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CAS CS 460/660
Introduction to Database Systems

Tree Based Indexing: B+-tree

Slides from UC Berkeley
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How to Build Tree-Structured Indexes

■  Tree-structured indexing techniques support both 
range searches and equality searches.

■  Two examples:
➹  ISAM:  static structure; early index technology.

➹  B+ tree:  dynamic, adjusts gracefully under inserts and deletes.
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Indexed Sequential Access 

Method

■  ISAM is an old-fashioned idea
➹  B+ trees are usually better, as we’ll see

§  Though not always
■  But, it’s a good place to start

➹  Simpler than B+ tree, but many of the same ideas
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Range Searches

■  ``Find all students with gpa > 3.0’’
➹  If data is in sorted file, do binary search to find first such student, then scan to 

find others.
➹  Cost of binary search on disk is still quite high. Why?

■  Simple idea:  Create an `index’ file.

☛  Can do binary search on (smaller) index file!




Page 1 Page 2 Page N Page 3 Data File 

k2 kN k1 Index File 

☛ But what if index doesn’t fit easily in memory?
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ISAM

We can apply the idea repeatedly!

P 0 K 1 P 1 K 2 P 2 K m P m 

index entry 

Non-leaf 
Pages 

Pages 
Overflow  

page 
Primary pages 

Leaf 
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Example ISAM Tree

■  Index entries:<search key value, page id>  
they direct search to data entries in leaves.

■ Example where each node can hold 2 entries;

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 
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Data Pages 

ISAM has a STATIC Index Structure

File creation:  
1.  Allocate leaf (data) pages 

sequentially
2.  Sort records by search key 
3.  Allocate and fill index pages
(now the structure is ready for use)

4.  Allocate and overflow pages as 
needed

 
 Static tree structure:  inserts/deletes affect only

 leaf pages.


ISAM File Layout


Index Pages 

Overflow pages 
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ISAM (continued)

Search:  Start at root; use key                 
comparisons to navigate to leaf.  

Cost = log F N           
F = # entries/pg (i.e., fanout)
N = # leaf pgs

➹   no need for `next-leaf-page’ pointers.  (Why?)

  Insert:  Find leaf that data entry belongs to, 
and put it there.  Overflow page if necessary.

 Delete:  Find; remove from leaf; if empty de-
allocate. 

Data Pages 

Index Pages 

Overflow pages 
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Example: Insert 23*,48*,41*,42*

48* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

Overflow 

Pages 

Leaf 

Index 
Pages 

Pages 

Primary 

23* 41* 

42* 
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48* 

10* 15* 20* 27* 33* 37* 40* 46* 51* 55* 63* 97* 

20 33 51 63 

40 

Root 

Overflow 

Pages 

Leaf 

Index 
Pages 

Pages 

Primary 

23* 41* 

42* 

 ... then Deleting 42*, 51*, 97*


☛  Note that 51* appears in index levels, but  not in leaf!




1.11

ISAM ---- Issues?

■  Pros
➹  ????

■  Cons
➹  ????
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B+ Tree:  The Most Widely Used Index

Insert/delete at log F N cost;  
keep tree height-balanced. 

N = # leaf pages

Index Entries 

Data Entries 
("Sequence set") 

(Direct search) 

•  Each node (except for root) contains m entries:  
d <= m <= 2d entries.  

•  “d” is called the order of the tree.   
(maintain 50% min occupancy) 

•  Supports equality and range-searches efficiently. 

•  As in ISAM, all searches go from root to leaves, 
but structure is dynamic. 
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Example B+ Tree

■  Search begins at root page, and key comparisons direct it to a leaf (as in 
ISAM).

■  Search for 5*, 15*, all data entries >= 24* ...

☛  Based on the search for 15*, we know it is not in the tree!


Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 
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A Note on Terminology

■ The “+” in B+Tree indicates a special kind of “B Tree” 
in which all the data entries reside in leaf pages.
➹  In a vanilla “B Tree”, data entries are sprinkled throughout the tree.

■ B+Trees are simpler to implement than B Trees. 
➹  And since we have a large fanout, the upper levels comprise only a tiny fraction 

of the total storage space in the tree.

■ To confuse matters, most database people (like me) 
call B+Trees “B Trees”!!! (sorry!)
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B+Tree Pages

Question: How big should the B+Tree pages 
(i.e., nodes) be?

Hint 1: we want them to be fairly large (to get 
high fanout).

Hint 2: they are typically stored in files on 
disk.

Hint 3: they are typically read from disk into 
buffer pool frames.

Hint 4: when updated, we eventually write 
them from the buffer pool back to disk.

Hint 5: we call them “pages”.



1.16

B+ Trees in Practice

■  Remember = Index nodes are disk pages 

➹  e.g., fixed length unit of communication with disk

■  Typical order: 100.  Typical fill-factor: 67%.
➹  average fanout = 133

■  Typical capacities:
➹  Height 3: 1333 =     2,352,637 entries
➹  Height 4: 1334 = 312,900,700 entries

■  Can often hold top levels in buffer pool:
➹  Level 1 =           1 page  =     8 Kbytes
➹  Level 2 =      133 pages =     1 Mbyte
➹  Level 3 = 17,689 pages = 133 MBytes       
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Inserting a Data Entry into a B+ Tree


■  Find correct leaf L. 

■  Put data entry onto L.


➹  If L has enough space, done!

➹  Else, must split  L (into L and a new node L2)


§ Redistribute entries evenly, copy up middle key.

§  Insert index entry pointing to L2 into parent of L.


■  This can happen recursively

➹  To split index node, redistribute entries evenly, but push up middle 

key.  (Contrast with leaf splits.)

■  Splits “grow” tree; root split increases height.  


➹  Tree growth: gets wider or one level taller at top.
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Example B+ Tree – Inserting 23*


Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

23*



1.19

Example B+ Tree - Inserting 8*


❖  Notice that root was split, leading to increase in height.


❖  In this example, we could avoid split by re-distributing             
entries; however, this is not done in practice.


Root 

17 24 30 

2* 3* 5* 7* 14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 

2* 3* 5* 7* 8* 

2* 3* 7* 5* 8* 

5

24 30 

14* 16* 19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

13 5 

2* 3* 7* 5* 8* 

Root 
17 
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Leaf vs. Index Page Split  
(from previous example of inserting “8”)


■  Observe how 
minimum 
occupancy is 
guaranteed in both 
leaf and index pg 
splits.


■  Note difference 
between copy-up 
and push-up; be 
sure you 
understand the 
reasons for this.


5 
Entry to be inserted in parent node. 
(Note that 5 is 
continues to appear in the leaf.) 

s copied up and 

2* 3* 5* 7* 8* …
Leaf 
Page 
Split 

2* 3* 5* 7* 8* 

5 24 30 13 

appears once in the index. Contrast 17 
Entry to be inserted in parent node. 
(Note that 17 is pushed up and only 

this with a leaf split.) 

17 24 30 13 Index 
Page 
Split 

5 
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Deleting a Data Entry from a B+ Tree


■ Start at root, find leaf L where entry belongs.

■ Remove the entry.

➹ If L is at least half-full, done! 

➹ If L has only d-1 entries,


§ Try to re-distribute, borrowing from sibling 
(adjacent node with same parent as L).


§ If re-distribution fails, merge L and sibling.

■  If merge occurred, must delete entry (pointing 

to L or sibling) from parent of L.

■ Merge could propagate to root, decreasing 

height.
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Root 
17 

24 30 

19* 20* 22* 24* 27* 29* 33* 34* 38* 39* 

Example Tree - Delete 19*


���

5 13 
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Root 
17 

24 30 

20* 22* 24* 27* 29* 33* 34* 38* 39* 

Example Tree - Delete 19*


������

5 13 
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Root 
17 

24 30 

20* 22* 24* 27* 29* 33* 34* 38* 39* 

Example Tree – Now, Delete 20*


������

5 13 

Redistribute
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Root 
17 

27 30 

22* 24* 27* 29* 33* 34* 38* 39* 

Example Tree –  Delete 20*


������

5 13 
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Root 
17 

27 30 

22* 27* 29* 33* 34* 38* 39* 

Example Tree – Then Delete 24*


���
Underflow!

24* 

Can’t redistribute,
must Merge…

���

5 13 
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Root 
17 

30 

22* 27* 29* 33* 34* 38* 39* 

Example Tree – Delete 24*


���

Underflow!

���

5 13 

Root 
30 13 5 17 

2* 3* 7* 14* 16* 22* 27* 29* 33* 34* 38* 39* 5* 8* 



1.28

Example of Non-leaf Re-distribution


■ Tree is shown below during deletion of 24*. (What 
could be a possible initial tree?)

■  In contrast to previous example, can re-distribute 
entry from left child of root to right child.  

Root 

13 5 17 20 

22 

30 

14* 16* 17* 18* 20* 33* 34* 38* 39* 22* 27* 29* 21* 7* 5* 8* 3* 2* 
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After Re-distribution


■  Intuitively, entries are re-distributed by `pushing 
through’ the splitting entry in the parent node.


■  It suffices to re-distribute index entry with key 20; 
we’ve re-distributed 17 as well for illustration.


14* 16* 33* 34* 38* 39* 22* 27* 29* 17* 18* 20* 21* 7* 5* 8* 2* 3* 

Root 

13 5 

17 

30 20 22 
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A Note on `Order’


■  Order (d) concept replaced by physical space criterion in 
practice (`at least half-full’).
➹  Index pages can typically hold many more entries than leaf pages.
➹  Variable sized records and search keys mean different nodes will 

contain different numbers of entries.
➹  Even with fixed length fields, multiple records with the same search 

key value (duplicates) can lead to variable-sized data entries (if we 
use Alternative (3)).

■  Many real systems are even sloppier than this --- only reclaim 
space when a page is completely empty.
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Prefix Key Compression

■  Important to increase fan-out.  (Why?)
■  Key values in index entries only `direct traffic’; can often 

compress them.
➹  E.g., If we have adjacent index entries with search key values 

Dannon Yogurt, David Smith and Devarakonda Murthy, we can 
abbreviate David Smith to Dav.  (The other keys can be compressed 
too ...)
§  Is this correct?  Not quite!  What if there is a data entry Davey 

Jones?  (Can only compress David Smith to Davi)
§  In general, while compressing, must leave each index entry 

greater than every key value (in any subtree) to its left.
■  Insert/delete must be suitably modified.
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Bulk Loading of a B+ Tree

■  If we have a large collection of records, and we want to create a B+ tree 
on some field, doing so by repeatedly inserting records is very slow.
➹  Also leads to minimal leaf utilization --- why?

■  Bulk Loading can be done much more efficiently.
■  Initialization:  Sort all data entries, insert pointer to first (leaf) page in a 

new (root) page.

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Sorted pages of data entries; not yet in B+ tree 
Root 
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Bulk Loading (Contd.)

■  Index entries for 
leaf pages always 
entered into right-
most index page 
just above leaf 
level.  When this 
fills up, it splits.  
(Split may go up 
right-most path to 
the root.)

■  Much faster than 
repeated inserts, 
especially when one 
considers locking!

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

Root 

Data entry pages  
not yet in B+ tree 35 23 12 6 

10 20 

3* 4* 6* 9* 10* 11* 12* 13* 20* 22* 23* 31* 35* 36* 38* 41* 44* 

6 

Root 

10 

12 23 

20 

35 

38 

not yet in B+ tree 
Data entry pages  
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Summary of Bulk Loading

■  Option 1: multiple inserts.
➹  Slow.
➹  Does not give sequential storage of leaves.

■  Option 2: Bulk Loading 
➹  Has advantages for concurrency control.
➹  Fewer I/Os during build.
➹  Leaves will be stored sequentially (and linked, of course).
➹  Can control “fill factor” on pages.
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Summary

■  Tree-structured indexes are ideal for range-searches, also good for equality 

searches.
■  ISAM is a static structure.

➹ Only leaf pages modified; overflow pages needed.
➹ Overflow chains can degrade performance unless size of data set and data 

distribution stay constant.

■  B+ tree is a dynamic structure.
➹  Inserts/deletes leave tree height-balanced; log F N cost.
➹  High fanout (F) means depth rarely more than 3 or 4.
➹  Almost always better than maintaining a sorted file.
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Summary (Contd.)

➹  Typically, 67% occupancy on average.
➹  Usually preferable to ISAM; adjusts to growth gracefully.
➹  If data entries are records, splits can change rids!

■  Other topics:
➹  Key compression increases fanout, reduces height.
➹  Bulk loading can be much faster than repeated inserts for creating a B+ tree on a 

large data set.

■  Most widely used index in database management systems because of its 
versatility.  

■  One of the most optimized components of a DBMS.


