CAS CS 460/660
Introduction to Database Systems

Indexing: Hashing

Introduction

[] indexes are best for . Cannot support
range searches.

B Static and dynamic hashing techniques exist; trade-offs similar to ISAM
vs. B+ trees.

B Recall, 3 alternatives for data entries k*:

1. Data record with key value k
2. <K, rid of data record with search key value k>

3. <K, list of rids of data records w/search key k>
Choice is orthogonal to the indexing technique

1.2

Static Hashing

B # primary pages fixed, allocated sequentially, never de-allocated; overflow
pages if needed.

B A simple hash function (for N buckets):

is bucket # where data entry with key k belongs.

h(key)

key: B

)QQQ

N'l T ° ©o o

Primary bucket pages Overflow pages

1.3

Static Hashing (Contd.)

B Buckets contain data entries.

B Hash fn works on search key field of record r. Use MOD N to distribute
values over range O ... N-1.

v h(key) = key MOD N works well for uniformly distributed data.
= better: h(key) = (A*key MOD P) mod N, where P is a prime number
¥" various ways to tune h for non-uniform (checksums, crypto, etc.).

B As with any static structure: can develop and
degrade performance.

v and : Dynamic techniques to fix this problem.

1.4

Extendible Hashing

B Situation: Bucket (primary page) becomes full.
¥ Want to avoid overflow pages

B Add more buckets (i.e., increase “N”)?
v* Okay, but need a new hash function!
B Doubling # of buckets makes this easier
v+ Say N values are powers of 2: how to do “mod N”?
¥+ What happens to hash function when double “N”?
B Problems with Doubling
¥* Don’t want to have to double the size of the file.
¥" Don’t want to have to move all the data.

1.5

Extendible Hashing (cont)

B /dea: Add a level of indirection!

B Use

B Double # of buckets by doubling the directory
¥ Directory much smaller than file, so doubling it is much cheaper.

B Split only the bucket that just overflowed!

v
¥ Trick lies in how hash function is adjusted!

1.6

How 1t Work

S

e Directory is array of size 4, so 2 bits needed.
o Bucket for record r has entry with index =
" least significant bits of h(r);

— If h(r) = 5 = binary 101, itis in bucket pointed to by 01.
— If h(r) = 7 = binary 111, it is in bucket pomtec to by 11.

LOCAL DEPTH

00

/

11

/
01 ~
10 9

4+ 12+ 32+ 16+ BUCKetA
BB
1* 5% 7* 13 Bucket B
P8

Bucket C

DIRECTORY
1.7

Handling Inserts

M Find bucket where record belongs.
M If there’s room, put it there.

M Else, if bucket is full, It
v"increment local depth of original page
v allocate new page with new local depth
¥"re-distribute records from original page.
¥"add entry for the new page to the directory

1.8

Example: Insert 21,19, 15

H 21 =10101
®m 19=10011
H 15=01111

LOCAL DEPTH- — | o
4+ 12* 30% 16* Bucket A

/ 2
Bucket B

00 1* 5% 21* 13
//

01 -------------

10 ~ 9
11 J 10 Bucket C

D.Recmk P
7* 19* 15* Bucket D

we denote key rby h(r). oampaces

1.9

Insert h(r)=20 (Causes Doubling)

GLOBAL DEPTH

00
01
10
11

LOCAL DEPTH 27|

32*16°

1* 5*

21*137

4* 12*20*

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2
(‘split image'
of Bucket A)

LOCAL DEPTH 2|3
GLOBAL DEPTH 327167
000 1* 5* 21*13]
001
010 |~ 2
011 o
100 | \ |
o | Y
110 7/ 15* 7% 19*
111
T
4* 12* 20*

Bucket A

Bucket B

Bucket C

Bucket D

Bucket A2

("split image'

of Bucket A)

Points to Note

B 20 =binary 10100. Last 2 bits (00) tell us rin either A or A2. Last 3 bits
needed to tell which.

v Max # of bits needed to tell which bucket an entry
belongs to.

v # of bits used to determine if an entry belongs to this
bucket.

B When does split cause directory doubling?

v Before insert, local depth of bucket = global depth. Insert causes local depth to
become > global depth; directory is doubled by and “fixing’ pointer
to split image page.

Directory Doubling

Why use least significant bits in directory
(instead of the most significant ones)?

Allows for doubling by copying the
directory and appending the new copy
to the original.

— [21| — [2] [
2 0 e
AR 0.2 L 0
P O, 2 . 05 s O, 1 1
1 1 1 1
1,3 5 3 0
1) 3 1 ’ ’ 1
Least Significant VS. Most Significant

Comments on Extendible Hashing

M [f directory fits in memory, equality search answered with one disk access;
else two.

¥ 100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data entries)
and 25,000 directory elements; chances are high that directory will fit in memory.

¥ Directory grows in spurts, and, if the distribution of hash values is skewed,
directory can grow large.

¥ Multiple entries with same hash value cause problems!

Comments on Extendible Hashing

Delete:

B If removal of data entry makes bucket empty, can be merged with
“split image’

M If each directory element points to same bucket as its split image,
can halve directory.

Summary

Hash-based indexes: best for equality searches, cannot support range
searches.

Static Hashing can have long overflow chains.

Extendible Hashing avoids overflow pages by splitting a full bucket when a
new data entry is to be added to it.

v Directory to keep track of buckets, doubles periodically.

v* Can get large with skewed data; additional I/O if this does not fit in main
memory.

