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Medical Introduction

The first cases of Acquired Immunodeficiency Syndrome - AIDS became
known at the end of the 20th century. Since that time the number of in-
fected people has been menacingly growing. In the absence of cure, this
disease has spread out and has became a major concern in the area of public
health.
For a patient to develop AIDS, it is necessary to have acquired the HIV, hu-
man immunodeficiency virus. To reproduce itself, this virus needs to invade
the nucleus of a certain kind of animal or plant cells to use the machinery of
the cell. Thus, when the cell produces a copy of its genetic code to reproduce
itself, it ends up creating a copy of the virus.
Two important classes of white blood cells are T and B cells. There are two
types of T cells, the CD4+ T cells and the CD8+ T cells. In the case of the
virus of HIV the main target cells are the CD4+ T cells.
The presence of HIV starts a process of disease, which may lead to the de-
velopment of AIDS. It is usual to claim that this last stage of the disease
is achieved when the concentration of T cells is less than 30%, see [1]. The
following situations may occur in the process of disease:

• (1) if an individual with HIV does not develop AIDS, the infection has
two phases: the primary response, characterized by a growth of the pop-
ulation of the virus during the first weeks, followed by a sharp decline due
to the reaction of the immune system; and the period of clinical latency,
in which a low concentration of HIV is observed for a long time, see [1]
and [2];

• (2) if the individual with HIV develops AIDS, two cases are possible: (2.1)
the individual develops AIDS right after the primary response without a
period of clinical latency, and (2.2) the individual develops AIDS after
the two phases, namely the primary response and the period of clinical
latency, always in this order.

To check, in which stage of disease a patient is, it is necessary to observe the
concentration of CD4 T and CD8 T cells. We concentrate on CD4 T cells,
because they are atacked by this virus more often. Usually it is assumed
that a CD4 T cell can be in one of the following states:

• (1) healthy;

• (2) infected;

• (3) removed if it underwent apoptosis, lysis or left the lymphatic organ.

Figure 1: Experimental data from [3] for three phases of the disease.
Viremia is the density of virus in the blood, see [4]. The black balls
indicate the viremia and the white squares indicate the density of CD4
T cells.

Existing Models

Many studies have been made to describe various aspects of the infection and
spread of the HIV virus in the body. Most existing mathematical models
use ordinary or partial differential equations.
Other studies use interacting particle systems with discrete time, known as
cellular automata, see [1]. [1] described the evolution of concentration of
healthy, infected and removed cells observed during a computational exper-
iment and compare them with data obtained in vivo.

Our Model

Our model follows the idea of [1] in using a sistem of interacting particles,
but unlike [1] our time is continuous. The behavior of our model is described
by a system of differential equations with stochastic coefficients, see [5].
We denote by H(t), I(t) and R(t) the numbers of healthy, infected and
removed cells at time t respectivelly. We assume that H(t), I(t) and R(t)
are so large that they may be treated as real differentiable functions of time
t. In our model we assumed:

• (1) any healthy cell becomes infected with a rate γ if it is in contact with
an infected one;

• (2) any infected cell may be removed with a rate α or remain infected;

• (3) any removed cell may remain removed or may be restored either as a
healthy cell with a rate p1 or as an infected cell with a rate p2. Throughout
our experiment we assumed that p1 = (H(t))p0 , where p0 ∈ [1, 1.7]. This
condition was obtained by means of our computational experiments.

We interpret p1 as the responsiveness of the immune system. We denote by
pmax the maximal possible value of p1.

We use the following random variables

β1(t) =

{

1, if u1(t) ≤ p1
0, in other cases

and β2(t) =

{

1, if u2(t) ≤ p2
0, in other cases,

where u1(t) and u2(t) are independent random variables distributed uni-
formly in [0, 1].
These assumptions lead us to the following system of differential equations:
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dH

dt
= −γHI + β1(t)R,

dI

dt
= γHI − αI + β2(t)R,

dR

dt
= αI − (β1(t) + β2(t))R.

Results of Simulation

These differential equations define the functioning of our model. We study
them numerically. We note that if pmax = 0.94 (see figure 2), the patient
will certainly develop AIDS in the first stage. If pmax ∈ [0.95, 0.99] (see fig-
ure 3), we have the dynamics with the three phases described above. When
pmax = 1 (see figure 4), the infected patient remains with HIV, but does
not develop AIDS and therefore shows no signs of disease.
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Figure 2: Dynamics of the model with pmax = 0.94. It is an average
of 11 independent computer experiments, which we conducted.
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Figure 3: Dynamics of the model with pmax = 0.95. It is an average
of 11 independent computer experiments, which we conducted.
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Figure 4: Dynamics of the model with pmax = 1. It is an average of
11 independent computer experiments, which we conducted.

Figures 2, 3, and 4 show the HIV viral dynamics of our model, and each one
of these results was an average of 11 experiments conducted by us. Figure
3 (pmax = 0.95) shows the three phases. Thus our computer experiments
correspond real data shown on figure 1: in both cases we have three phases.
To illustrate this dynamics better, we show on the figures 5 and 6 two indi-
viduals experiments out of those 11 experiments used to generate figure 3.
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Figure 5: Dynamics of one experiment with pmax = 0.95.
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Figure 6: Dynamics of one experiment with pmax = 0.95.

Conclusion

Our model shows the process of HIV infection. An advantage of our work, as
compared with [1], is the following: in [1] the number of cells was constant.
Unlike this, in our experiment the densities of healthy, infected and removed
cells were variable. In this respect, our model has a better potential to fit
real situations.
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