
Spatial Outsourcing for Location-based Services

Yin Yang
 1
 Stavros Papadopoulos

1
 Dimitris Papadias

1
 George Kollios

2

1Department of Computer Science and Engineering

Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
{yini, stavros, dimitris}@cse.ust.hk

2Department of Computer Science, Boston University, Boston, MA, 02215
gkollios@cs.bu.edu

Abstract - The embedding of positioning capabilities in mobile

devices and the emergence of location-based applications have

created novel opportunities for utilizing several types of multi-

dimensional data through spatial outsourcing. In this setting, a

data owner (DO) delegates its data management tasks to a

location-based service (LBS) that processes queries originating

from several clients/ subscribers. Because the LBS is not the

real owner of the data, it must prove (to each client) the

correctness of query output using an authenticated structure

signed by the DO. Currently there is very narrow selection of

multi-dimensional authenticated structures, among which the

VR-tree is the best choice. Our first contribution is the MR-

tree, a novel index suitable for spatial outsourcing. We show,

analytically and experimentally, that the MR-tree outperforms

the VR-tree, usually by orders of magnitude, on all

performance metrics, including construction cost, index size,

query and verification overhead. Motivated by the fact that

successive queries by the same mobile client exhibit locality,

we also propose a synchronized caching technique that utilizes

the results of previous queries to reduce the size of the

additional information sent to the client for verification

purposes.

1. INTRODUCTION

The embedding of positioning capabilities (e.g., GPS) in

mobile devices has triggered several types of location-based

services. Such services provide fresh opportunities for data

sharing and utilization. Consider a data owner (DO) that

possesses a proprietary spatial dataset, such as a specialized

map overlay or a set of points of interest (e.g., local

businesses). The DO can profit by allowing access to the

dataset. However, the cost of setting up the infrastructure,

hiring qualified personnel and advertising an online service

may be prohibitive. Moreover, the value of the dataset will

increase if it is combined with the functionality (e.g.,

driving directions, aerial photos, etc.) of a general-purpose

online map. These reasons provide strong motivation for

outsourcing the dataset to a specialized location-based

service (LBS), which achieves economy of scale by

servicing multiple owners.

Outsourcing of relational databases was first proposed

in [HIM02]. In this paper, we focus on spatial outsourcing,

motivated by the large availability of spatial data from

various sources (e.g., satellite imagery, land surveys,

environmental monitoring, traffic control). Often, agencies

collecting such data (e.g., government departments,

nonprofit organizations) are not able to support advanced

query services; outsourcing to a LBS is the only option for

utilizing the data. Furthermore, even if a DO possesses the

necessary functionality, it may be beneficial in terms of

cost, visibility, ease of access etc., to replicate the data in a

LBS. The importance of spatial outsourcing is expected to

soar with the increasing appearance of data sources and the

emergence of novel mobile computing applications.

Our solutions follow the framework of Figure 1.1,

adopted from relational database outsourcing. The DO

obtains, through a key distribution center, a private and a

public key. In addition to the initial data, the owner

transmits to the LBS a set of signatures required for

authentication. Whenever updates occur, the relevant data

and signatures are also forwarded to the LBS. The LBS

receives and processes spatial queries, (e.g., ranges, k-

nearest-neighbors) from clients. Since the LBS is not the

real owner of the data, the client must be able to verify the

soundness and completeness of the results. Soundness

means that every record in the result set is present in the

owner's database and not modified. Completeness means

that no valid result is missing.

initial data

& signatures

data updates

& signature updates

query

query results

 & VO

LBS ClientDO
Figure 1.1 Database outsourcing framework

In order to process authenticated queries efficiently, the

LBS indexes the data with an authenticated data structure

(ADS). Each incoming query initiates the computation of a

verification object (VO) using the ADS. The VO (which

includes the query result) is returned to the client that can

establish soundness and completeness using the public key

of the DO. A crucial part in this framework concerns the

ADS. Specifically, the ADS must consume little space,

support efficient query processing, and lead to small VOs

that can be easily transferred and verified. In addition, it

must be able to handle updates.

Most disk-based ADSs focus on 1D ranges. The only

work dealing with multi-dimensional ranges is [CPT06],

which applies the signature chain concept [PJRT05] to

KD-trees and R-trees. Although the R-tree based ADS,

called VR-tree, is the best between the two options, it still

has some serious drawbacks: large space and query

processing overhead for the LBS, high initial construction

cost for the data owner, and considerable verification

burden for the clients. Motivated by these problems, we

propose the MR-tree, an index based on the R*-tree

[BKSS90], capable of authenticating arbitrary spatial

queries. We show, analytically and experimentally, that the

MR-tree outperforms the VR-tree significantly on all

performance metrics.

Typically, successive queries from the same client focus

on a small part of the data space (e.g., a moving client

asking about its surroundings). Thus, the VOs of these

queries have significant overlap. Our second contribution is

a synchronized caching technique that utilizes this overlap

in order to reduce the size of the VO. Elegant algorithms

continuously update the cache contents of the LBS and the

client, so that they are always identical and up-to-date,

without requiring any additional communication overhead.

Furthermore, the space overhead for the service provider is

relatively small, so that a LBS with a realistic amount of

main memory (1-2 Gbytes) can support synchronized

caching for millions of clients.

The rest of the paper is organized as follows. Section 2

surveys related work. Section 3 describes the basic MR-tree

structure, discusses query processing, and offers cost

models for its performance. Section 4 focuses on the

synchronized cache and its maintenance. Section 5 contains

a comprehensive experimental evaluation, and Section 6

concludes the paper.

2. RELATED WORK

Query authentication was first studied in the Cryptography

literature. The Merkle Hash Tree (MH-tree) [M89] is a

main-memory binary tree that hierarchically organizes hash1

values. Figure 2.1 illustrates a MH-tree covering 8 data

records d1-d8, each assigned to a leaf. A node N contains a

hash value hN computed as follows: if N is a leaf node, hN =

H(dN), and dN is the assigned record of N, e.g., h1 = H(d1);

otherwise (N is an internal node), hN = H(hN.lc | hN.rc), where

N.lc (N.rc) is the left (right) child of N respectively, and “|”

concatenates two binary strings, e.g., h1-4 = H(h1-2 | h3-4).

After building the tree, the data owner signs the hash value

hRoot, stored in the root of the MH-tree, using a public key

digital signature scheme (e.g., RSA [MOV96]).

1 Throughout the paper, the term hash function (H) implies a one-

way, collision-resistant hash function. In this work we employ

SHA1 [MOV96].

h1 h2 h3 h4 h5 h6 h7 h8

h1-2 h3-4 h5-6 h7-8

h1-4 h5-8

hRoot signed by the owner

d1 d2 d3 d4 d5 d6 d7 d8

N1-4

N3-4

N4

N1-2

N3

sent to the client

Q

Figure 2.1 Example of Merkle Hash Tree

To authenticate one-dimensional range queries, Devanbu et

al. [DGMS03] sort the database records on the query

attribute and index them by a MH-tree. Figure 2.1 shows an

example, where the DSP receives query Q covering records

d4 and d5. The LBS first determines the boundary records

of Q, i.e., d3 and d6 which bound Q’s result. Then, it follows

the root-to-leaf path (Root, N1-4, N3-4, N3) to the left

boundary record d3. For each node visited, the hash value

(h1-2) of its left sibling is inserted into the VO. Records d3,

d4, d5, d6 are added to the VO. Similarly, the hash values

(h7-8) of all right-siblings on the path from the root to the

right boundary d6 are also appended. The LBS sends the

VO and the signature of hRoot to the client. To verify the

sequence, the client re-constructs the hash value at the root

of the MHT using d3, d4, d5, d6 and the hash values in the

VO (h1-2, h7-8): hRoot= H(H{h1-2 | H[H(d3) | (H(d4)]} |

H{H[H(d5)| (H(d6)] | h7-8}). If the reconstructed hRoot

matches the owner's signature, the result is sound. The

boundary records also guarantee that no records are omitted

from the query endpoints (completeness).

A combination of the MH-tree and the range search tree

[BKOS97] is exploited in [DGMS03] to authenticate multi-

dimensional range queries. Martel et al. [MND+04] extend

the MH-tree concept to arbitrary search DAGs (Directed

Acyclic Graphs), including dictionaries, tries, and

optimized range search trees. Goodrich et al. [GTTC03]

present ADSs for graph and geometric searching. These

techniques, however, focus on main-memory and are highly

theoretical in nature. For example, the range search tree is

rarely used in practice due to its high space requirements:

O(nlog
d-1

n), where n and d are the size and dimensionality

of the data respectively.

The first disk-based ADS in the Database literature is

the VB-tree [PT04], which authenticates the soundness, but

not the completeness, of 1D range results. A subsequent

signature chaining approach [PJRT05, NT06] authenticates

both soundness and completeness. Figure 2.2 illustrates an

example, assuming that the database contains four tuples d1-

d4, sorted on the search attribute. The data owner inserts

two special records d0, d5 with values –∞ and +∞, and

creates four signatures s012, s123, s234, s345, one for each

triplet of adjacent tuples; s012 corresponds to d1, s123 to d2

and so on. The data and signatures are then transferred to

the service provider.

Let the result of a range query contain d1, d2 and d3. The

service provider inserts into the VO: the result (d1, d2, d3),

the signature for each tuple in the result (s012, s123, s234), and

the boundary records d0 and d4. Given the VO, the client

checks that (i) the two boundary records fall outside the

query range, and (ii) all signatures are valid. The first

condition ensures that no results are missing at the range

boundaries, i.e., d1 and d3 are indeed the first and last

records of the result. The second guarantees that all results

are correct.

d2 d3 d4d1 +-

s012 s123 s234

d0 d5

s345
Figure 2.2 Example of signature chaining

The Merkle B-tree (MB-tree) [LHKR06] is a disk-based

adaptation of the MH-tree. Each internal node stores entries

E of the form (E.p, E.k, E.h), where E.p points to a child

node Nc, E.k is the search key and E.h is a hash value

computed on the concatenation of the hash values of the

entries in Nc. Leaf nodes store records and their respective

hash values. The DO signs the hash of the concatenation of

the hashes contained in the root of the tree. Compared to

signature chaining, the MB-tree incurs less space overhead

since hash values are smaller than signatures and less

verification effort because only the root is signed.

The only multi-dimensional ADSs in the database

literature are the VKD-tree and VR-tree [CPT06]. These

structures apply the signature chain concept to KD-trees

[BKOS97] and R-trees [G84], respectively. We focus on

the VR-tree since, as shown in [CPT06], it outperforms the

VKD-tree. All points in a leaf node are sorted according to

their x-coordinates. Two fictitious points are added before

the first and after the last point of the node. Following

[PJRT05], the VR-tree creates one signature for each

sequence of three points and stores it along with each entry,

e.g., in Figure 2.3a, the entry for P8 contains s789. For

internal nodes, the minimum bounding rectangles (MBRs)

of child nodes are sorted on their left side and a signature

chain is formed in a similar way. For instance, in Figure

2.3b, the signature of N4 is s345.

The processing of range queries is similar to the R-tree,

except for the additional VO construction. Consider query

Q in Figure 2.3a, which retrieves P9 and P11. For each index

node visited, all MBRs in this node are inserted into the

VO. The corresponding signatures participate in the

incremental construction of an aggregated 2 signature s.

When a leaf node of the VR-tree is reached, all points

whose x-coordinates fall in the query range (P8-P12) and the

two boundary points (P7, P13) are inserted into the VO. The

corresponding signatures are aggregated in s, which is

included in the VO.

2 Signature aggregation [MNT04] condenses multiple signatures

into a single one, thus significantly reducing the total size.

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

P12

P13

P14

P15
Q

N1

N2

N3

N4

N5

N6

N7

N8

N9

(a) Leaf Node (b) Internal Node

Figure 2.3 Signature chains in the VR-tree

To verify results, the client starts from the root and

compares all MBRs against the query. Then, it reads the

content of each node whose MBR overlaps the query from

the VO and recursively checks all its children. Finally, at

the leaf level, it can extract the query results. During this

procedure, the client incrementally constructs an aggregated

digest from the MBRs and points included in the VO, which

is eventually verified against the aggregated signature. As

we show, analytically and experimentally, the VR-tree has

some serious shortcomings: large space and query

processing overhead, high initial construction cost, and

considerable verification burden for the clients. The MR-

tree, discussed next, aims at solving these problems.

3. MR-TREE

Section 3.1 presents the structure of the MR-tree, and

describes query processing and authentication. Section 3.2

contains cost models for various performance metrics, and

compares the MR-tree and the VR-tree analytically.

3.1 Structure and Query Processing

The MR-tree combines concepts from MB- [LHKR06] and

R*-trees [BKSS90]. Figure 3.1 illustrates the node

structure. Leaf nodes are identical to those of the R*-tree:

each entry Ri corresponds to a data object. Note that

although our examples use points, the MR-tree is applicable

to objects with arbitrary shapes. A hash value is computed

on the concatenation of the binary representation of all

objects in the node. Internal nodes contain entries of the

form (pi, MBRi, hi), signifying the pointer, minimum

bounding rectangle and hash value of the ith child,

respectively. The hash value summarizes child nodes’

MBRs (MBR1-MBRf), in addition to their hash values (h1-

hf). The hash value of the root node hroot is signed by the

data owner and stored with the tree. The MR-tree supports

updates based on the corresponding algorithms of the R*-

tree. When a node changes (due to an insertion or deletion),

the corresponding hash value in the parent entry is updated

recursively, until reaching the root. The owner then signs

the new root and transmits the changes to the LBS.

...

h=hash(R1 | R2 | ... |Rf)

RfR1 R2 p1 MBR 1h1 p2MBR 2
pf MBR f h f...

h=hash(MBR1|h1|MBR2|h2|…|MBRf|hf)

h2

(a) Leaf Node (b) Internal Node

Figure 3.1 MR-tree node structure

To process a range query Q, the LBS invokes

RangeQuery(root, Q), shown in Figure 3.2. The algorithm

computes the verification object by following a depth-first

traversal of the MR-tree. The VO contains three types of

data: (i) all objects in each leaf node visited (Line 4), (ii)

the MBR and hash values of pruned nodes (Line 7), and

(iii) special tokens [and] that mark the scope of a node

(Lines 1 and 8). New entries are always appended to the

end of the VO.

RangeQuery (Query Q, MR_Node N) // LBS

1. Append [to VO

2. For each entry e in N // entries must be enumerated in original order

3. If N is leaf

4. Append e.data to VO

5. Else // N is internal node

6. If e.MBR overlaps Q, RangeQuery(Q, e.pointer)

7. Else append e.MBR, e.hash to VO // a pruned child node

8. Append] to VO

Figure 3.2 Range query processing with the MR-tree

Consider, for instance, query Q in the example tree of

Figure 3.3. Similar to conventional R-trees, RangeQuery

starts from the root and visits recursively all entries that

overlap the shaded rectangle: N1, N4, N2, N5. After

termination, the verification object is: [[(MBR_N3,

hash_N3), [P4, P5, P6]]], [[P7, P8, P9], (MBR_N6, hash_N6)]].

The tokens signify the contents of a node; for instance, the

component [[(MBR_N3, hash_N3), [P4, P5, P6]]]

corresponds to the first root entry (N1), and the rest of the

VO to the second one (N2). The LBS transmits the VO and

the root signature sroot to the client. Note that the actual

result (e.g., P4, P7) is part of the VO.

P1

P2

P4
P5

P6

P3

P7

P8

P9

P10

P11

P12

N1

N2

N3

N4

N6

N5

Q
P7 P9P8P4 P6P5

N3 N4 N5 N6

N1 N2

P10 P12P11P1 P3P2

(a) Points and Node MBRs (b) MR-tree

Figure 3.3 Example range query

To verify the query results, the client first scans the VO to

check that: (i) each data point in the VO is either outside Q,

or included in the result set, (ii) no MBR (of a pruned node)

in the VO overlaps Q, and (iii) the computed hroot from the

VO agrees with sroot. Figure 3.4 shows the recursive

procedure RootHash that computes hroot. The main idea is

to simulate the MR-tree traversal performed by the LBS,

and calculate the MBR and hash values bottom-up. In the

example of Figure 3.3, RootHash computes the MBR and

hash value of nodes N4 (from P4-P6), N1 (from N3, N4), N5

(from P7-P9), N2 (from N5, N6), root (from N1, N2), in this

order. Note that all entries in the VO, from the [of the root

to its], must be used. Furthermore, the algorithm is online,

meaning that it performs a single sequential scan of the VO.

During the verification, the actual results (P4, P7) are

extracted in Line 6. In addition, the client receives some

objects (P5, P6, P8, P9) in the VO, which are not part of the

result. Pang et. al. [PJRT05] propose a solution for

avoiding disclosure of such objects, when the outsourced

database must comply with certain access control policies.

In this work, we consider that clients can issue queries

freely without constraints. Nevertheless, the solution of

[PJRT05] can be applied in conjunction with the proposed

methods to hide the additional objects, if necessary.

(MBRValue, HashValue) RootHash(VO) // Client

1. Initialize str , MBR to empty string and MBR value respectively

2. While VO still has entries

3. Get next entry eV from VO

4. If eV is], go to Line 13 // break the while-loop

5. If eV is a data object R

6. If R overlaps the query, Add R to the result set

7. MBR_c = the MBR of R

8. str_c = the binary representation of R

9. If eV is [, (MBR_c, hash_c) = RootHash(VO)

10. If eV is a pair of MBR/hash value (MBR_eV, hash_eV)

11. MBR_c, str_c = (MBR_eV, hash_eV)

12. Enlarge MBR to include MBR_c

13. Concatenate str with str_c

14. Return (MBR, hash (str))

Figure 3.4 Algorithm for re-computing hroot

Proof of soundness: Assume that an object P in the result

set is bogus or modified. Because the hash function is

collision-resistant and P must be used by RootHash, the re-

computed hroot can not be verified against sroot, which is

detected by the client. Ñ

Proof of completeness. Let P be an object satisfying Q.

Consider the leaf node Nl containing P. For the re-

computed hroot to match sroot, either Nl’s true contents or

MBR/hash must be in the VO. In the former case P is in the

VO, and extracted in Line 6 of RootHash. In the latter case,

Nl’s MBR overlaps Q, which alarms the client about

potential violation of completeness. Ñ

In addition to range search, the MR-tree can

authenticate other common spatial queries, including k

nearest neighbors (kNN) and skylines. Given a point Q, a

kNN query retrieves the k points from the data set that are

closest to Q [HS99]. In the example of Figure 3.5a, the

three NNs of Q are P1, P2 and P3, in increasing order of

distance from Q. A key observation is that the kNN of Q lie

in a circular area C centered at Q that contains exactly k

data points. Therefore, the LBS can prove the kNN results

by sending to the client the VO corresponding to C.

Specifically, it first finds the k neighbors, then it computes

C, and finally executes RangeQuery treating C as the range.

The verification process of the client is identical to the one

performed for range queries.

A skyline query retrieves all points that are not

dominated by others in the dataset [PTFS05]. A point Pi

dominates another Pj, if and only if, the co-ordinate of Pi on

each dimension is no larger than the corresponding co-

ordinate of Pj. The skyline in Figure 3.5b contains P1, P2

and P7. To prove it, the LBS processes a range query that

contains the area of the data space not dominated by any

skyline point. This area (shaded in Figure 3.5b) can be

divided into multiple rectangles. The result contains only

the skyline points, and can again be verified according to

the methodology of range search.

QP6

P5
P1

P2

P3

P4

P7

P1

P2
P3

P4

P5

P6

P7

x

y

(a) kNN (b) Skyline

Figure 3.5 Alternative queries

3.2 Cost Models

The important performance metrics for authenticated

structures are (i) index construction time, (ii) index size, (iii)

query processing cost, (iv) size of the VO, and (v)

verification time. The first metric affects the party that

builds the index, i.e., depending on the system, the DO or

the LBS. The second one burdens the LBS and, in some

cases, the DO (if it also has to maintain the index).

Furthermore, it affects the communication cost between the

two. Metric (iii) is important only for the LBS. The size of

the VO influences the network overhead between the LBS

and the client. Finally, the verification time burdens

exclusively the client. In the sequel we compare analytically

the MR-tree and the VR-tree on the above metrics. Table

3.1 summarizes the symbols used in the analysis, as well as

their typical values (1msec = 10
-3

 seconds, 1µsec = 10
-6

seconds). These values were obtained based on the

hardware and software settings of our experiments, using

the Crypto++ library. Our measurements are similar to

those of the library benchmarks [Crypto] and the values

suggested in [LHKR06].

Table 3.1 Symbols and values in the analysis

Symbol Meaning Typical Value

Cs CPU cost of sign operation 3.4 msec

Cv CPU cost of verify operation 160 µsec

Ch CPU cost of hash operation 28 µsec

Cm CPU cost of multiply operation 43 µsec

CNA CPU cost of a random node access 15 msec

Ss size of a signature 128 bytes

Sh size of a hash value 20 bytes

SM size of an MBR 32 bytes

Sp size of a data point 16 bytes

n data cardinality 2,000,000

d data dimensionality 2

Ql query extent on one dimension 10% of space

b block size 4096 bytes

fl fanout of leaf node VR 19 MR 179

fn fanout of internal node VR 17 MR 51

h height of the tree VR 5 MR 4

We first establish a simple cost model for the R-tree, based

on the fact that in d-dimensional unit space [0,1]
d
, the

probability that two random rectangles r1, r2 overlap is:

1 2 1 2

1

(,) (. .)
d

overlap j j

j

P r r r l r l
=

= +∏
(3.1)

where r.lj denotes rectangle r’s extent along the jth

dimension [PSTW03]. For simplicity, we assume that the

data set contains points (rectangular data are discussed in

[TS96]) uniformly distributed in the unit space and query

Q has equal length Ql on all dimensions. Let fl (fn) be the

average fanout of a leaf (internal) node, and n be the data

cardinality. The number of leaf nodes is n/fl, and the height

of the R-tree is 1 log (/)
nf lh n f = +

. The number of

internal nodes at depth i of the tree (assuming a complete

tree where the root has depth 0) is i

nf , each containing

/ i

n
n f data points in its sub-tree. Because of the uniform

distribution, the number of points in a node is proportional

to the space covered by this node. Following [TS96], we

assume that all nodes at the same level are squares with

similar sizes. Therefore, a node at depth i covers 1/
i

nf

space, and has length 1/ id
n

f on each dimension. Applying

Equation 3.1, the total cost of processing Q using the VR-

or the MR-tree is:

() ()
2

0

1/ /
h d d

i id d
Q NA n n l l l l

i

C C f f Q f f n Q
−

=

= + + +

∑ (3.2)

where CNA is the cost of a node access. Similarly, the

storage overhead of both the VR- and the MR-tree can be

estimated by:
2

1

h
i

index n l

i

S b f n f
−

=

= +

∑

(3.3)

where b is the block size. The difference between the two

structures regards the authentication information, leading to

different fanouts (fl, fn). The VR-tree maintains one

signature (128 bytes) per entry in every node (leaf or

internal). In contrast, the MR-tree adds hash values (20

bytes each) only to internal nodes. Assuming a page of

4KBytes, 70% average storage utilization and double

precision, the VR-tree has a fanout of fl=19 (leaf) and fn=17

(internal), while for the MR-tree fl = 179 and fn = 51. The

lower fanout of the VR-tree increases its height.

Besides R-tree generation, the VR-tree requires a

signature for each object and node. The MR-tree only

involves cheap computations of hash values for nodes (but

not objects). If the cost of a sign / verify / hash operation is

Cs, Cv, Ch respectively, the initial construction overhead of

the VR-tree (MR-tree) is given by equation 3.4 (3.5):
1

1

h
VR i

init s n

i

C C f n
−

=

= +

∑

(3.4)

1

0

h
MR i

init s h n

i

C C C f
−

=

= + ∑ (3.5)

Let the size of a signature, an MBR, a hash value and a data

point be Ss, SM, Sh and Sp, respectively. Then, the VO of the

VR-tree with signature aggregation consumes space:

() ()
2

1

0

1/ /
h d d

VR i id d
VO s n n l M l l p

i

S S f f Q S n f n Q S
−

+

=

= + + + +∑
(3.6)

where the last two terms estimate MBRs and points for

visited internal and leaf nodes respectively. Note that with

signature aggregation, there is a single signature, thus the

VO size is relatively small. To prepare this VO, however,

the LBS must perform modular multiplications, whose cost

is:

() ()
2

1

0

1/ /
h d d

VR i id d
VO m n n l l l

i

C C f f Q n f n Q
−

+

=

= + + +

∑

(3.7)

Thus, the total query processing overhead for the VR-tree is

the sum of the two costs expressed in Equations 3.2 and 3.7.

The VO size of the MR-tree is given by Equation 3.8. The

complicated part is to analyze the total number of pruned

nodes during query processing. PN(i) estimates the number

of pruned nodes at depth i, by computing the number of

nodes outside Q, subtracted by descendents of higher

pruned nodes.

() ()

()

1

0
1

0

() /

() 1 1/ ()

h d
MR d
VO h M l l p

i
id

i i i jd
n n l n

i

S PN i S S n f n Q S

PN i f f Q PN j f

−

=
−

−

=

= + + +

= − + −

∑

∑

(3.8)

Finally we estimate the verification time for the client,

which is dominated by modular multiplications (VR-tree) or

computing hash values (MR-tree). The costs of the VR-tree

(with signature aggregation) and the MR-tree are given by

Equations 3.9-3.10. The MR-tree has a clear advantage

because (i) for each node, the MR-tree invokes the hash

function once, whereas the VR-tree performs modular

multiplication for each entry, and (ii) Ch < Cm.

() ()
2

1

0

1/ /
h d d

VR i id d
Client v m n n l l l

i

C C C f f Q n f n Q
−

+

=

= + + + +

∑

(3.9)

()
1

0

1/
h d

MR i id
Client n n l h v

i

C f f Q C C
−

=

= + +∑
(3.10)

Table 3.2 shows the costs calculated by the above equations

using the typical values of Table 3.1. The VR-tree incurs

about 30 times the overhead of the MR-tree for computing

the authentication information (in the entire tree), and is 8

times larger. The MR-tree is also significantly better in

terms of query processing and verification cost. The latter is

particularly important because the clients are mobile

devices with limited computing power. The only aspect

where the two structures are similar is VO size. Next, we

present an optimization for reducing the VO.

Table 3.2 Comparison of estimated costs

Costs MR-tree VR-tree

Time for Computing Authentication Data 4 sec 2 hours

Index Size 57 MBytes 511 MBytes

Query Processing Time 2 sec 22 sec

VO size (bytes) 390 KBytes 398 KBytes

Verification (CPU time) 41 ms 991 ms

4. SYNCHRONIZED CACHING FOR THE MR-TREE

Each client is expected to issue numerous queries at

different times. The VO of these queries always share

common entries, specifically, sroot and the MBR/hash values

of the root nodes (since the root is always accessed). In

practice, the overlap is significantly larger because most

queries focus on a small part of the data space. For instance,

a moving client is likely to ask about its surroundings at

successive locations that are close to each other. Assume

that the client maintains the VO of previous queries in a

cache. When the LBS processes a new query, it needs to

send only the part of the VO that is not already in the cache.

However, in order for this optimization to become possible,

the LBS must have complete knowledge of the client’s

cache. We propose a synchronized cache (SC) scheme,

where the LBS maintains, for each client, an abstract copy

of its cache. The term abstract means that concrete hash

values and records are replaced with placeholders (to be

discussed shortly). As shown in the experimental

evaluation, a LBS with a reasonable amount of main

memory can support synchronized caching for millions of

clients.

 Figure 4.1 summarizes the proposed framework for

synchronized caching. Given a query from the client, the

LBS computes the (uncompressed) VOraw. Then, it applies

an algorithm (ReduceVO) that utilizes the contents of the

SC to derive a compressed VOreduced, i.e., the part of VOraw

that is not in SC. VOreduced, which is usually much smaller

than VOraw, is sent to the client. The client restores VOraw

(using the reverse process of ReduceVO) and uses it to

verify the query result. Both the LBS and the client

incorporate the content of VOreduced to the SC through

MergeVO algorithm. The addition of new content may

increase the size of the SC beyond a predefined limit. In this

case, PurgeSC frees space by expunging "old" data. It is

easy to verify that if the LBS and the client start with an

empty SC and have the same space limit, then their cache

contents are identical at all times. Thus, there is no

additional communication overhead for cache

synchronization. On the other hand, this optimization

minimizes the VO size and the associated transmission cost.

 LBS Client

Compute
result, VOraw

ReduceVO

query

RestoreVO

VOraw

VOreduced

Verify result

SC

MergeVO

VO
reducedSCold

SCnew

MergeVO

SC

VOraw

SCold

SCnew

SCold SCnew

PurgeSC

SCold SCnew

PurgeSC

Figure 4.1 Framework of synchronized caching

Section 4.1 describes the VO minimization process (i.e.,

ReduceVO), while Section 4.2 focuses on the SC

maintenance (i.e., MergeVO and PurgeSC). In our

discussion, we distinguish between value and token entries

in the VO. A value entry is a data point, a pair of MBR/hash

values, or the signature sroot. A token is [or].

4.1 Minimizing the Size of the VO

Similar to the VO, the SC is a linked list of value and token

entries except that the copy maintained by the LBS uses a

placeholder (i) for each (MBR, hash value) pair and (ii) for

all records in a leaf node. Moreover, each token [is

associated with a timestamp to be discussed later. We use

the running example of Figure 4.2, where a client asks two

queries Q1, Q2. The SC is initialized to be empty. When the

first query is processed, its VO is copied to the caches of

both the LBS and the client. After this step, the SC equals

VO(Q1) = [[[P1, P2, P3], (MBR_N4, hash_N4)], (MBR_N2,

hash_N2)], sroot. When later the LBS processes Q2, it

compares VO(Q2) = [[(MBR_N3, hash_N3), [P5, P6]],

(MBR_N2, hash_N2)], sroot with the SC. (MBR_N2,

hash_N2) and sroot are in the SC and replaced with a token

SC_hit, reducing the VO size from 5 to 3 value entries.

Moreover, the entire sub-tree of N3 (P1-P3) is in the SC,

meaning that the client is able to compute MBR_N3 and

hash_N3. Therefore, the LBS substitutes the entry

(MBR_N3, hash_N3) with a token SC_compute, leading to a

VO(Q2) with only 2 value entries P5 and P6.

P1
P2

P4P5

P6

P3 P7

P8
P9

P10

P11

P12

N1

N2

N3

N4

N5

N6

Q1

Q2

 Query VO

Q1

[[[P1, P2, P3],

(MBR_N4, hash_N4)],

(MBR_N2, hash_N2)],

sroot

Q2

[[(MBR_N3, hash_N3),

[P5, P6]], (MBR_N2,

hash_N2)], sroot

Reduced VO(Q2): [[SC_compute,

[P5, P6]], SC_hit], SC_hit

(a) Queries (b) VOs

Figure 4.2 Queries with overlapping VOs

Figure 4.3 shows ReduceVO, which utilizes the SC to

minimize the verification object. Let VOraw (VOreduced) be

the VO before (after) the shrinking process. ReduceVO

scans the SC and VOraw in parallel, computing VOreduced.

Each step retrieves an entry eV (eS) from VOraw (SC). An

important invariant is that eV and eS must always correspond

to the same node (or data record) in the MR-tree. We

illustrate the algorithm using the example of Figure 4.2 and

assuming SC = VO(Q1) and VOraw = VO(Q2). In the first two

steps, eS and eV are both [(Case 4), and the LBS simply

appends two [into VOreduced. Then, eS becomes [and eV =

(MBR_N3, hash_N3) (Case 2). Both eS and eV refer to the

same node N3: the SC contains details about N3, whereas the

VO only contains aggregates (i.e., MBR and hash).

Therefore, it is possible to compute eV with SC entries

starting from eS until its corresponding], i.e., [P1, P2, P3].

Thus the LBS appends an SC_compute token to VOreduced.

Note that we must adjust the current entry of SC

accordingly (Line 8-10) to ensure the invariant stated above.

Next, eV becomes [(before P5) and eS is (MBR_N4,

hash_N4) (Case 3). Conversely to Case 2, now the VOraw

contains details (i.e., [P5, P6]) while the SC contains

aggregates. Starting from this [, the LBS copies everything

from VOraw to VOreduced, until the corresponding] is reached.

Then, both eV and eS become successively [(Case 4), and

(MBR_N2, hash_N2) (Case 1). The token SC_hit is

appended to VOreduced. Finally, for sroot, SC_hit is appended

to VOreduced. VOreduced is sent to the client, which restores the

original VOraw (following the reverse process of ReduceVO)

and uses it to verify the query results.

VOreduced ReduceVO (SC, VOraw) // LBS

1. Initialize VOreduced to empty

2. While VOraw still has entries

3. Get next entry eV of VOraw and eS of SC

4. If eV and eS are the same value entry // Case 1

5. Append SC_hit to VOreduced

6. If eV is a MBR/hash value pair and eS is [// Case 2

7. Append SC_compute to VOreduced

8. Let ebegin = eS

9. While eS is not the matching] of ebegin

10. Get next entry from SC as the new value for eS

11. If eV is [and eS is a MBR/hash value pair // Case 3

12. Append eV to VOreduced

13. Let ebegin = eV

14. While eV is not the matching] of ebegin

15. Get next entry from VO as the new value for eV

16. Append eV to VOreduced

17. If eS and eV are the same token entry // Case 4

18. Append eV to VOreduced

Figure 4.3 ReduceVO algorithm

4.2 Updating the SC

Every new VOreduced updates the SC at the LBS and the

client. Specifically, both LBS/client integrate VOreduced into

the SC using MergeVO, shown in Figure 4.4. The SC before

(after) this operation is called SCold (SCnew). Initially, SCnew

is empty. Each step of MergeVO retrieves pairs of entries eV

∈ VOreduced and eS ∈ SCold in parallel. Depending on the

type of these entries, we have 4 cases, similar to ReduceVO.

Case 1 occurs when eV is a hit for eS; eS is added to SCnew

and its [receives a timestamp equal to the current time. As

we discuss shortly, timestamps are used to expunge old

entries according to an LRU policy. Case 2 happens when

eV can be computed by eS. MergeVO inserts to SCnew all

entries between the [and] tokens of eS. The recency of

these entries is not updated, because SC_compute implies

that only the aggregates, but not the actual contents, of eS

are required for the query. Case 3 incorporates new

information from the VO into SCnew. Specifically, when the

VO contains details of an MR-tree node while SCold has

only aggregates, we append these details into SCnew. In the

example of Figure 4.2, if the client has SCold = VO(Q1) and

receives the reduced VO(Q2), MergeVO updates the

timestamps and replaces the MBR/hash value of N4 with [P5,

P6]. Conceptually, SCnew becomes the VO for query Q = (Q1

or Q2). Case 4 simply appends token entries.

SCnew MergeVO (SCold, VO) // VO is already reduced

1. Initialize SCnew to empty

2. While VO has entries

3. Get next entry eV of VO and eS of SC

4. If eV is SC_hit // Case 1

5. Append eS to SCnew

6. Set the timestamp of the [of eS to now

7. If eV is SC_compute // Case 2

8. Append eS to SCnew

9. Let ebegin = eS

10. While eS is not the matching] of ebegin

11. Get next entry from SCold as the new value for eS

12. Append eS to SCnew

13. If eV is [and eS is an MBR/hash value pair // Case 3

14. Let ebegin = eV

15. While eV is not the matching] of ebegin

16. Get next entry from SCold as the new value for eS

17. If eS and eV are the same token entry // Case 4

18. Append eS to SCnew

Figure 4.4 MergeVO algorithm

In our implementation, we assign a limit L to the size of the

SC at the client side. L may depend on the memory of the

client, or it may be decided by the LBS. In either case, the

LBS and the client agree on the value of L, which may be

different for each client (e.g., the LBS may charge clients

according to their cache size). If the SC exceeds L (after an

application of MergeVO), PurgeSC (Figure 4.5) removes

the oldest entries to free space. Specifically, PurgeSC

performs the opposite of operation MergeVO, i.e., it

replaces the details of an MR-node (a sequence of entries

bounded by [and]) with a single entry that contains the

MBR and hash value of the node. The process is applied

repeatedly until the size of the SC drops below L. At each

step, the node to be replaced is chosen according to an LRU

policy based on the timestamp stored with each [. Recall

that these timestamps are maintained by MergeVO.

PurgeSC (SC)

1. While the size of the SC exceeds the limit L

2. Scan SC to find the oldest [that is not enclosed by other tokens.

Let ebegin be this [

3. Let eend be the corresponding] of ebegin

4. Compute the MBR and hash of all SC entries from ebegin to eend

5. Replace all SC entries from ebegin to eend with a single entry

 (MBR, hash)

Figure 4.5 PurgeSC algorithm

5. EXPERIMENTAL EVALUATION

We implemented the MR-tree and the VR-tree in C++,

using the Crypto++ library [Crypto] and executed all

experiments on a P4 3GHz CPU. Both MR-tree and VR-

tree implementations are based on R*-trees using 4Kbytes

page size. Each experiment is repeated on two datasets: (i)

UNI that contains 2 million uniformly distributed data

points, and (ii) CAR that contains 2 million points taken

from road segments in California [R-portal]. In cases where

we want to set a specific cardinality, we randomly sample

from these datasets using an appropriate sampling rate.

Section 5.1 compares the initial construction cost and size

of MR-trees and VR-trees. Section 5.2 evaluates the query

processing and verification overhead of the two structures.

Section 5.3 assesses the benefits of synchronized caching.

5.1 Initial Construction

Figure 5.1 illustrates the construction cost for VR- and MR-

trees as a function of the data cardinality. This cost includes

both the time to create the trees and the time to compute the

hash values (MR-tree) or the signatures (VR-tree). The VR-

tree is 1-2 orders of magnitude more expensive to build due

to the numerous signatures. Figure 5.2 shows the CPU time

for computing the necessary authentication information.

The MR-tree outperforms the VR-tree by 3-4 orders of

magnitude on this metric. Comparing Figures 5.2 and 5.1,

the computation of signatures dominates the total

construction cost of the VR-tree. On the other hand, the

MR-tree involves cheap hashing operations, only for the

nodes (and not the data points). Consequently, the overhead

of the additional information (with respect to the R*-tree)

constitutes a small fraction (less than 1%) of the total

construction cost. Figure 5.3 illustrates the size of the

indexes in MBytes. The VR-tree is much larger since it

stores one signature (128 bytes) for each data point and

node, where the MR-tree stores one digest (20 bytes) for

every node.

VR-tree MR- tree

102

10
3

104

10
5

0.4 0.8 1.2 1.6 2.0

seconds

millions

102

10
3

104

10
5

0.4 0.8 1.2 1.6 2.0

seconds

millions

(a) UNI (b) CAR

Figure 5.1 Total construction time vs. data cardinality

VR-tree MR- tree

10
-1

10

103

10
5

0.4 0.8 1.2 1.6 2

seconds

millions

0.4 0.8 1.2 1.6 2
10-1

10

103

10
5

seconds

millions

(a) UNI (b) CAR

Figure 5.2 CPU time for authentication data vs. cardinality

VR-tree MR- tree

0

200

400

600

0.4 0.8 1.2 1.6 2.0
millions

MBytes

0

200

400

600

0.4 0.8 1.2 1.6

MBytes

millions
2.0

(a) UNI (b) CAR

Figure 5.3 Index size vs. data cardinality

5.2 Query Processing and Verification

This section evaluates the query and verification cost of the

two structures. All queries are ranges (recall from Section 3,

that other query types, such as NN, can be converted to

ranges), covering 1% of the entire (2D) space. For every

experiment, we execute 100 ranges at random locations and

illustrate the average cost. This cost burdens the LBS and

includes both the result retrieval and the construction of the

verification object. The data cardinality (N) varies between

0.4⋅10
6
 and 2 ⋅10

6
. We do not include synchronized caching

since it is evaluated separately in Section 5.3.

Figure 5.4 illustrates the query cost (in seconds) as a

function of the data cardinality (Ql = 10%). The MR-tree is

fast because it creates the VO by simply appending MBRs

and hash values for each pruned node. The VR-tree is about

2 orders of magnitude slower due to the modular

multiplications required to create the aggregated signature.

Recall that signature aggregation is unavoidable because,

otherwise, the VO would be extremely large.

VR-tree MR- tree

0.4 0.8 1.2 1.6 2.0
10

-3
10

-2
10

-1
1

10 seconds

milions

10-3

10-2
10

1
10

0.4 0.8 1.2 1.6 2.0

milions

seconds

(a) UNI (b) CAR

Figure 5.4 Query cost vs. data cardinality

Next we measure the verification object. Figure 5.5 depicts

the VO size versus the data cardinality. For small datasets,

the VO of MR-trees and VR-trees have similar sizes.

However, as the cardinality rises, the VO grows faster for

the VR-tree because more intermediate MBRs are included

in the VO (due to the smaller fanout). For comparison, the

diagrams also illustrate the result size. The verification

object (of VR-trees and MR-trees) is larger than the

corresponding result, because the result is always part of the

VO.

Result SetVR-tree MR-tree

0.4 0.8 1.2 1.6 2.0
0

200

400

600 KBytes

milions

0

100

200

300

400

0.4 0.8 1.2 1.6 2.0

milions

KBytes

(a) UNI (b) CAR

Figure 5.5 VO size vs. data cardinality

Finally, Figure 5.6 investigates the verification time (at the

client) versus the data cardinality. The VR-tree leads to

high cost since verification involves a number of modular

multiplications, which is proportional to the output size. On

the other hand, verification in the MR-tree invokes

relatively cheap hash operations. Minimization of

verification time is crucial for clients (e.g., PDAs) with

limited computational resources.

VR-tree MR- tree

10-2

10
-1

1

10

0.4 0.8 1.2 1.6 2.0

millions

seconds

10-2

10-1

1

10

0.4 0.8 1.2 1.6 2.0

millions

seconds

(a) UNI (b) CAR

Figure 5.6 Verification time vs. data cardinality

Summarizing, the MR-tree is considerably faster to build

and consumes less space than the VR-tree. At the same time

it is much more efficient for query processing and

verification. The only aspect where the MR- and VR-tree

have similar performance is the size of the VO. Next, we

evaluate the impact of synchronized caching on the

verification object.

5.3 Synchronized Caching

Recall that synchronized caching entails two caches at the

LBS and the client. The VO of each processed query is

incorporated in the caches and utilized to reduce the VO of

subsequent queries. This optimization is expected to have

considerable benefits in cases where successive queries

exhibit locality. In our experiments we simulate a moving

client that enquires about its surroundings. Specifically, the

first query is a range centered at a random location. The

user chooses a direction, moves a certain distance and

issues another range search (with a fixed extent). The

process is repeated 100 times. The VOs of the first 50

queries are used to warm up the cache. For the remaining

ones we measure the average reduction achieved per VO.

The average reduction is defined as (|VOraw|-

|VOreduced|)/|VOraw|, where |VOreduced| (|VOraw|) is the size of

the VO with (without) synchronized caching.

We investigate the effect of the cache size, and the

distance traveled between two consecutive queries using the

CAR dataset. The results for UNI are similar and omitted

due to the lack of space. The data cardinality is set to 2⋅10
6
,

and the query extent to 10% per axis. Figure 5.7a illustrates

the average VO reduction as a function of the cache size (at

the client), after fixing the distance between two

consecutive queries to 3% of the axis length. Even 100

KBytes of cache result in a reduction of about 10%. The

reduction increases with the cache size and stabilizes at

around 500 KBytes. After this point, more cache does not

have a significant impact on performance, because the new

parts of the tree have to be included in the VO anyway.

The LBS stores, for each client, placeholders for the

corresponding hash values and records. Therefore, the

cache copy at the LBS consumes much less space than that

of the client. The memory consumption per client at the

LBS is shown at the bottom of the x-axis. Assuming a cache

of 500Kbytes per client (i.e., 1.7Kbytes at the LBS), a LBS

with 1 Gbyte of main memory can support up to 558⋅10
3

clients. If the cache size is 300 Kbytes per client, the LBS

can support 833⋅10
3
 clients.

0

20%

40%

60%

100 200 300 400 500

KBytes

0.9 1.0 1.2 1.4 1.7

client

LBS

0

20 %

40 %

60 %

1% 2% 3% 4 % 5%

distance traveled

(a) vs. cache size (b) vs. distance traveled

Figure 5.7 Average VO reduction (CAR)

Figure 5.7b illustrates the average reduction as a function of

the distance between successive queries, after setting the

cache size to 300 KBytes. As expected, the effect of the

cache diminishes with the increasing distance, since the

stored VO becomes irrelevant faster. Nevertheless, the

distances that we use in these experiments are rather large

compared to the locality exhibited in most practical

applications.

In conclusion, synchronized caching achieves significant

reduction of the VO size, even for small caches and

relatively infrequent (or distant) queries. Most potential

clients of spatial outsourcing systems (e.g., PDAs) already

include flash memory that reaches several Mbytes and

could devote part of this memory for caching purposes. The

minimization of the verification object, on the other hand,

leads to savings in the communication cost, which is very

important for wireless networks. Finally, recall that the

update algorithms of Section 4 eliminate the need to

transfer cache information between the LBS and the client.

6. CONCLUSION

Recent advances in location based services and sensor

networks, as well as the popularity of web-based access to

spatial data (e.g., MapQuest, GoogleEarth, etc.),

necessitate query authentication for outsourced and

replicated multidimensional data. In this paper, we propose

the MR-tree, an authenticated index based on the Merkle

Hash tree and the R*-tree. Our method outperforms the best

current solution by orders of magnitude in many important

metrics such as construction cost, index size and

verification overhead. Furthermore, we develop a novel

synchronized caching protocol, which significantly reduces

the communication overhead of the verification step. We

conclude our contributions with an extensive experimental

study that validates the effectiveness and efficiency of the

proposed structure.

ACKNOWLEDGEMENTS

Yin Yang, Stavros Papadopoulos and Dimitris Papadias

were supported by the grant HKUST 6184/06E from Hong

Kong RGC. George Kollios was partially supported by the

NSF grant IIS-0133825.

REFERENCES

 [BKOS97] de Berg, M., van Kreveld, M., Overmars, M.,

Schwarzkopf, O. Computational Geometry:

Algorithms and Applications. Springer-Verlag, 1997.

[BKSS90] Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger,

B. The R*-tree: An Efficient and Robust Access

Method for Points and Rectangles. SIGMOD, 1990.

[CPT06] Cheng, W., Pang, H., Tan, K.-L. Authenticating

Multi-Dimensional Query Results in Data

Publishing. DBSec, 2006.

[Crypto] www.eskimo.com/~weidai/benchmark.html

[DGMS03] Devanbu, P., Gertz, M., Martel, C., Stubblebine, S.

Authentic Data Publication Over the Internet.

Journal of Computer Security 11(3): 291-314, 2003.

[G84] Guttman, A. R-trees: A Dynamic Index Structure for

Spatial Searching. SIGMOD, 1984.

[GTTC03] Goodrich M., Tamassia R., Triandopoulos N., Cohen

R. Authenticated Data Structures for Graph and

Geometric Searching. CT-RSA, 2003.

[HIM02] Hacıgümüş, H., Iyer, B., Mehrotra, S. Providing

Databases as a Service. ICDE, 2002.

[HS99] Hjaltason, G., Samet, H. Distance Browsing in

Spatial Databases. ACM TODS, 24(2):265-318,

1999.

[LHKR06] Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.

Dynamic Authenticated Index Structures for

Outsourced Databases. SIGMOD, 2006.

[M89] Merkle, R. A Certified Digital Signature. CRYPTO,

1989.

[MND+04] Martel, C., Nuckolls, G., Devanbu, P., Gertz, M.,

Kwong, A., Stubblebine, S. A General Model for

Authenticated Data Structures. Algorithmica, 39(1):

21-41, 2004.

[MNT04] Mykletun, E., Narasimha, M., Tsudik, G. Signature

Bouquets: Immutability for Aggregated/Condensed

Signatures. ESORICS, 2004.

[MOV96] Menezes, A., van Oorschot, P., Vanstone, S.

Handbook of Applied Cryptography. CRC Press,

1996.

[NT06] Narasimha M., Tsudik G. Authentication of

Outsourced Databases Using Signature Aggregation

and Chaining. DASFAA, 2006.

[PJRT05] Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.

Verifying Completeness of Relational Query Results

in Data Publishing. SIGMOD, 2005.

[PSTW93] Pagel, B., Six, H., Toben, H., Widmayer, P. Towards

an Analysis of Range Query Performance in Spatial

Data Structures. PODS, 1993.

[PTFS05] Papadias, D., Tao, Y., Fu, G., Seeger, B. Progressive

Skyline Computation in Database Systems. TODS

30(1), 41-82, 2005.

[PT04] Pang, H., Tan, K.-L. Authenticating Query Results in

Edge Computing. ICDE, 2004.

[R-portal] www.rtreeportal.org

[TS96] Theodoridis, Y., Sellis, T. A Model for the

Prediction of R-tree Performance. PODS, 1996.

