
1.1

CAS CS 460/660
Introduction to Database Systems

Indexing: Hashing

1.2

Introduction

■  Hash-based indexes are best for equality selections. Cannot support
range searches.

■  Static and dynamic hashing techniques exist; trade-offs similar to ISAM
vs. B+ trees.

■  Recall, 3 alternatives for data entries k*:
1.  Data record with key value k
2.  <k, rid of data record with search key value k>
3.  <k, list of rids of data records w/search key k>
Choice is orthogonal to the indexing technique

1.3

Static Hashing

■  # primary pages fixed, allocated sequentially, never de-allocated; overflow
pages if needed.

■  A simple hash function (for N buckets):
h(k) = k MOD N

is bucket # where data entry with key k belongs.

h(key)

h
key

Primary bucket pages Overflow pages

1
0

N-1

1.4

Static Hashing (Contd.)
■  Buckets contain data entries.
■  Hash fn works on search key field of record r. Use MOD N to distribute

values over range 0 ... N-1.
➹  h(key) = key MOD N works well for uniformly distributed data.

§  better: h(key) = (A*key MOD P) mod N, where P is a prime number
➹  various ways to tune h for non-uniform (checksums, crypto, etc.).

■  As with any static structure: Long overflow chains can develop and
degrade performance.
➹  Extendible and Linear Hashing: Dynamic techniques to fix this problem.

1.5

Extendible Hashing

■  Situation: Bucket (primary page) becomes full.
➹ Want to avoid overflow pages

■  Add more buckets (i.e., increase “N”)?
➹ Okay, but need a new hash function!

■  Doubling # of buckets makes this easier
➹  Say N values are powers of 2: how to do “mod N”?
➹ What happens to hash function when double “N”?

■  Problems with Doubling
➹  Don’t want to have to double the size of the file.
➹  Don’t want to have to move all the data.

1.6

Extendible Hashing (cont)

■  Idea: Add a level of indirection!

■  Use directory of pointers to buckets,
■  Double # of buckets by doubling the directory

➹  Directory much smaller than file, so doubling it is much cheaper.

■  Split only the bucket that just overflowed!
➹  No overflow pages!
➹  Trick lies in how hash function is adjusted!

1.7

 How it Works

00
01
10
11

2
GLOBAL DEPTH

DIRECTORY

13*

2

1

2

LOCAL DEPTH Bucket A

Bucket B

Bucket C10*

1* 7*

4* 12* 32* 16*

5*

•  Directory is array of size 4, so 2 bits needed.
•  Bucket for record r has entry with index =

`global depth’ least significant bits of h(r);
–  If h(r) = 5 = binary 101, it is in bucket pointed to by 01.
–  If h(r) = 7 = binary 111, it is in bucket pointed to by 11.

1.8

Handling Inserts

■ Find bucket where record belongs.
■ If there’s room, put it there.
■ Else, if bucket is full, split it:
➹ increment local depth of original page
➹ allocate new page with new local depth
➹ re-distribute records from original page.
➹ add entry for the new page to the directory

1.9

Example: Insert 21,19, 15
■  21 = 10101
■  19 = 10011
■  15 = 01111

13*00
01
10
11

2

2

LOCAL DEPTH

GLOBAL DEPTH

DIRECTORY

Bucket A

Bucket B

Bucket C

2
Bucket D

DATA PAGES

10*

1* 7*

2
4* 12* 32* 16*

15*7* 19*

5*

we denote key r by h(r).

12
21*

1.10

2
4* 12* 32*16*

Insert h(r)=20 (Causes Doubling)

00
01
10
11

2 2

2

2

LOCAL DEPTH

GLOBAL DEPTH
Bucket A

Bucket B

Bucket C

Bucket D

1* 5* 21*13*

10*

15* 7* 19*

(`split image'
of Bucket A)

20*

3
Bucket A24* 12*

of Bucket A)

3
Bucket A2

(`split image'
4* 20*12*

2

Bucket B1* 5* 21*13*

10*

2

19*

2

Bucket D15* 7*

3

32*16*
LOCAL DEPTH

000
001
010
011
100
101

110
111

3
GLOBAL DEPTH

3

32*16*

Bucket C

Bucket A

1.11

Points to Note

■  20 = binary 10100. Last 2 bits (00) tell us r in either A or A2. Last 3 bits
needed to tell which.
➹ Global depth of directory: Max # of bits needed to tell which bucket an entry

belongs to.
➹  Local depth of a bucket: # of bits used to determine if an entry belongs to this

bucket.

■  When does split cause directory doubling?
➹  Before insert, local depth of bucket = global depth. Insert causes local depth to

become > global depth; directory is doubled by copying it over and `fixing’ pointer
to split image page.

1.12

Directory Doubling

00

01
10

11

2

Why use least significant bits in directory
(instead of the most significant ones)?

vs.

0

1

1

0

1

1

Least Significant Most Significant

0, 2

1, 3

1

1

0, 2

1, 3

1

1

0, 1

2, 3

1

1

00

01
10

11

2

0, 1

2, 3

1

1

Allows for doubling by copying the
directory and appending the new copy
to the original.

1.13

Comments on Extendible Hashing

■  If directory fits in memory, equality search answered with one disk access;
else two.
➹  100MB file, 100 bytes/rec, 4K pages contains 1,000,000 records (as data entries)

and 25,000 directory elements; chances are high that directory will fit in memory.
➹  Directory grows in spurts, and, if the distribution of hash values is skewed,

directory can grow large.
➹ Multiple entries with same hash value cause problems!

1.14

Comments on Extendible Hashing

Delete:
■  If removal of data entry makes bucket empty, can be merged with

`split image’

■  If each directory element points to same bucket as its split image,
can halve directory.

1.15

Summary

■  Hash-based indexes: best for equality searches, cannot support range
searches.

■  Static Hashing can have long overflow chains.
■  Extendible Hashing avoids overflow pages by splitting a full bucket when a

new data entry is to be added to it. (Duplicates may require overflow
pages.)
➹  Directory to keep track of buckets, doubles periodically.
➹  Can get large with skewed data; additional I/O if this does not fit in main

memory.

