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INTRODUCTION

The bulk of modern theory of interacting particle systems is based on the as-
sumption that the set of components, also called the space, does not change
in the process of interaction; usually it is ZZ

d or IRd, where d is dimension.
Elements of this space, also called sites, may be in different states (e.g. 1
and 0, often interpreted as presence vs. absence of a particle), but the sites
themselves do not appear or disappear in the process of functioning. This
assumption is not the only possible one and seems to be motivated partially
by mathematical convenience. Here we present another approach.

In several areas of knowledge including the theory of information transmis-
sion, molecular biology, historical linguistics and others we deal with long
sequences of symbols, which are subject to a large class of local random
transformations. The fact that the lengths of the files may well change
under these transformation, did not receive due attention for a long time.
Indeed, taking this fact into consideration needs an adequate theory, which
started to develop less than twenty years ago. According to our knowledge,
[1, 2] and a few related papers (dealing with continuous time processes) are
the earlies works in this direction, but they deal mostly with processes in-
volving finite sequences, whose definitions present no conceptual difficulties.

According to our knowledge, [8, 9, 10, 3, 4, 5, 6] are the first publications
dealing with infinite sequences ([8] with continuous time, the others with
discrete time), but mostly with special cases. According to our knowledge,
[7] till now is the only rigorous definition of processes with infinite sequences.
The attention of [7] is concentrated on substitution operators which substi-
tute some finite combinations of letters by some other finite combinations of
letters in a discrete time.

The purpose of our study is to introduce a more general class of such trans-
formations than those of which we were aware till now and to describe their
properties.

BASIC DENOTATIONS

We assume that all our symbols belong to some finite set A, which we call
the alphabet. Elements of A are called letters. Finite sequences of letters
are called words. The length of a word W (that bis the number of letters in
it) is denoted by |W |. There is the empty word, denoted by Λ, whose length
is zero.

As it is usual in mathematical theory we use infinite sequences of letters
along with large finite ones. Thus the space of our process is ZZ, the set of
integer numbers. We call the set Ω = AZZ configuration space. Its elements,
that is bi-infinite sequences of letters, are called configurations. Every con-
figuration x ∈ Ω is determined by its components xv ∈ A for all v ∈ ZZ.

Cylinders in Ω are defined in the usual way. We denote by M the set of
normalized measures on the σ-algebra generated by cylinders. By conver-
gence in M we mean convergence on all cylinders. Any map P : M → M
is called an operator. Let us introduce a special class of operators, which we
call local operators.

WORDS AND RANDOM WORDS
AND THEIR CONCATENATION

For convenience we assume that A contains no commas or brackets. Given
any words W1, . . . , Wn, we call their concatenation and denote by

concat(W1, . . . , Wn)

the word obtained by writing the words W1, . . . , Wn one after another in
that order in which they are listed without brackets and commas.

Let us denote by D the set of words in the given alphabet. By a random
word we mean a probability distribution on D concentrated in a finite subset
of D.

Concatenation of random words.

Suppose that we have n random words W1, . . . , Wn. For every i = 1, . . . , n

we denote by X1
i , . . . , X

ki
i the possible values of Wi. By concatenation of

W1, . . . , Wn we mean a random word, which takes k1 × · · · × kn possible
values, namely for any

j1 ∈ {1, . . . , k1} , . . . , jn ∈ {1, . . . , kn}

it takes the value concat(X
j1

1 , . . . , X
jn
n ) with the probability

Prob (W1 = X
j1

1 ) × · · · × Prob (Wn = X
jn
n ).

DEFINITION OF OPERATOR

We choose a non-negative integer number r called range (range of interac-
tion). We take any function f from A2r+1 to the set of random words and
define an operator from M to M as follows.

First we define how our operator acts on deterministic words.

Given a word L, consider two cases.

If |L| < 2r + 1, then P (L) is concentrated in the empty word.

If |L| ≥ 2r + 1, then we denote L = (l1, . . . , ln) and define P (L) as the
random word, which is the concatenation

P (L) = concat (f (l1, . . . , l2r+1), . . . , f (ln−2r, . . . , ln)) .

Now let us define how P acts on random words - just by linearity.
Given a random word W , let us denote by X1, . . . , Xn its possible values
and define P (W ) as

Prob (W = X1) · P (X1) + · · · + Prob (W = Xn) · P (Xn).

And finally we define how P acts on uniform measures.

We denote by D(A) and call dictionary the set of words in a given alphabet
A. Any map from D(A) to IR is called a pseudo-measure. Since any uni-
form measure is determined by its values on all words, any uniform measure
may be considered a pseudo-measure.

Let us attribute to every word W a positive number P(W ) called its weight
so that the sum of weights of all words is finite.

Then to every pseudo-measure µ we attribute a norm

‖µ‖ =
∑

W∈D(A)

P(W ) · µ(W ).

Let us denote by M′ the set of pseudo-measures, whose norm is finite. Ev-
idently, M′ is a normed linear space. Having this norm, we can define a
distance on M′: dist(µ, ν) = ‖µ − ν‖. Now we can define convergence in
M′: a sequence (µi) tends to λ if the sequence dist(µi, λ) tends to zero.
Notice that (µi) tends to λ if and only if (µi(W )) tends to λ(W ) for every
word W .

We say that a word W = (a1, a2, . . . , ak) appears at a place i in a word
V = (b1, b2, . . . , bm) if bi+1 = a1, bi+2 = a2, . . . , bi+k = ak.

Let us denote by quant(W |C) the quantity of different places, at which a
word W appears in a word V .

After that we define the frequency of W in V as

freq(W |V ) =
quant(W |V )

|V |
.

Given a deterministic word V , we define the corresponding pseudo-measure
V ′ as follows: for any

V ′(W ) =







freq(W |V ) if |W | ≤ |V |,

0 if |W | > |V |.

Analogously, given an arbitrary random word X , whose possible values are
words W1, . . . , Wk, the corresponding pseudo-measure by definition is

X ′ =

k
∑

i=1

Prob (X = Wi) · W
′
i .

We say that a sequence of random words tends to a pseudo-measure µ if the
pseudo-measures corresponding to them tend to µ.

We say that a sequence of random words (Xn) is Cauchy if

∀ ε > 0 ∃ k : ∀ m > k, n > k : dist(X ′
m, X ′

n) < ε.

Given a measure µ, we take a sequence of random words Wn, which tends
to µ, take the sequence P (W1), P (W2), P (W3), . . . and prove that it is
Cauchy, therefore converges to some measure, which is one and the same for
all sequences which tend to µ. this measure we accept as P (µ). We call
local all operators P : M → M obtainable in this way.

DECLARATIONS OF THE THEOREMS
WITH SOME COMMENTS

Theorem 1. Every substitution operator as defined in [7] is local (but
not vice versa).

Hint. Let us take any substitution operator G
ρ
→ H where G is self-

avoiding. Excluding some trivial cases, we may assume that G is non-empty.
Let us denote G = (g1, . . . , gn), where n ≥ 1. All we need to define a local

operator is to choose the value of r and define a random word W (x) for
every (2r + 1)-tuple (x−r, . . . , xr).

We choose r = n − 1, where n = |G|, and define f by the following two
rules.

1-st rule: if the word (x−r, . . . , xr) can be represented as a concatenation
concat(A, G, B), where |A| > 0, then f (x−r, . . . , xr) is concentrated in the
empty word.

2-d rule: if the word (x−r, . . . , xr) can be represented as a concatenation
concat(G, B), then f (x−r, . . . , xr) may take two values: H with probability
ρ and G with probability 1 − ρ.

Since G is self-avoiding, this definition is not self-contradictory.

It is easy to prove that thus defined operator is identical with the substitution

operator G
ρ
→ H .

Theorem 2. Every local operator is continuous in the sense defined in
[10].

Remember that every local operator acts on measures and words. For any
local operator P and any µ ∈ M we define extension Ext(µ P ) as the limit
of the fraction |P (W )|/|W |, when W → µ.

Theorem 3. For any local operator P and any uniform measure the
definition of extension is consistent.

Theorem 4. For any local operator P , any µ, ν ∈ M and any real
number L ∈ [0, 1]

P (L · µ + (1 − L) · ν) = L̃ · P (µ) + (1 − L̃) · P (ν),

where

L̃ =
L · Ext(µ P )

L · Ext(µ P ) + (1 − L) · Ext(ν P )
.

Theorem 4 is a technical introduction into Theorem 5, about which we shall
speak now. For any µ, ν ∈ M we denote by convex(µ, ν) their convex
hull, that is by definition

convex(µ, ν) = {k · µ + (1 − k) · ν : 0 ≤ k ≤ 1} .

We call an operator P : M → M fine if for any µ, ν ∈ M

λ ∈ convex(µ, ν) =⇒ P (λ) ∈ convex(P (µ), P (ν)).

Theorem 5. Every local operator is fine.

Theorem 5 is a direct consequence of Theorem 4. All the other theorems
can be proved like analogous theorems in [7].
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