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Abstract - The embedding of positioning capabilities in mobile 

devices and the emergence of location-based applications have 

created novel opportunities for utilizing several types of multi-

dimensional data through spatial outsourcing. In this setting, a 

data owner (DO) delegates its data management tasks to a 

location-based service (LBS) that processes queries originating 

from several clients/ subscribers. Because the LBS is not the 

real owner of the data, it must prove (to each client) the 

correctness of query output using an authenticated structure 

signed by the DO. Currently there is very narrow selection of 

multi-dimensional authenticated structures, among which the 

VR-tree is the best choice. Our first contribution is the MR-

tree, a novel index suitable for spatial outsourcing. We show, 

analytically and experimentally, that the MR-tree outperforms 

the VR-tree, usually by orders of magnitude, on all 

performance metrics, including construction cost, index size, 

query and verification overhead. Motivated by the fact that 

successive queries by the same mobile client exhibit locality, 

we also propose a synchronized caching technique that utilizes 

the results of previous queries to reduce the size of the 

additional information sent to the client for verification 

purposes.  

1. INTRODUCTION 

The embedding of positioning capabilities (e.g., GPS) in 

mobile devices has triggered several types of location-based 

services. Such services provide fresh opportunities for data 

sharing and utilization. Consider a data owner (DO) that 

possesses a proprietary spatial dataset, such as a specialized 

map overlay or a set of points of interest (e.g., local 

businesses). The DO can profit by allowing access to the 

dataset. However, the cost of setting up the infrastructure, 

hiring qualified personnel and advertising an online service 

may be prohibitive. Moreover, the value of the dataset will 

increase if it is combined with the functionality (e.g., 

driving directions, aerial photos, etc.) of a general-purpose 

online map. These reasons provide strong motivation for 

outsourcing the dataset to a specialized location-based 

service (LBS), which achieves economy of scale by 

servicing multiple owners.  

Outsourcing of relational databases was first proposed 

in [HIM02]. In this paper, we focus on spatial outsourcing, 

motivated by the large availability of spatial data from 

various sources (e.g., satellite imagery, land surveys, 

environmental monitoring, traffic control). Often, agencies 

collecting such data (e.g., government departments, 

nonprofit organizations) are not able to support advanced 

query services; outsourcing to a LBS is the only option for 

utilizing the data. Furthermore, even if a DO possesses the 

necessary functionality, it may be beneficial in terms of 

cost, visibility, ease of access etc., to replicate the data in a 

LBS. The importance of spatial outsourcing is expected to 

soar with the increasing appearance of data sources and the 

emergence of novel mobile computing applications.  

Our solutions follow the framework of Figure 1.1, 

adopted from relational database outsourcing. The DO 

obtains, through a key distribution center, a private and a 

public key. In addition to the initial data, the owner 

transmits to the LBS a set of signatures required for 

authentication. Whenever updates occur, the relevant data 

and signatures are also forwarded to the LBS. The LBS 

receives and processes spatial queries, (e.g., ranges, k-

nearest-neighbors) from clients. Since the LBS is not the 

real owner of the data, the client must be able to verify the 

soundness and completeness of the results. Soundness 

means that every record in the result set is present in the 

owner's database and not modified. Completeness means 

that no valid result is missing.   
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Figure 1.1 Database outsourcing framework 

In order to process authenticated queries efficiently, the 

LBS indexes the data with an authenticated data structure 

(ADS). Each incoming query initiates the computation of a 

verification object (VO) using the ADS. The VO (which 

includes the query result) is returned to the client that can 

establish soundness and completeness using the public key 

of the DO. A crucial part in this framework concerns the 

ADS. Specifically, the ADS must consume little space, 

support efficient query processing, and lead to small VOs 

that can be easily transferred and verified. In addition, it 

must be able to handle updates.  



Most disk-based ADSs focus on 1D ranges. The only 

work dealing with multi-dimensional ranges is [CPT06], 

which applies the signature chain concept [PJRT05] to 

KD-trees and R-trees. Although the R-tree based ADS, 

called VR-tree, is the best between the two options, it still 

has some serious drawbacks: large space and query 

processing overhead for the LBS, high initial construction 

cost for the data owner, and considerable verification 

burden for the clients. Motivated by these problems, we 

propose the MR-tree, an index based on the R*-tree 

[BKSS90], capable of authenticating arbitrary spatial 

queries. We show, analytically and experimentally, that the 

MR-tree outperforms the VR-tree significantly on all 

performance metrics. 

Typically, successive queries from the same client focus 

on a small part of the data space (e.g., a moving client 

asking about its surroundings). Thus, the VOs of these 

queries have significant overlap. Our second contribution is 

a synchronized caching technique that utilizes this overlap 

in order to reduce the size of the VO. Elegant algorithms 

continuously update the cache contents of the LBS and the 

client, so that they are always identical and up-to-date, 

without requiring any additional communication overhead. 

Furthermore, the space overhead for the service provider is 

relatively small, so that a LBS with a realistic amount of 

main memory (1-2 Gbytes) can support synchronized 

caching for millions of clients. 

The rest of the paper is organized as follows. Section 2 

surveys related work. Section 3 describes the basic MR-tree 

structure, discusses query processing, and offers cost 

models for its performance. Section 4 focuses on the 

synchronized cache and its maintenance. Section 5 contains 

a comprehensive experimental evaluation, and Section 6 

concludes the paper. 

2. RELATED WORK 

Query authentication was first studied in the Cryptography 

literature. The Merkle Hash Tree (MH-tree) [M89] is a 

main-memory binary tree that hierarchically organizes hash1 

values. Figure 2.1 illustrates a MH-tree covering 8 data 

records d1-d8, each assigned to a leaf. A node N contains a 

hash value hN computed as follows: if N is a leaf node, hN = 

H(dN), and dN is the assigned record of N, e.g., h1 = H(d1); 

otherwise (N is an internal node), hN = H(hN.lc | hN.rc), where 

N.lc (N.rc) is the left (right) child of N respectively, and “|” 

concatenates two binary strings, e.g., h1-4 = H(h1-2 | h3-4). 

After building the tree, the data owner signs the hash value 

hRoot, stored in the root of the MH-tree, using a public key 

digital signature scheme (e.g., RSA [MOV96]). 

                                                                 

1 Throughout the paper, the term hash function (H) implies a one-

way, collision-resistant hash function. In this work we employ 

SHA1 [MOV96].  
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Figure 2.1 Example of Merkle Hash Tree 

To authenticate one-dimensional range queries, Devanbu et 

al. [DGMS03] sort the database records on the query 

attribute and index them by a MH-tree. Figure 2.1 shows an 

example, where the DSP receives query Q covering records 

d4 and d5. The LBS first determines the boundary records 

of Q, i.e., d3 and d6 which bound Q’s result. Then, it follows 

the root-to-leaf path (Root, N1-4, N3-4, N3) to the left 

boundary record d3. For each node visited, the hash value 

(h1-2) of its left sibling is inserted into the VO. Records d3, 

d4, d5, d6 are added to the VO. Similarly, the hash values 

(h7-8) of all right-siblings on the path from the root to the 

right boundary d6 are also appended. The LBS sends the 

VO and the signature of hRoot to the client. To verify the 

sequence, the client re-constructs the hash value at the root 

of the MHT using d3, d4, d5, d6 and the hash values in the 

VO (h1-2, h7-8): hRoot= H(H{h1-2 | H[H(d3) | (H(d4)]} | 

H{H[H(d5)| (H(d6)] | h7-8}). If the reconstructed hRoot 

matches the owner's signature, the result is sound. The 

boundary records also guarantee that no records are omitted 

from the query endpoints (completeness). 

A combination of the MH-tree and the range search tree 

[BKOS97] is exploited in [DGMS03] to authenticate multi-

dimensional range queries. Martel et al. [MND+04] extend 

the MH-tree concept to arbitrary search DAGs (Directed 

Acyclic Graphs), including dictionaries, tries, and 

optimized range search trees. Goodrich et al. [GTTC03] 

present ADSs for graph and geometric searching. These 

techniques, however, focus on main-memory and are highly 

theoretical in nature. For example, the range search tree is 

rarely used in practice due to its high space requirements: 

O(nlog
d-1

n), where n and d are the size and dimensionality 

of the data respectively. 

The first disk-based ADS in the Database literature is 

the VB-tree [PT04], which authenticates the soundness, but 

not the completeness, of 1D range results. A subsequent 

signature chaining approach [PJRT05, NT06] authenticates 

both soundness and completeness. Figure 2.2 illustrates an 

example, assuming that the database contains four tuples d1-

d4, sorted on the search attribute. The data owner inserts 

two special records d0, d5 with values –∞ and +∞, and 

creates four signatures s012, s123, s234, s345, one for each 

triplet of adjacent tuples; s012 corresponds to d1, s123 to d2 

and so on. The data and signatures are then transferred to 

the service provider.  

Let the result of a range query contain d1, d2 and d3. The 

service provider inserts into the VO: the result (d1, d2, d3), 



the signature for each tuple in the result (s012, s123, s234), and 

the boundary records d0 and d4. Given the VO, the client 

checks that (i) the two boundary records fall outside the 

query range, and (ii) all signatures are valid. The first 

condition ensures that no results are missing at the range 

boundaries, i.e., d1 and d3 are indeed the first and last 

records of the result. The second guarantees that all results 

are correct.  

d2 d3 d4d1 +-

s012 s123 s234

d0 d5

s345  
Figure 2.2 Example of signature chaining 

The Merkle B-tree (MB-tree) [LHKR06] is a disk-based 

adaptation of the MH-tree. Each internal node stores entries 

E of the form (E.p, E.k, E.h), where E.p points to a child 

node Nc, E.k is the search key and E.h is a hash value 

computed on the concatenation of the hash values of the 

entries in Nc. Leaf nodes store records and their respective 

hash values. The DO signs the hash of the concatenation of 

the hashes contained in the root of the tree. Compared to 

signature chaining, the MB-tree incurs less space overhead 

since hash values are smaller than signatures and less 

verification effort because only the root is signed.  

The only multi-dimensional ADSs in the database 

literature are the VKD-tree and VR-tree [CPT06]. These 

structures apply the signature chain concept to KD-trees 

[BKOS97] and R-trees [G84], respectively. We focus on 

the VR-tree since, as shown in [CPT06], it outperforms the 

VKD-tree. All points in a leaf node are sorted according to 

their x-coordinates. Two fictitious points are added before 

the first and after the last point of the node. Following 

[PJRT05], the VR-tree creates one signature for each 

sequence of three points and stores it along with each entry, 

e.g., in Figure 2.3a, the entry for P8 contains s789. For 

internal nodes, the minimum bounding rectangles (MBRs) 

of child nodes are sorted on their left side and a signature 

chain is formed in a similar way. For instance, in Figure 

2.3b, the signature of N4 is s345.  

The processing of range queries is similar to the R-tree, 

except for the additional VO construction. Consider query 

Q in Figure 2.3a, which retrieves P9 and P11. For each index 

node visited, all MBRs in this node are inserted into the 

VO. The corresponding signatures participate in the 

incremental construction of an aggregated 2  signature s. 

When a leaf node of the VR-tree is reached, all points 

whose x-coordinates fall in the query range (P8-P12) and the 

two boundary points (P7, P13) are inserted into the VO. The 

corresponding signatures are aggregated in s, which is 

included in the VO.  

                                                                 

2 Signature aggregation [MNT04] condenses multiple signatures 

into a single one, thus significantly reducing the total size. 
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Figure 2.3 Signature chains in the VR-tree 

To verify results, the client starts from the root and 

compares all MBRs against the query. Then, it reads the 

content of each node whose MBR overlaps the query from 

the VO and recursively checks all its children. Finally, at 

the leaf level, it can extract the query results. During this 

procedure, the client incrementally constructs an aggregated 

digest from the MBRs and points included in the VO, which 

is eventually verified against the aggregated signature. As 

we show, analytically and experimentally, the VR-tree has 

some serious shortcomings: large space and query 

processing overhead, high initial construction cost, and 

considerable verification burden for the clients. The MR-

tree, discussed next, aims at solving these problems. 

3. MR-TREE 

Section 3.1 presents the structure of the MR-tree, and 

describes query processing and authentication. Section 3.2 

contains cost models for various performance metrics, and 

compares the MR-tree and the VR-tree analytically.  

3.1 Structure and Query Processing 

The MR-tree combines concepts from MB- [LHKR06] and 

R*-trees [BKSS90]. Figure 3.1 illustrates the node 

structure. Leaf nodes are identical to those of the R*-tree: 

each entry Ri corresponds to a data object. Note that 

although our examples use points, the MR-tree is applicable 

to objects with arbitrary shapes. A hash value is computed 

on the concatenation of the binary representation of all 

objects in the node. Internal nodes contain entries of the 

form (pi, MBRi, hi), signifying the pointer, minimum 

bounding rectangle and hash value of the ith child, 

respectively. The hash value summarizes child nodes’ 

MBRs (MBR1-MBRf), in addition to their hash values (h1-

hf). The hash value of the root node hroot is signed by the 

data owner and stored with the tree. The MR-tree supports 

updates based on the corresponding algorithms of the R*-

tree. When a node changes (due to an insertion or deletion), 

the corresponding hash value in the parent entry is updated 

recursively, until reaching the root. The owner then signs 

the new root and transmits the changes to the LBS.     

...

h=hash(R1 | R2 | ... |Rf)

RfR1 R2 p1 MBR 1h1 p2MBR 2
pf MBR f h f...

h=hash(MBR1|h1|MBR2|h2|…|MBRf|hf)

h2

(a) Leaf Node (b) Internal Node 

Figure 3.1 MR-tree node structure 



To process a range query Q, the LBS invokes 

RangeQuery(root, Q), shown in Figure 3.2. The algorithm 

computes the verification object by following a depth-first 

traversal of the MR-tree. The VO contains three types of 

data: (i) all objects in each leaf node visited (Line 4), (ii) 

the MBR and hash values of pruned nodes (Line 7), and 

(iii) special tokens [ and ] that mark the scope of a node 

(Lines 1 and 8). New entries are always appended to the 

end of the VO.  

RangeQuery (Query Q, MR_Node N) // LBS 

1. Append [ to VO 

2. For each entry e in N // entries must be enumerated in original order 

3.  If N is leaf   

4.   Append e.data to VO 

5.     Else // N is internal node 

6.   If e.MBR overlaps Q,   RangeQuery(Q, e.pointer) 

7.   Else append e.MBR, e.hash to VO // a pruned child node 

8. Append ] to VO 

Figure 3.2 Range query processing with the MR-tree 

Consider, for instance, query Q in the example tree of 

Figure 3.3. Similar to conventional R-trees, RangeQuery 

starts from the root and visits recursively all entries that 

overlap the shaded rectangle: N1, N4, N2, N5. After 

termination, the verification object is: [[(MBR_N3, 

hash_N3), [P4, P5, P6]]], [[P7, P8, P9], (MBR_N6, hash_N6)]]. 

The tokens signify the contents of a node; for instance, the 

component [[(MBR_N3, hash_N3), [P4, P5, P6]]] 

corresponds to the first root entry (N1), and the rest of the 

VO to the second one (N2). The LBS transmits the VO and 

the root signature sroot to the client. Note that the actual 

result (e.g., P4, P7) is part of the VO. 
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Figure 3.3 Example range query 

To verify the query results, the client first scans the VO to 

check that: (i) each data point in the VO is either outside Q, 

or included in the result set, (ii) no MBR (of a pruned node) 

in the VO overlaps Q, and (iii) the computed hroot from the 

VO agrees with sroot. Figure 3.4 shows the recursive 

procedure RootHash that computes hroot. The main idea is 

to simulate the MR-tree traversal performed by the LBS, 

and calculate the MBR and hash values bottom-up. In the 

example of Figure 3.3, RootHash computes the MBR and 

hash value of nodes N4 (from P4-P6), N1 (from N3, N4), N5 

(from P7-P9), N2 (from N5, N6), root (from N1, N2), in this 

order. Note that all entries in the VO, from the [ of the root 

to its ], must be used. Furthermore, the algorithm is online, 

meaning that it performs a single sequential scan of the VO. 

During the verification, the actual results (P4, P7) are 

extracted in Line 6. In addition, the client receives some 

objects (P5, P6, P8, P9) in the VO, which are not part of the 

result. Pang et. al. [PJRT05] propose a solution for 

avoiding disclosure of such objects, when the outsourced 

database must comply with certain access control policies. 

In this work, we consider that clients can issue queries 

freely without constraints. Nevertheless, the solution of 

[PJRT05] can be applied in conjunction with the proposed 

methods to hide the additional objects, if necessary.  

(MBRValue, HashValue) RootHash(VO) // Client 

1.  Initialize str , MBR to empty string and MBR value respectively 

2.  While VO still has entries 

3.    Get next entry eV from VO 

4.   If eV is ], go to Line 13 // break the while-loop 

5.    If eV is a data object R 

6.    If R overlaps the query, Add R to the result set 

7.      MBR_c = the MBR of R 

8.     str_c = the binary representation of R 

9.       If eV is [, (MBR_c, hash_c) = RootHash(VO) 

10.     If eV is a pair of MBR/hash value (MBR_eV, hash_eV) 

11.    MBR_c, str_c = (MBR_eV, hash_eV) 

12.     Enlarge MBR to include MBR_c    

13.     Concatenate str with str_c 

14. Return (MBR, hash (str)) 

Figure 3.4 Algorithm for re-computing hroot 

Proof of soundness: Assume that an object P in the result 

set is bogus or modified. Because the hash function is 

collision-resistant and P must be used by RootHash, the re-

computed hroot can not be verified against sroot, which is 

detected by the client.    Ñ 

Proof of completeness. Let P be an object satisfying Q. 

Consider the leaf node Nl containing P. For the re-

computed hroot to match sroot, either Nl’s true contents or 

MBR/hash must be in the VO. In the former case P is in the 

VO, and extracted in Line 6 of RootHash. In the latter case, 

Nl’s MBR overlaps Q, which alarms the client about 

potential violation of completeness.  Ñ  

In addition to range search, the MR-tree can 

authenticate other common spatial queries, including k 

nearest neighbors (kNN) and skylines. Given a point Q, a 

kNN query retrieves the k points from the data set that are 

closest to Q [HS99]. In the example of Figure 3.5a, the 

three NNs of Q are P1, P2 and P3, in increasing order of 

distance from Q. A key observation is that the kNN of Q lie 

in a circular area C centered at Q that contains exactly k 

data points. Therefore, the LBS can prove the kNN results 

by sending to the client the VO corresponding to C. 

Specifically, it first finds the k neighbors, then it computes 

C, and finally executes RangeQuery treating C as the range. 

The verification process of the client is identical to the one 

performed for range queries.  

A skyline query retrieves all points that are not 

dominated by others in the dataset [PTFS05]. A point Pi 



dominates another Pj, if and only if, the co-ordinate of Pi on 

each dimension is no larger than the corresponding co-

ordinate of Pj. The skyline in Figure 3.5b contains P1, P2 

and P7. To prove it, the LBS processes a range query that 

contains the area of the data space not dominated by any 

skyline point. This area (shaded in Figure 3.5b) can be 

divided into multiple rectangles. The result contains only 

the skyline points, and can again be verified according to 

the methodology of range search.  
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Figure 3.5 Alternative queries 

3.2 Cost Models 

The important performance metrics for authenticated 

structures are (i) index construction time, (ii) index size, (iii) 

query processing cost, (iv) size of the VO, and (v) 

verification time. The first metric affects the party that 

builds the index, i.e., depending on the system, the DO or 

the LBS. The second one burdens the LBS and, in some 

cases, the DO (if it also has to maintain the index). 

Furthermore, it affects the communication cost between the 

two. Metric (iii) is important only for the LBS. The size of 

the VO influences the network overhead between the LBS 

and the client. Finally, the verification time burdens 

exclusively the client. In the sequel we compare analytically 

the MR-tree and the VR-tree on the above metrics. Table 

3.1 summarizes the symbols used in the analysis, as well as 

their typical values (1msec = 10
-3

 seconds, 1µsec = 10
-6

 

seconds). These values were obtained based on the 

hardware and software settings of our experiments, using 

the Crypto++ library. Our measurements are similar to 

those of the library benchmarks [Crypto] and the values 

suggested in [LHKR06]. 

Table 3.1 Symbols and values in the analysis 

Symbol Meaning Typical Value 

Cs CPU cost of sign operation 3.4 msec 

Cv CPU cost of verify operation 160 µsec 

Ch CPU cost of hash operation 28 µsec 

Cm CPU cost of multiply operation 43 µsec 

CNA CPU cost of a random node access  15 msec 

Ss size of a signature 128 bytes 

Sh size of a hash value 20 bytes 

SM size of an MBR 32 bytes 

Sp size of a data point 16 bytes 

n data cardinality 2,000,000 

d data dimensionality 2 

Ql query extent on one dimension 10% of space 

b block size 4096 bytes 

fl fanout of leaf node VR 19  MR 179 

fn fanout of internal node VR 17  MR 51 

h height of the tree VR 5  MR 4 

We first establish a simple cost model for the R-tree, based 

on the fact that in d-dimensional unit space [0,1]
d
, the 

probability that two random rectangles r1, r2 overlap is: 

1 2 1 2

1

( , ) ( . . )
d

overlap j j

j

P r r r l r l
=

= +∏  
(3.1)

where r.lj denotes rectangle r’s extent along the jth 

dimension [PSTW03]. For simplicity, we assume that the 

data set contains points (rectangular data are discussed in 

[TS96]) uniformly distributed in the unit space and query 

Q has equal length Ql on all dimensions. Let fl (fn) be the 

average fanout of a leaf (internal) node, and n be the data 

cardinality. The number of leaf nodes is n/fl, and the height 

of the R-tree is 1 log ( / )
nf lh n f = +  

. The number of 

internal nodes at depth i of the tree (assuming a complete 

tree where the root has depth 0) is i

nf , each containing 

/ i

n
n f  data points in its sub-tree. Because of the uniform 

distribution, the number of points in a node is proportional 

to the space covered by this node. Following [TS96], we 

assume that all nodes at the same level are squares with 

similar sizes. Therefore, a node at depth i covers 1/
i

nf  

space, and has length 1/ id
n

f on each dimension. Applying 

Equation 3.1, the total cost of processing Q using the VR- 

or the MR-tree is: 

( ) ( )
2

0

1/ /
h d d

i id d
Q NA n n l l l l

i

C C f f Q f f n Q
−

=

 
= + + + 

 
∑  (3.2)

where CNA is the cost of a node access. Similarly, the 

storage overhead of both the VR- and the MR-tree can be 

estimated by: 
2

1

h
i

index n l

i

S b f n f
−

=

 
= + 

 
∑  

(3.3)

where b is the block size. The difference between the two 

structures regards the authentication information, leading to 

different fanouts (fl, fn). The VR-tree maintains one 

signature (128 bytes) per entry in every node (leaf or 

internal). In contrast, the MR-tree adds hash values (20 

bytes each) only to internal nodes. Assuming a page of 

4KBytes, 70% average storage utilization and double 

precision, the VR-tree has a fanout of fl=19 (leaf) and fn=17 

(internal), while for the MR-tree fl = 179 and fn = 51. The 

lower fanout of the VR-tree increases its height. 

Besides R-tree generation, the VR-tree requires a 

signature for each object and node. The MR-tree only 

involves cheap computations of hash values for nodes (but 

not objects). If the cost of a sign / verify / hash operation is 

Cs, Cv, Ch respectively, the initial construction overhead of 

the VR-tree (MR-tree) is given by equation 3.4 (3.5):  
1

1

h
VR i

init s n

i

C C f n
−

=

 
= + 

 
∑  

(3.4)

1

0

h
MR i

init s h n

i

C C C f
−

=

= + ∑  (3.5)

Let the size of a signature, an MBR, a hash value and a data 



point be Ss, SM, Sh and Sp, respectively. Then, the VO of the 

VR-tree with signature aggregation consumes space: 

( ) ( )
2

1

0

1/ /
h d d

VR i id d
VO s n n l M l l p

i

S S f f Q S n f n Q S
−

+

=

= + + + +∑  
(3.6)

where the last two terms estimate MBRs and points for 

visited internal and leaf nodes respectively. Note that with 

signature aggregation, there is a single signature, thus the 

VO size is relatively small. To prepare this VO, however, 

the LBS must perform modular multiplications, whose cost 

is: 

( ) ( )
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1/ /
h d d
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i

C C f f Q n f n Q
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+
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(3.7)

Thus, the total query processing overhead for the VR-tree is 

the sum of the two costs expressed in Equations 3.2 and 3.7. 

The VO size of the MR-tree is given by Equation 3.8. The 

complicated part is to analyze the total number of pruned 

nodes during query processing. PN(i) estimates the number 

of pruned nodes at depth i, by computing the number of 

nodes outside Q, subtracted by descendents of higher 

pruned nodes.  
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(3.8)

Finally we estimate the verification time for the client, 

which is dominated by modular multiplications (VR-tree) or 

computing hash values (MR-tree). The costs of the VR-tree 

(with signature aggregation) and the MR-tree are given by 

Equations 3.9-3.10. The MR-tree has a clear advantage 

because (i) for each node, the MR-tree invokes the hash 

function once, whereas the VR-tree performs modular 

multiplication for each entry, and (ii) Ch < Cm. 

( ) ( )
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1/ /
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(3.9)
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Table 3.2 shows the costs calculated by the above equations 

using the typical values of Table 3.1. The VR-tree incurs 

about 30 times the overhead of the MR-tree for computing 

the authentication information (in the entire tree), and is 8 

times larger. The MR-tree is also significantly better in 

terms of query processing and verification cost. The latter is 

particularly important because the clients are mobile 

devices with limited computing power. The only aspect 

where the two structures are similar is VO size. Next, we 

present an optimization for reducing the VO. 

Table 3.2 Comparison of estimated costs 

Costs MR-tree VR-tree 

Time for Computing Authentication Data 4 sec 2 hours 

Index Size 57 MBytes 511 MBytes 

Query Processing Time 2 sec 22 sec 

VO size (bytes) 390 KBytes 398 KBytes  

Verification (CPU time) 41 ms 991 ms 

4. SYNCHRONIZED CACHING FOR THE MR-TREE 

Each client is expected to issue numerous queries at 

different times. The VO of these queries always share 

common entries, specifically, sroot and the MBR/hash values 

of the root nodes (since the root is always accessed). In 

practice, the overlap is significantly larger because most 

queries focus on a small part of the data space. For instance, 

a moving client is likely to ask about its surroundings at 

successive locations that are close to each other. Assume 

that the client maintains the VO of previous queries in a 

cache. When the LBS processes a new query, it needs to 

send only the part of the VO that is not already in the cache. 

However, in order for this optimization to become possible, 

the LBS must have complete knowledge of the client’s 

cache. We propose a synchronized cache (SC) scheme, 

where the LBS maintains, for each client, an abstract copy 

of its cache. The term abstract means that concrete hash 

values and records are replaced with placeholders (to be 

discussed shortly). As shown in the experimental 

evaluation, a LBS with a reasonable amount of main 

memory can support synchronized caching for millions of 

clients.  

  Figure 4.1 summarizes the proposed framework for 

synchronized caching. Given a query from the client, the 

LBS computes the (uncompressed) VOraw. Then, it applies 

an algorithm (ReduceVO) that utilizes the contents of the 

SC to derive a compressed VOreduced, i.e., the part of VOraw 

that is not in SC. VOreduced, which is usually much smaller 

than VOraw, is sent to the client. The client restores VOraw 

(using the reverse process of ReduceVO) and uses it to 

verify the query result. Both the LBS and the client 

incorporate the content of VOreduced to the SC through 

MergeVO algorithm. The addition of new content may 

increase the size of the SC beyond a predefined limit. In this 

case, PurgeSC frees space by expunging "old" data. It is 

easy to verify that if the LBS and the client start with an 

empty SC and have the same space limit, then their cache 

contents are identical at all times. Thus, there is no 

additional communication overhead for cache 

synchronization. On the other hand, this optimization 

minimizes the VO size and the associated transmission cost. 
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Figure 4.1 Framework of synchronized caching  

Section 4.1 describes the VO minimization process (i.e., 

ReduceVO), while Section 4.2 focuses on the SC 

maintenance (i.e., MergeVO and PurgeSC). In our 



discussion, we distinguish between value and token entries 

in the VO. A value entry is a data point, a pair of MBR/hash 

values, or the signature sroot. A token is [ or ]. 

4.1 Minimizing the Size of the VO 

Similar to the VO, the SC is a linked list of value and token 

entries except that the copy maintained by the LBS uses a 

placeholder (i) for each (MBR, hash value) pair and (ii) for 

all records in a leaf node. Moreover, each token [ is 

associated with a timestamp to be discussed later. We use 

the running example of Figure 4.2, where a client asks two 

queries Q1, Q2. The SC is initialized to be empty. When the 

first query is processed, its VO is copied to the caches of 

both the LBS and the client. After this step, the SC equals 

VO(Q1) = [[[P1, P2, P3], (MBR_N4, hash_N4)], (MBR_N2, 

hash_N2)], sroot. When later the LBS processes Q2, it 

compares VO(Q2) = [[(MBR_N3, hash_N3), [P5, P6]],  

(MBR_N2, hash_N2)], sroot with the SC. (MBR_N2, 

hash_N2) and sroot are in the SC and replaced with a token 

SC_hit, reducing the VO size from 5 to 3 value entries. 

Moreover, the entire sub-tree of N3 (P1-P3) is in the SC, 

meaning that the client is able to compute MBR_N3 and 

hash_N3. Therefore, the LBS substitutes the entry 

(MBR_N3, hash_N3) with a token SC_compute, leading to a 

VO(Q2) with only 2 value entries P5 and P6. 

P1
P2

P4P5

P6

P3 P7

P8
P9

P10

P11

P12

N1

N2

N3

N4

N5

N6
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 Query VO 

 

Q1 

[[[P1, P2, P3],  

(MBR_N4, hash_N4)],  

(MBR_N2, hash_N2)], 

sroot 

 

Q2 

[[(MBR_N3, hash_N3), 

[P5, P6]],  (MBR_N2, 

hash_N2)], sroot 

Reduced VO(Q2): [[SC_compute, 

[P5, P6]], SC_hit], SC_hit 

(a) Queries (b) VOs  

Figure 4.2 Queries with overlapping VOs 

Figure 4.3 shows ReduceVO, which utilizes the SC to 

minimize the verification object. Let VOraw (VOreduced) be 

the VO before (after) the shrinking process. ReduceVO 

scans the SC and VOraw in parallel, computing VOreduced. 

Each step retrieves an entry eV (eS) from VOraw (SC). An 

important invariant is that eV and eS must always correspond 

to the same node (or data record) in the MR-tree. We 

illustrate the algorithm using the example of Figure 4.2 and 

assuming SC = VO(Q1) and VOraw = VO(Q2). In the first two 

steps, eS and eV are both [ (Case 4), and the LBS simply 

appends two [ into VOreduced. Then, eS becomes [ and eV = 

(MBR_N3, hash_N3) (Case 2). Both eS and eV refer to the 

same node N3: the SC contains details about N3, whereas the 

VO only contains aggregates (i.e., MBR and hash). 

Therefore, it is possible to compute eV with SC entries 

starting from eS until its corresponding ], i.e., [P1, P2, P3]. 

Thus the LBS appends an SC_compute token to VOreduced. 

Note that we must adjust the current entry of SC 

accordingly (Line 8-10) to ensure the invariant stated above. 

Next, eV becomes [ (before P5) and eS is (MBR_N4, 

hash_N4) (Case 3). Conversely to Case 2, now the VOraw 

contains details (i.e., [P5, P6]) while the SC contains 

aggregates. Starting from this [, the LBS copies everything 

from VOraw to VOreduced, until the corresponding ] is reached. 

Then, both eV and eS become successively [ (Case 4), and 

(MBR_N2, hash_N2) (Case 1). The token SC_hit is 

appended to VOreduced. Finally, for sroot, SC_hit is appended 

to VOreduced. VOreduced is sent to the client, which restores the 

original VOraw (following the reverse process of ReduceVO) 

and uses it to verify the query results. 

 

VOreduced ReduceVO (SC, VOraw) // LBS 

1.  Initialize VOreduced to empty 

2.  While VOraw still has entries 

3.     Get next entry eV of VOraw and eS of SC 

4.     If eV and eS are the same value entry                         // Case 1 

5.         Append SC_hit to VOreduced 

6.     If eV is a MBR/hash value pair and eS is [            // Case 2 

7.          Append SC_compute to VOreduced  

8.          Let ebegin = eS 

9.          While eS is not the matching ] of ebegin 

10.              Get next entry from SC as the new value for eS 

11.   If eV is [ and eS is a MBR/hash value pair           // Case 3 

12.        Append eV to VOreduced 

13.        Let ebegin = eV 

14.        While eV is not the matching ] of ebegin        

15.              Get next entry from VO as the new value for eV 

16.              Append eV to VOreduced 

17.   If eS and eV are the same token entry                        // Case 4 

18.       Append eV to VOreduced          

Figure 4.3 ReduceVO algorithm 

4.2 Updating the SC 

Every new VOreduced updates the SC at the LBS and the 

client.  Specifically, both LBS/client integrate VOreduced into 

the SC using MergeVO, shown in Figure 4.4. The SC before 

(after) this operation is called SCold (SCnew). Initially, SCnew 

is empty. Each step of MergeVO retrieves pairs of entries eV 

∈ VOreduced and eS ∈  SCold in parallel. Depending on the 

type of these entries, we have 4 cases, similar to ReduceVO. 

Case 1 occurs when eV is a hit for eS; eS is added to SCnew 

and its [ receives a timestamp equal to the current time. As 

we discuss shortly, timestamps are used to expunge old 

entries according to an LRU policy. Case 2 happens when 

eV can be computed by eS. MergeVO inserts to SCnew all 

entries between the [ and ] tokens of eS. The recency of 

these entries is not updated, because SC_compute implies 

that only the aggregates, but not the actual contents, of eS 

are required for the query. Case 3 incorporates new 

information from the VO into SCnew. Specifically, when the 

VO contains details of an MR-tree node while SCold has 

only aggregates, we append these details into SCnew. In the 

example of Figure 4.2, if the client has SCold = VO(Q1) and 

receives the reduced VO(Q2), MergeVO updates the 

timestamps and replaces the MBR/hash value of N4 with [P5, 



P6]. Conceptually, SCnew becomes the VO for query Q = (Q1 

or Q2). Case 4 simply appends token entries. 

 

SCnew MergeVO (SCold, VO) // VO is already reduced 

1.  Initialize SCnew to empty 

2.  While VO has entries 

3.     Get next entry eV of VO and eS of SC 

4.     If eV is SC_hit                                                                // Case 1 

5.        Append eS to SCnew  

6.         Set the timestamp of the [ of eS to now 

7.     If eV is SC_compute                                                       // Case 2 

8.          Append eS to SCnew 

9.          Let ebegin = eS 

10.        While eS is not the matching ] of ebegin 

11.              Get next entry from SCold as the new value for eS 

12.              Append eS to SCnew 

13.   If eV is [ and eS is an MBR/hash value pair               // Case 3 

14.         Let ebegin = eV 

15.         While eV is not the matching ] of ebegin        

16.              Get next entry from SCold as the new value for eS 

17.   If eS and eV are the same token entry                             // Case 4 

18.       Append eS to SCnew          

Figure 4.4 MergeVO algorithm 

In our implementation, we assign a limit L to the size of the 

SC at the client side. L may depend on the memory of the 

client, or it may be decided by the LBS. In either case, the 

LBS and the client agree on the value of L, which may be 

different for each client (e.g., the LBS may charge clients 

according to their cache size).  If the SC exceeds L (after an 

application of MergeVO), PurgeSC (Figure 4.5) removes 

the oldest entries to free space. Specifically, PurgeSC 

performs the opposite of operation MergeVO, i.e., it 

replaces the details of an MR-node (a sequence of entries 

bounded by [ and ]) with a single entry that contains the 

MBR and hash value of the node. The process is applied 

repeatedly until the size of the SC drops below L. At each 

step, the node to be replaced is chosen according to an LRU 

policy based on the timestamp stored with each [. Recall 

that these timestamps are maintained by MergeVO.  

 

PurgeSC (SC) 

1. While the size of the SC exceeds the limit L 

2.   Scan SC to find the oldest [ that is not enclosed by other tokens. 

Let ebegin be this [  

3.       Let eend be the corresponding ] of ebegin 

4.       Compute the MBR and hash of all SC entries from ebegin to eend  

5.       Replace all SC entries from ebegin to eend with a single entry  

          (MBR, hash) 

Figure 4.5 PurgeSC algorithm 

5. EXPERIMENTAL EVALUATION 

We implemented the MR-tree and the VR-tree in C++, 

using the Crypto++ library [Crypto] and executed all 

experiments on a P4 3GHz CPU. Both MR-tree and VR-

tree implementations are based on R*-trees using 4Kbytes 

page size. Each experiment is repeated on two datasets: (i) 

UNI that contains 2 million uniformly distributed data 

points, and (ii) CAR that contains 2 million points taken 

from road segments in California [R-portal]. In cases where 

we want to set a specific cardinality, we randomly sample 

from these datasets using an appropriate sampling rate. 

Section 5.1 compares the initial construction cost and size 

of MR-trees and VR-trees. Section 5.2 evaluates the query 

processing and verification overhead of the two structures. 

Section 5.3 assesses the benefits of synchronized caching.  

5.1 Initial Construction 

Figure 5.1 illustrates the construction cost for VR- and MR- 

trees as a function of the data cardinality. This cost includes 

both the time to create the trees and the time to compute the 

hash values (MR-tree) or the signatures (VR-tree). The VR-

tree is 1-2 orders of magnitude more expensive to build due 

to the numerous signatures. Figure 5.2 shows the CPU time 

for computing the necessary authentication information. 

The MR-tree outperforms the VR-tree by 3-4 orders of 

magnitude on this metric. Comparing Figures 5.2 and 5.1, 

the computation of signatures dominates the total 

construction cost of the VR-tree. On the other hand, the 

MR-tree involves cheap hashing operations, only for the 

nodes (and not the data points). Consequently, the overhead 

of the additional information (with respect to the R*-tree) 

constitutes a small fraction (less than 1%) of the total 

construction cost. Figure 5.3 illustrates the size of the 

indexes in MBytes. The VR-tree is much larger since it 

stores one signature (128 bytes) for each data point and 

node, where the MR-tree stores one digest (20 bytes) for 

every node. 
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Figure 5.1 Total construction time vs. data cardinality 
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Figure 5.2 CPU time for authentication data vs. cardinality 
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Figure 5.3 Index size vs. data cardinality 



5.2 Query Processing and Verification 

This section evaluates the query and verification cost of the 

two structures. All queries are ranges (recall from Section 3, 

that other query types, such as NN, can be converted to 

ranges), covering 1% of the entire (2D) space. For every 

experiment, we execute 100 ranges at random locations and 

illustrate the average cost. This cost burdens the LBS and 

includes both the result retrieval and the construction of the 

verification object. The data cardinality (N) varies between 

0.4⋅10
6
 and 2 ⋅10

6
. We do not include synchronized caching 

since it is evaluated separately in Section 5.3. 

Figure 5.4 illustrates the query cost (in seconds) as a 

function of the data cardinality (Ql = 10%). The MR-tree is 

fast because it creates the VO by simply appending MBRs 

and hash values for each pruned node. The VR-tree is about 

2 orders of magnitude slower due to the modular 

multiplications required to create the aggregated signature. 

Recall that signature aggregation is unavoidable because, 

otherwise, the VO would be extremely large.  
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Figure 5.4 Query cost vs. data cardinality 

Next we measure the verification object. Figure 5.5 depicts 

the VO size versus the data cardinality. For small datasets, 

the VO of MR-trees and VR-trees have similar sizes. 

However, as the cardinality rises, the VO grows faster for 

the VR-tree because more intermediate MBRs are included 

in the VO (due to the smaller fanout). For comparison, the 

diagrams also illustrate the result size. The verification 

object (of VR-trees and MR-trees) is larger than the 

corresponding result, because the result is always part of the 

VO.  
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Figure 5.5 VO size vs. data cardinality 

Finally, Figure 5.6 investigates the verification time (at the 

client) versus the data cardinality. The VR-tree leads to 

high cost since verification involves a number of modular 

multiplications, which is proportional to the output size. On 

the other hand, verification in the MR-tree invokes 

relatively cheap hash operations. Minimization of 

verification time is crucial for clients (e.g., PDAs) with 

limited computational resources.  
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Figure 5.6 Verification time vs. data cardinality 

Summarizing, the MR-tree is considerably faster to build 

and consumes less space than the VR-tree. At the same time 

it is much more efficient for query processing and 

verification. The only aspect where the MR- and VR-tree 

have similar performance is the size of the VO. Next, we 

evaluate the impact of synchronized caching on the 

verification object. 

5.3 Synchronized Caching 

Recall that synchronized caching entails two caches at the 

LBS and the client. The VO of each processed query is 

incorporated in the caches and utilized to reduce the VO of 

subsequent queries. This optimization is expected to have 

considerable benefits in cases where successive queries 

exhibit locality. In our experiments we simulate a moving 

client that enquires about its surroundings. Specifically, the 

first query is a range centered at a random location. The 

user chooses a direction, moves a certain distance and 

issues another range search (with a fixed extent). The 

process is repeated 100 times. The VOs of the first 50 

queries are used to warm up the cache. For the remaining 

ones we measure the average reduction achieved per VO. 

The average reduction is defined as (|VOraw|-

|VOreduced|)/|VOraw|, where |VOreduced| (|VOraw|) is the size of 

the VO with (without) synchronized caching.  

We investigate the effect of the cache size, and the 

distance traveled between two consecutive queries using the 

CAR dataset. The results for UNI are similar and omitted 

due to the lack of space. The data cardinality is set to 2⋅10
6
, 

and the query extent to 10% per axis. Figure 5.7a illustrates 

the average VO reduction as a function of the cache size (at 

the client), after fixing the distance between two 

consecutive queries to 3% of the axis length. Even 100 

KBytes of cache result in a reduction of about 10%. The 

reduction increases with the cache size and stabilizes at 

around 500 KBytes. After this point, more cache does not 

have a significant impact on performance, because the new 

parts of the tree have to be included in the VO anyway.  

The LBS stores, for each client, placeholders for the 

corresponding hash values and records. Therefore, the 

cache copy at the LBS consumes much less space than that 

of the client. The memory consumption per client at the 

LBS is shown at the bottom of the x-axis. Assuming a cache 

of 500Kbytes per client (i.e., 1.7Kbytes at the LBS), a LBS 

with 1 Gbyte of main memory can support up to 558⋅10
3
 



clients. If the cache size is 300 Kbytes per client, the LBS 

can support 833⋅10
3
 clients. 
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Figure 5.7 Average VO reduction (CAR) 

Figure 5.7b illustrates the average reduction as a function of 

the distance between successive queries, after setting the 

cache size to 300 KBytes. As expected, the effect of the 

cache diminishes with the increasing distance, since the 

stored VO becomes irrelevant faster. Nevertheless, the 

distances that we use in these experiments are rather large 

compared to the locality exhibited in most practical 

applications.  

In conclusion, synchronized caching achieves significant 

reduction of the VO size, even for small caches and 

relatively infrequent (or distant) queries. Most potential 

clients of spatial outsourcing systems (e.g., PDAs) already 

include flash memory that reaches several Mbytes and 

could devote part of this memory for caching purposes. The 

minimization of the verification object, on the other hand, 

leads to savings in the communication cost, which is very 

important for wireless networks. Finally, recall that the 

update algorithms of Section 4 eliminate the need to 

transfer cache information between the LBS and the client.   

6. CONCLUSION 

Recent advances in location based services and sensor 

networks, as well as the popularity of web-based access to 

spatial data (e.g., MapQuest, GoogleEarth, etc.), 

necessitate query authentication for outsourced and 

replicated multidimensional data. In this paper, we propose 

the MR-tree, an authenticated index based on the Merkle 

Hash tree and the R*-tree. Our method outperforms the best 

current solution by orders of magnitude in many important 

metrics such as construction cost, index size and 

verification overhead. Furthermore, we develop a novel 

synchronized caching protocol, which significantly reduces 

the communication overhead of the verification step. We 

conclude our contributions with an extensive experimental 

study that validates the effectiveness and efficiency of the 

proposed structure.   
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