seminar 44

Periodic Listen and Sleep
Schedule Synchronization

Synchronizer node chooses and broadcasts a
schedule, which is followed by all recipients
Nodes remember neighbors’ schedules (to know
when to send to them)
Each node broadcasts its schedule every few
periods of sleeping and listening
Re-sync when receiving a schedule update
Schedule packets also serve as beacons for new
nodes to join a neighborhood

Computer Science

Sensor Networks Seminar 45

Collision Avoidance
Problem: Multiple senders want to talk
Solution: Similar to IEEE 802.11 ad hoc mode (DCF)

Physical and virtual carrier sense
Randomized backoff time
RTS/CTS for hidden terminal problem
RTS/CTS/DATA/ACK sequence

Computer Science

Sensor Networks Seminar 46

IEEE 802.11 DCF
� Uses RTS-CTS to avoid hidden terminal problem
� Uses ACK for reliability
� Any node receiving the RTS cannot transmit for the

duration of the transfer
To prevent collision with ACK when it arrives at the sender,
when B is sending data to C, node A will keep quite

Computer Science

Sensor Networks Seminar 47

IEEE 802.11

C FA B ED
RTS

RTS = Request-to-Send

Computer Science

Sensor Networks Seminar 48

IEEE 802.11

C FA B ED
RTS

RTS = Request-to-Send

Computer Science

Sensor Networks Seminar 49

IEEE 802.11

C FA B ED
CTS

CTS = Clear-to-Send

Computer Science

Sensor Networks Seminar 50

IEEE 802.11

C FA B ED
CTS

CTS = Clear-to-Send

Computer Science

Sensor Networks Seminar 51

IEEE 802.11

C FA B ED
DATA

Computer Science

Sensor Networks Seminar 52

IEEE 802.11

C FA B ED
ACK

Computer Science

Sensor Networks Seminar 53

Overhearing Avoidance
Problem: Receive packets destined to others
Solution: Sleep when neighbors talk

Basic idea from PAMAS [SinghRaghavendra:1998]
But only use in-channel signaling

� Who should sleep?
All immediate neighbors of sender and receiver

� How long to sleep?
The duration field in each packet carries the sleep interval

Computer Science

Sensor Networks Seminar 54

Message Passing
Problem: In-network processing requires entire msg
Solution: Don’t interleave different messages

Long message is fragmented & sent in burst
RTS/CTS reserve medium for entire message
Fragment-level error recovery
On retransmission, extend reservation

� Other nodes sleep for whole message time

Computer Science

Sensor Networks Seminar 55

S-MAC vs. 802.11

RTS 21 ...
...

Data 19
ACK 18CTS 20

Data 17
ACK 16

Data 1
ACK 0

RTS 3 ...
...

Data 3
ACK 2CTS 2

Data 3
ACK 2

Data 1
ACK 0

Fragmentation in IEEE 802.11
No indication of length of msgÆ idle listening
If ACK is not received, give up TxÆ fairness

Message Passing in S-MAC
Each packet carries length of reservation Æ sleep length
If ACK is not received, extend reservation Æ unfair

Computer Science

Sensor Networks Seminar 56

S-MAC Implementation
� Platform

Motes (UC Berkeley)
8-bit CPU at 4MHz,
8KB flash, 512B RAM
916MHz radio

TinyOS: event-driven

� Compared MAC modules
IEEE 802.11-like protocol w/o sleeping
Message passing with overhearing avoidance
S-MAC (2 + periodic listen/sleep)

Computer Science

Sensor Networks Seminar 57

Experiments (!)
Source 1

Source 2

Sink 1

Sink 2

� Source nodes send 10 msgs,
each with 400B in 10 fragments

� Msg interarrivals determine
offered load

� Measure total energy over
time to send all messages

0 2 4 6 8 10

200

400

600

800

1000

1200

1400

1600

1800
Average energy consumption in the source nodes

Message inter-arrival period (second)

E
ne

rg
y

co
ns

um
pt

io
n

(m
J)

802.11-like protocol
Overhearing avoidance
S-MAC

S-MAC’s impact is when load is lowest (of course)

Computer Science

Sensor Networks Seminar 58

Thoughts
� Effect of node unfairness on “quality” of results

Assumption (unsubstantiated) that node unfairness is OK in
sensor networks is questionable

� Minimizing aggregate energy isn’t the problem
Need to look at issues of balancing energy consumption, or
on MAC scheduling subject to node power constraintsÆ
maximize network lifetime

� Is schedule synchronization a good thing?

