MA/CS-109:
Graphs as Models

Azer Bestavros

" S
Recall: IP Packet Communication

m Routers are computers that link up two or more
local networks

m A router handles any packet whose destination is
not local, storing it, and then forwarding it to the
“next” network (hop) towards its destination

5 8 o B
o, = o) —
- I B
c,.‘, t“\:h) A Router 1
53 Mt Verizon A =1l
<= S
=~ JJ‘_-l f.-"
T 3
= 5 -=-=---+ Routers A c

Local delivery

1NBR010 MACS-108 (Azer BeanTos) Remote delivery ~mm] o=

Recall that routers are computers that link up two or more local networks. A router handles any
packet whose destination is not local, storing it, and then forwarding it to the “next” network
(hop) towards its destination. But how does a router know where to send a packet on towards its
destination? What is needed is a way for the router to figure out the path that the packet should
take towards its destination and then forward that packet to the next router on that path,
accordingly. This functionality is called “routing” (hence the name “router”) and it is what we need
to implement for the Internet to deliver packets from a source to a destination.

Routing is the process of figuring out how to go from point A to point B given how the various
networks are connected to one another.

g
Routing: How to get from A to B?

m A very general problem; applies to:
Internet packet routing
Google maps
GPS Navigation

m We are typically interested in the identification of
the “best” route (or path) between A and B

Minimize cost of travel — e.g., tolis, gas, ...
Minimize delay, distance traveled, number of turns, ...
Minimize impact on environment, CO, emission, ...

A very general problem that we often encounter in many settings is that of finding “the best way”
to get from point A to point B when navigating in some space. For example:

1.

As we saw in our coverage of how we are able to send data over the Internet, an Internet
Protocol (IP) packet needs to be routed from a sender to a receiver (through interconnected
routers).

Mapping services, such as MapQuest, Google Maps, or Bing must be able to compute
directions from a starting address to a destination, given a map of roads.

GPS devices must be able to compute directions from a starting address to a destination, given
a map of roads as well as other information, such as traffic conditions, etc.

In all of these examples, there are clearly many ways (typically a very large number of ways) to get
from point A to point B. Of all these “ways” (which we call paths), we are typically interested in
identifying only the “best” path according to some criterion, which we typically think of as the
cost of the path. Examples of costs include:

Minimize the real cost of travel. Here the cost is “dollars” paid, e.g., in tolls, gas, ...

Minimize the time it takes to get from A to B. Here the cost is the “delay”.

Minimize the distance traveled to get from A to B. Here the cost is the “distance”. Notice that
minimizing distance does not necessarily minimize delay (why?)

Minimize the difficulty of following directions from A to B to get an “easy” route. Here the cost
is the “number of turns”.

Minimize the carbon footprint of travel from A to B. Here the cost is the “gallons of gas”.

In general, one may define any arbitrary objective (expressed as a cost) and the goal of routing

would be to minimize such cost.

" The real world

= =

: e

The routes we will evaluate come from a “real” world (e.g., of streets connecting intersections as

portrayed on a street map, or of subway lines and stops as portrayed on a subway map).

In order to reason about this “real world” (of streets and subway stops) we need to make it
simpler — retaining only information pertinent to the problem at hand.

Need an abstraction

Abstraction

Refine |
Abstraction

Ask a question
Reformulate | . |

Question A (ORI
Get an answer

N800 MACS- 108 (Azer Beslavios) 5

III

So as we have done many times in this course, we will have to work with a “mode
abstraction of the real world. We do so using graphs.

oran

Let’s go through an example.

Computing the shortest path

m Problem: Can you find the
minimum-cost path from a
start location to all
possible destinations?

m Cost: Number of subway
stops along the way.

Subway Map of Washington DC

Consider the subway (Metro) map of Washington D.C. and assume that the task at hand is to
compute the “best” path (also called shortest path) from a given starting Metro station to all other
Metro stations in D.C.

Moreover, let’s assume that for our purposes, we will consider the number of stops to be our
cost. In other words, we want to minimize the number of stops that we go from a starting station
to a destination.

What information do we need to retain from the Metro map to allow us to reason about the
problem at hand (that of finding the shortest path from a given starting Metro station to all other
Metro stations in D.C. ?

Abstracting the DCA Metro map
Stops of interest? g
{Vertices} . 2

V XAy L

First, we will need to identify the Metro stations that interest us. For example, it may be the case
that there are Metro stations that we will never consider as a destination. Clearly, such stations
need not remain in our model of the DC Metro.

This step gives us a set of vertices which we denote with the letter V.

Notice that words such as “nodes” and “points” are often used to mean “vertices”. In these notes,
we will try to stick to “vertices”, noting that in some cases, the use of “nodes” (e.g., of a network)
may be more natural.

F -
Abstracting the DCA Metro map

Connections?

{Edges}

Next, we identify the specific connections between the set of vertices V.

A vertex (station) is connected to another if one can get from the first to the second vertex
without going through any other vertex. For each such connection, we also need to identify the
cost associated with it. In our example, we are taking the cost to be the number of intermediate
stops.

In our model, we will represent such connections with a set of Edges, which we denote using the
letter E.

Notice that words such as “links”, “arcs”, and “lines” are sometimes used to mean “edges”. In
these notes, we will try to stick to “edges”, noting that in some cases, the use of “links” (e.g.,
between web pages, or between routers) may be more natural.

The DCA Metro map as a Graph

Together the set of vertices (nodes) and edges (links) define a Graph which we denote by the
letter G.

Once we have the graph G, we need not retain the details of the “real world” anymore. Indeed,

details such as the geographic location of the stations on the map, or the orientation (which way is
north), etc. are all details that we “abstract out”.

10

To summarize, by identifying a set of vertices and the edges between them (along with the costs
of such edges) we have modeled the DC Metro Map as a graph.

11

g
Graphs

m A graph G has a set of vertices // and a set of
edges E. We denote this by G=(V,E).
Edges may be directed or not.
Edges may be labeled with some cost (weight).

m Useful as abstractions for many artifacts...

Note:
“Vertex” and “Node” are used interchangeably
“Edge” and “Link” are used interchangeably

A few additional notes on graphs:

* The edges of a graph may be directed or undirected (not directed). A directed edge is one
where one can go in one direction (on that edge) but not necessarily in the other direction.
An example of a directed edge would be a one-way street connecting an intersection to
another. Notice that directed edges are sometimes called “directional” edges and those that
are not directed are sometimes called “bi-directional”. A graph whose edges are directed is
called a Directed Graph.

* An edge may be labeled with a cost, which we also call a weight. In this course, we will
concern ourselves with positive costs, but in general the cost of traversing an edge may be
negative (a negative cost means “profit”) or zero. Can you think of example graphs where
costs may be negative?

Graphs are fantastic mathematical objects that come in very handy in modeling many artifacts.

12

Let’s examine a few such artifacts, illustrated in the visualizations above — namely, the Internet
connectivity, blogs, airline travel routes, relationships defined by social networks, food chain, etc.

For each such artifact (and many more), we can model the underlying real-world using a graph. To
do so, we need to answer the following questions:

1. What are the vertices of the graph model

2. What are the edges of the graph model (what do they represent)

3. Are the edges directed or not?

4. What is the cost of each edge (if needed)?

" JEE
Examples

m Internet as a Graph
Vertices are hosts; edges represent direct connectivity
m The web as a Graph
Vertices are web pages; directed edges represent links
m Facebook as a Graph
Vertices are the users; edges represent friendships
m Twitter as a Graph
Vertices are the users; directed edges represent following

Airlina nannantinne ac a Cranh
AN LUillliculviio do a Jiapil

Vertices are airports; edges represent direct flights
m The US Map as a Graph

Vertices are states; edges represent neighboring states

In these examples, we note that some graphs are directed (e.g., the web and twitter graphs) while
others are not (e.g., the Facebook and US Map graphs). Recall that a directed graph is one where
edges have a specific direction. For example, when a web page points to another web page, then
clearly this linking is directional. In particular, if web page A points to web page B, then web page
B does not necessarily point back to web page A. The same observation can be made about
Twitter: user A following user B does not necessarily mean that user B follows user A. On the
other hand, a friendship relationship underscored by an edge in the Facebook graph, or a
neighboring state relationship underscored by an edge in the US Map graph are examples of
bidirectional edges — if A is a friend of B, then B is a friend of A, and if state A shares a border with
state B, the state B shares a border with A.

14

) Modeling the US as a graph

What are the vertices? What are the edges? What are possible costs (labels) to put on the edges?

15

" SEE
Back to Problem: Paths in a Graph

m A path between vertices A and B is a sequence of
edges starting with A and ending with B.

m The cost of a path is the sum of the costs of all
edges along the path.

m The shortest path between two vertices is the
path with the minimum possible cost.

We now turn our attention back to the original problem of finding the best way to go from one
vertex to another. To do so, we need to define what we mean by a path, the cost of a path, and
what constitutes the shortest path.

16

" Paths and their costs

Destination

We exemplify these terms on the DC Metro graph for going from A to B.

17

" I
Paths and their costs

Destination

Source| = R
B

Path Cost: 37

Here is one path whose cost is 37. Notice that this path goes through one vertex twice! While
doing so is “legal” in the sense that a path may have a vertex appear more than once, it is clearly
not a desirable thing to go around in “circles”. In particular, going around in circles is not a good

way to minimize the cost of a path!

" Paths and their costs

Destination

Path Cost: 37
Path Cost: 25

Removing the “going around in a circle” we get a second path, whose cost is lower than the first
(as expected). But, is this the shortest path? Is this the best we can do.

Not really!

" S
Paths and their costs

Destination

Source —[\> _A_
B

Path Cost: 37 . m

Path Cost: 25
Path Cost: 21 2

We can do better as shown in this third path, reducing the cost to 21.

Notice that while on the illustration, this new path “looks” longer, it really isn’t because what we
consider as cost has nothing to do with where we draw the vertices. Recall that our use of
“number of stops” as the cost implied that we don’t care about physical distances — so we would
take a path of length 10 miles with one stop over a path of length 2 miles with two stops.
Needless to say, you may not “like” using the number of stops as the determinant of cost, and you
may opt for something else. Doing so will result in a different graph and the shortest path from A
to B in that graph may be different from the one we get here.

So, we now have a path that costs 21. Is this the lowest-cost (shortest) path from A to B? Well,
given the toy-nature of this graph, we may be able to convince ourselves that this is the one... But,
what we need is a systematic way (i.e., an algorithm) to find the shortest path in any arbitrary
graph.

20

~ I
'Finding the shortest path

Destination

Source > _A_ rob 000] B 73 '
: N7
2
Remember: W

Edge Costs are positive

Before doing so, let’s summarize our observations about the properties of shortest paths.

Recall, that we restrict our attention to graphs with edges that have positive costs —i.e., the cost
on an edge cannot be negative or even zero.

" SEE
Shortest paths: Properties

A shortest path cannot go through any vertex
more than once
Proof (by contradiction):

Assume that the shortest path from A to B goes through a vertex X
more than once. Thus, the shortest path will look like

Patht: AP ce. P2 X[s P AP ... B

Since edge costs are all positive, then the highlighted path segment
from X to X must have a positive cost, which means that the following
path (Path2) must have a lower cost

Path2: A 2 ... > X 2> ...B

This contradicts our assumption that Path1 is the shortest path

The first property formalizes our observation that shortest paths should not admit cycles — going
in circles is not what one wants to do to minimize cost!

The proof is by contradiction.

22

" SEEE
Shortest paths: Properties

Any sub-path of a shortest path is itself a
shortest path
Proof (by contradiction):

Assume that the shortest path from A to B goes through a segment S
from X to Y such that the cost of S is larger than the cost of the
shortest path P from X to Y.

Path1: A2 ...2X=2[S]l=2Y>..2B
By replacing segment S with segment P we get a shorter path (Path2)

Path2:A > ... > X2>[P]>Y>..2>B

This contradicts our assumption that Path1 is the shortest path.

The second property formalizes our observation that any segment between two intermediate
vertices on a shortest path must itself be the shortest path between these two vertices — if the
shortest path from Boston to NYC goes through Harford and New Haven, then the segment of that
path from Hartford to New Haven must be the shortest path between Harford and New Haven.

The proof is again by contradiction.

23

-
Shortest paths: Properties

Triangular Inequality: Cost of shortest path from
A to B cannot exceed the sum of costs of the
shortest paths from A to X and from X to B.
Proof (by contradiction):
Assume that the cost of the shortest path from A to B (Path1) exceeds
the sum of the costs of the shortest paths from A to X and from X to A.
Path1: A= ... > B

from A to X and the shortest path from X to B.

Path2 Y s 2 X P> ... 7B

The cost of Path2 is less than the cost of Path1, which contradicts our
assumption that Path1 is the shortest path.

Now consider Path2 from A to B which consists of the shortest path

The last property of interest is the so-called “triangular inequality” of paths in a graph, which
states that the shortest path from A to B must have a cost that is no higher than the costs of going
from A to a transit point X and then from that transit point X to B.

This property formalizes what we may already know, but perhaps never bothered to prove ©: By
taking a detour from a shortest path, the resulting cost cannot be lower!

The proof of this property is also by contradiction.

24

g
Single-source shortest paths: How?

Source ’—,\/"
1

Assumption:
Positive Edge Cost

Armed with a good understanding of what shortest paths are, and what properties they exhibit,
we now go back to answering the “how” question: Given a graph with positive edge costs, how do
we find the shortest path? This question is about the “algorithm” one needs to follow to find
shortest paths.

Instead of finding the shortest path from a specific starting point (source) to a specific destination,
our goal will be to find all the shortest paths from a specific vertex to all other vertices in the

graph.

25

" JEE
A brute-force algorithm

m For each candidate destination

Enumerate all the paths from source to that destination
Calculate the cost of all enumerated paths
Select the path with the minimum cost

= How long would the above algorithm take?

Well, the first natural approach to follow would be to enumerate all the paths from the starting

point, figure out how much each such path costs, and then for each destination find the path with
the minimum cost... That’s the algorithm spelled out above.

How long would this brute-force approach take?

26

" JEE
A brute-force algorithm

m How long would the brute-force algorithm take?

Let's try it on a “complete” graph with 5 vertices.
B

e A NN
Source | ><—F—>cC

How many paths are there for one destination (say B)?
= # paths with 0 intermediate vertices = 1
= # paths with 1 intermediate vertex =3
= # paths with 2 intermediate vertices =3*2=6
= # paths with 3 intermediate vertices = 3*2*1 =6

Total number of paths to evaluate = 4*(1+3+6+6) = 64

Well, for a small graph (such as the one shown here), perhaps it is not too bad...

The graph we are using here is a complete graph with 5 vertices. A complete graph has an edge
between any pair of vertices. To reduce clutter, the illustration above does not show the costs on
the edges. Moreover, we note that such costs may not be symmetric. So, we have two directed
edges between any two vertices with possibly different costs on each direction.

First, we consider each possible destination. Starting from A, we have 4 possibilities. For each one
of these destinations we need to enumerate the paths from A to that destination. For example,
let’s enumerate the paths from A to B.

We can:

Go directly. Only one possibility exists: A>B.

Go through one intermediate vertex. Three possibilities exist, corresponding to the three
possible choices of intermediate vertices: A>C—>B, A>D—>B, A>E->B.

Go through two intermediate vertices: Six possibilities exist, corresponding to the six possible
choices of two intermediate vertices, namely one of three for the first intermediate vertex,
and then one of two for the second intermediate vertex: A>C—>D—>B, A>C2>E—>B,
A->D—>C—>B,A>D>E—>B,A>E>C>B,A>E>D>B.

Go through three intermediate vertices: Six possibilities exist, corresponding to the six
possible choices of three intermediate vertices, namely one of three for the first intermediate
vertex, and then one of two for the second intermediate vertex, and then the last
intermediate vertex: A>C>D—2>E->B, A>C2>E>D—>B, A>D>C--E2>B, A>D>E>C->B,
A>E>C>D—->B,A>E>D>C->B.

This is a total of 16 paths per destination, and thus a total of 64 paths all together...

27

" JEE
A brute-force algorithm

m How about a complete graph with 10 vertices?
= # paths with 0 intermediate vertices = 1
= # paths with 1 intermediate vertex = 8
= # paths with 2 intermediate vertices = 8*7 = 56
= # paths with 3 intermediate vertices = 8*7*6 = 366
= # paths with 4 intermediate vertices = 8*7*6*5 = 1,680
= # paths with 5 intermediate vertices = 8*7*6*5*4 = 6,720
= # paths with 7 intermediate vertices = 8*7*6*5*4*3*2 = 40,320
= # paths with 8 intermediate vertices = 8*7*6*5*4*3*2*1= 40,320
Paths to evaluate = 9*(109,671) = 987,039 > 9!

m Don’t even think about doing it this way for any
graph of practical size...

Oh no! Just look at how this explodes, if we just go to a complete graph with 10 vertices (instead
of 5).

Basically, the number of paths we have to consider grows with the factorial of (N-1) where N is the
number of vertices. And, from our excursion to the functions zoo, we recall that factorials grow
very very very fast!

This brute-force (by enumeration) approach is not going to cut it.

Well, clearly, there must be a way to do this efficiently (otherwise, how could Google Maps, or
your tiny GPS figure out shortest paths in the blink of an eye?)

28

" JEE
Next Time...
m An algorithm that does this efficiently...

N2 Instead of (N-1)!
For N=20, that’s 400 steps as opposed to 107 steps...

We will discuss an efficient algorithm to just do this next. It is an algorithm that gives us an answer
is significantly (and | mean significantly) less time — quadratic in the worst case (versus factorial in
the best case using brute force). The difference between the “efficient” (400 steps for N=20) and
“inefficient” (100,000,000,000,000,000 steps for N=20) ways to solve this problem should make
you really appreciate the importance of algorithmic efficiency.

To summarize: Graphs are models of “real world” artifacts. Once we have a model, we can then
ask whatever question we want or seek solutions to whatever problem we may define on the
graph. One such question/problem is finding the shortest path from a source to a destination (or
to all destinations). This is what we focused on in this lecture (and also the next).

That said, there are certainly many other questions/problems that we can ask/solve on graphs.

29

" J
What else can graphs model?

m Edges represent a relationship between vertices:
For maps, the relationship is “adjacency”

m These relationships do not have to be between
physical things:
For web networks, the relationship is “linkage”
For social networks, the relationship is “friendship”
For news networks, the relationship is “subscription”

For curricular networks, the relationship is “prerequisite”
For neuron networks, the relationship is “interaction”

So far, we have seen how a graph is used to model a (subway or internet) map. In such a model,
the edges in the graph represented the “adjacency” relationship between the vertices in the graph
—two vertices (e.g., subway stops or Internet routers) have an edge between them if they are
adjacent to one another. For the subway map, adjacency means that the two stations (modeled by
the vertices) are within one stop from one another on a subway line. For the Internet map,
adjacency means that the two routers (modeled by the vertices) are directly connected with a
physical wire.

In general, the edges of a graph could represent any relationship between the vertices — e.g.,
linkage between web pages, friendships between users on Facebook, subscribers to a news feed
or followers of a user on Twitter, prerequisite relationships between courses, interactions between
neurons in a brain, ...

30

What else can graphs model?

m Edges do not have to represent “harmonious”
relationships; they may represent conflicts!

Eremyiock: & wn anth-socel wtBty et disconpects

P T ——
v e,

rcsbook bty commect mi s, S ENEMYbo00Ok
the peophe in your il

-
— Get Enemybook SuperFlipOffl
L wat Facabook accoes i e g o The

&

@ it ot M £

In all the examples we considered so far, the relationship that edges represented was
“harmonious” — but that is not necessarily the case. Edges in a graph can also represent conflict
relationships!

" JE
Graphs as models of conflicts

m Edges do not have to represent “harmonious”
relationships; they may represent conflicts!
For Enemybook, the relationship is “hate”
For predatory networks, the relationship is “eat”
I For prescription drugs, the relationship is “-ve reaction”
1 For radio frequency, the relationship is “interference”
For course scheduling, the relationship is “conflict”

m Why are “conflict” graphs interesting?

One may use a graph to represent animosity between users (instead of friendship), or a predatory
relationship between animals (instead of a symbiotic relationship), ...

32

" JEE
Resolving conflicts using graphs

m Example applications:
Transporting live fish to pet stores
| Seating guests in a wedding reception
1 Assigning broadcast frequencies to local radio stations
Coloring of geographic maps
Assigning time slots to classes

s Common problem:
Find the minimum grouping of nodes such that no two
nodes in a single group conflict

1 Group = fish tank, table at a wedding, broadcast
frequency, map color, course time-slot, ...

Many applications require us to reason about such conflicts:

-We would not want to put fish that eat one another in the same tank

-We would not want to seat sworn enemies on the same table at a United Nations function (or
one’s wedding for that matter!)

-We would not want to assign the same frequencies to radio stations broadcasting in close
proximity from one another

-We would not want two states on the US map to have the same color (the map will be confusing)
-We would not want to schedule exams for two classes in the same time slot if a student is taking
both of these classes

33

'L_
Graph (vertex) coloring problem
m \What is the minimum number of colors needed to

color all vertices in a graph such that no edge
would connect vertices of the same color?

—
—

g
N

s
Blirneak

4

.X

One such interesting question/problem is “graph vertex coloring”, namely what is the minimum
number of colors needed to color vertices of a graph in such a way that any two adjacent vertices

(i.e., vertices connected by an edge) are of different color. Finding an answer to this question is
very important for many problems.

34

Graph (station) coloring problem

The Federal Communications Commission (FCC) prevents interference
between radio stations by assigning appropriate frequencies to each
station. Two stations cannot use the same channel when they are
within 150 miles of each other. How many different frequencies are
needed for the six stations located at the distances shown in the table?

WBUR WGBH WROR WKIS WFXI WABC

Along the same lines, one can use graph vertex coloring to solve other (quite important)
problems, including assigning the minimum number of radio frequencies to various radio
transmitters who may interfere with one another — here the radio stations would be the vertices,
and if two stations interfere with one another (because of geographical proximity) then we draw
an edge between them. Now coloring the graph is akin to assigning frequencies since we would
not want to give the same frequency (color) to interfering stations (adjacent vertices).

35

By marking in the table the interfering stations (shown with X) we identify the conflict

relationships.

Graph (station) coloring problem

The Federal Communications Commission (FCC) prevents interference
between radio stations by assigning appropriate frequencies to each
station. Two stations cannot use the same channel when they are
within 150 miles of each other. How many different frequencies are
needed for the six stations located at the distances shown in the table?

WBUR WGBH WROR WKIS WFXI WABC

36

¢ JEE
Graph (station) coloring problem

g%

e —

WKIS

Color = Frequency

Which leads us to the conflict graph that we can now color to figure out the minimum number of
frequencies needed.

How many colors (frequencies) would be needed??

37

|

Graph (station) coloring problem

Color = Frequency

Three colors (radio frequencies) will do it! Can you see why it cannot be done in less?

38

" JEE
Graph (guest) coloring problem

— —

vl Bill and Hillary have
woncilabie differences ©

A |/ A
ye
{ABERE
\/ a3 3
(,O '8 ._ ”O D
FO_ O}? Color = Table

Yet, another example is the problem of arranging guests attending a wedding around tables. Given
a list of “irreconcilable differences” between invitees, you task is to find a seating arrangement
that uses the least number of tables while avoiding to have two individuals with “irreconcilable
differences” sitting around the same table. This is a graph coloring problem! Namely, we can solve
the problem by (1) modeling each individual as a vertex in a graph, (2) representing the fact that
two individuals have irreconcilable differences by drawing an edge between the vertices
corresponding to these individuals, and (3) minimizing the number of colors (tables) used to color
the vertices (seat the guests) such that no two vertices connected with an edge (two guests with
irreconcilable differences) have the same color (are sitting on the same table).

Along the same lines, one can use graph vertex coloring to solve other (quite important)
problems, including assigning the minimum number of radio frequencies to various radio
transmitters who may interfere with one another — here the radio stations would be the vertices,
and if two stations interfere with one another (because of geographical proximity) then we draw
an edge between them. Now coloring the graph is akin to assigning frequencies since we would
not want to give the same frequency (color) to interfering stations (adjacent vertices).

Yet, another famous application of graph coloring is “map coloring”. Here our job is to color
adjacent states (vertices) on a planar map (e.g., map of the US) with different colors , but use the
minimum number of colors. This fairly classical problem was settled by proving that one need no
more than 4 colors for such (planar) graphs.

39

Graph (guest) coloring problem

A B
T—"\
He \ Vg (
/T
= oo /
G'%H_ s
e
o—

F E

The attempt on the left shows a coloring (assignment of guests to tables) that uses 4 colors (i.e.,
we need 4 tables). The one on the right shows a coloring that uses only 3 colors. One can show
that for this graph, three is the minimum number of colors. Try to prove it!

Accordingly, we would seat A, B, and E on the first (red) table; D, G, and H on the second (green)
table; and C, and F on the third (blue) table.

" JEE
Graph (course) coloring problem

—

At 1ea5t one student 15
enrolled in “Science”
and in “English”

%
/ 11134

Music
BCCOUNTING @

Color = Exam Slot

For example, consider the problem of assigning time-slots to the final exams of seven classes (say
in Science, Math, Accounting, English, Music, Economics, and Art). Now consider students
enrolling in these classes. If a student is enrolled in two classes (say English and Music) then these
two classes cannot be assigned the same time slot for the final exam, since the student taking
both classes cannot take both finals in the same time. We can model this “conflict” relationship
between classes using a graph and by finding the minimum number of colors for that graph, we
would identify the minimum number of exam slots needed (in this case, each color would
correspond to one exam slot).

41

" JEE
Graph (map) coloring problem

Yet, another famous application of graph coloring is “map coloring”. Here our job is to color
adjacent states (vertices) on a planar map (e.g., map of the US) with different colors , but use the
minimum number of colors.

Here the states
Note: You may ask why is it important to use a small number of colors. Well, not too long ago,

printing a map in color was expensive, and the cost would increase significantly as the number of
colors used increases.

42

Graph (map) coloring problem

Here is a not-so-good attempt that uses too many colors...

43

Graph (map) cdloring problem

Here is an attempt at a coloring with less colors (using 5 colors)...

44

" JEE—
=
Graph (map) coloring problem
New Hampshine
7=t Vermont
Mentans Hosth Datota b Mok
Ovegon Mnnesta
Wiscons
idabo South Do roae
Tehign o 5
s i . Abode teied
- Pennsyha N
Newadn Nebirasky o Comnectcut
Ussh e s (e 3 hh_h_q__:"""'f
LIm— ‘\:‘:?.“\ ~ Delar
Caliorein Kanms Mimour| Virginia . H“‘*Ihl'ﬂﬂ
iy \\x\r i
) ez et " West Vigna
Areona Olmhoma | s weumans South
New Mesco Caroina
), Gecrgi
s
Lousana
Fiorida

Incidentally, this fairly classical problem was settled by proving that one need no more than 4
colors for such (planar) graphs — coloring is shown above.

" J
Graph coloring problem

= Graph Vertex Coloring

What is the minimum number of colors needed to color all
vertices in a graph such that no edge would connect
vertices of the same color?

For a complete graph with N vertices: N colors (proof?)

For any planar graph: No more than 4 colors

For arbitrary graphs: No efficient way to figure this out!

So, how many colors do we need?

Well, the answer is relatively easy for some special graphs:

1.

For a complete graph with N nodes (a graph where each pair of vertices are connected with an
edge), we would obviously need N colors. One can prove this very easily by contradiction —
Assume that one can color a complete graph with less than N colors such that no two adjacent
vertices have the same color. Since the graph has N vertices, then it must be the case that at
least two vertices have the same color. But since there is an edge between any pair of vertices,
it follows that two adjacent vertices have the same color, which is a contradiction.

For a ring with N nodes (a graph where each vertex is connected to exactly one other vertex
forming a connected cycle). One can prove that if N is even, then one needs two colors, and if
N is odd, one needs 3 colors.

For a planar graph (a graph that can be drawn on a plane without having any of the graph’s
edges intersect), as we mentioned before, it was shown that one needs at most 4 colors...

How about arbitrary graphs? Unfortunately, one can show that finding out the minimum number

of colors for arbitrary graphs cannot be done in an efficient way (unless the graph is relatively
small).

46

