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Abstract

One-and two-dimensional cellular automata which are known to be fault-tolerant are

very complex. On the other hand, only very simple cellular automata have actu-

ally been proven to lack fault-tolerance, i.e., to be mixing. The latter either have

large noise probability " or belong to the small family of two-state nearest-neighbor

monotonic rules which includes local majority voting.

For a certain simple automaton L called the soldiers rule, this problem has in-

trigued researchers for the last two decades since L is clearly more robust than local

voting: in the absence of noise, L eliminates any �nite island of perturbation from

an initial con�guration of all 0's or all 1's. The same holds for a 4-state monotonic

variant of L, K, called two-line voting. We will prove that the probabilistic cellular

automataK" and L" asymptotically lose all information about their initial state when

subject to small, strongly biased noise. The mixing property trivially implies that

the systems are ergodic.

The �nite-time information-retaining quality of a mixing system can be repre-

sented by its relaxation time Relax(�), which measures the time before the onset of sig-

ni�cant information loss. This is known to grow as (1=")c for noisy local voting. The

impressive error-correction ability of L has prompted some researchers to conjecture

that Relax(L") = 2c=". We prove the tight bound 2c1 log
2 1=" < Relax(L") < 2c2 log

2 1="

for a biased error model. The same holds for K". Moreover, the lower bound is

independent of the bias assumption.
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The strong bias assumption makes it possible to apply sparsity/renormalization

techniques, the main tools of our investigation, used earlier in the opposite context

of proving fault-tolerance.
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Chapter 1

Introduction

The foundations of cellular automata and fault-tolerant computation go back to von

Neumann whose seminal works [34, 35] have played a signi�cant role in establishing

both research areas. In theoretical fault-tolerant computing, a computing model is

de�ned and its behavior is investigated when certain components of the model are

allowed to fail. For example, in the circuit model, given a circuit C of n gates

computing a Boolean function, the question is asked whether a circuit C 0 consisting

of m gates each of which gives a wrong output with probability " > 0 can nevertheless

be constructed such that C 0 computes the same function as C with high probability.

The faults may be transient or permanent, the latter frequently leading to degenerate

situations which are mathematically less interesting. All of the subsequent discussion

including the contribution of this thesis deals with transient faults.

Von Neumann's formulation was done in the context of the Boolean circuit model

and a positive answer to the fault-tolerance question was given by von Neumann in

[34]. It was later improved by Dobrushin and Ortyukov [6] who showed an upper

bound of m = O(n logn). The logarithmic redundancy factor was proven to be

tight in [5]. Pippenger [27] went on to exhibit classes of Boolean functions for which

a constant redundancy factor was su�cient, and he gave explicit constructions of

fault-tolerant circuits using the notion of compressors. Other signi�cant work on

information storage in the context of the circuit model was done by, among others,

1
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Kuznietsov [22] and more recently Sipser and Spielman [29].

Although the circuit model is appealing due to the simple and well-understood

nature of fault-tolerant computing, a potential drawback is its reliance on lengthy

wires needed for satisfying expansion properties in the construction of compressors.

As the number of gates n increases, it quickly becomes more and more di�cult to

realize such devices feasibly in 3-dimensional space without taking into account the

volatility of signals traversing long wires which may induce a level of faultiness match-

ing, if not exceeding, that of the gates. In other words, reecting back the increased

faultiness into the gates, the error probability "(n) at every gate is now a function of

the size of the system increasing with n. Hence, if possible, it is preferable to have

a uniform yet local connectivity structure that only requires constant length wires

for connected elements. Cellular automata are computing models that satisfy this

property.

Cellular automata were introduced by von Neumann in conjunction with inves-

tigating the problem of self-reproducing machines [35]. An introduction to self-

reproducing machines and its main results can be found in [2]. A cellular automaton

is a set of homogeneous �nite automata arranged on a d-dimensional lattice where

at every time step each element or cell computes its transition based upon the in-

put from its neighbors and its own state. A simple argument shows that cellular

automata are capable of simulating Turing machines, hence universal computation.

Their parallelism has been exploited, with some success, for arithmetic and matrix

computations in the context of VLSI implementations, also known as systolic arrays,

pioneered by Kung [20]. Cellular automata have also been investigated as models

of \complex systems," but due to their universality, most questions regarding their

asymptotic behavior turn out to be undecidable. An interesting collection of papers

may be found in [17, 36]. A practical introduction to cellular automata is given in

[30].

Related to the topic of cellular automata as models of physical and biological
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systems, particle systems have been studied in physics in connection with charac-

terizing their global properties, in particular, with respect to the existence of phase

transitions. Starting with Ising's investigation of ferromagnetism in particle systems

when assigning Gibbs measures on the space of con�gurations [18], the question of

phase transition as captured by the existence of more than one invariant probability

measure has captured the interest of many researchers in the mathematical commu-

nity also known as interacting particle systems [23, 7, 19]. One of the main goals in

this area is to prove whether certain simple particle systems with local interactions

are ergodic or not. Two \schools" may be distinguished, one, the American research

community which primarily deals with continuous time systems and, two, the Russian

(former USSR) community which has primarily investigated discrete time systems.

Continuous time systems require the machinery of Markov generators to account for

nontrivial existence problems whereas for discrete time systems this is much simpler.

However, the analysis of discrete time systems has tended to be much more challeng-

ing than their continuous time counterparts (cf. local majority voting [14, 15]) due to

the need to track events simultaneously.

Signi�cant progress toward exhibiting nonergodic discrete time media in dimen-

sion 2 and higher was made by Toom in the 1970's where several rules were intro-

duced with a proof of nonergodicity [31]. The north-east-center rule, also known as

Toom's rule, is a well-known example. Toom's nonergodicity proof was an extension

of a general technique called the contour argument, a widely used tool in interact-

ing particle systems which goes back to Peierls' investigation of phase transitions

in the two-dimensional Ising model [26]. The search for nonergodic one-dimensional

rules was much slower in coming with an interesting candidate rule introduced by

G�acs, Kurdyumov, and Levin in 1978 called the soldiers rule [9]. Due to a certain

self-stabilization property, the authors conjectured that a probabilistic perturbation

of the rule was nonergodic. In the continuous time community, a conjecture had

arisen which stated that all translation-invariant, �nite-range systems with positive
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transition rates were ergodic, also known as the positive rates conjecture [14]. This

conjecture was disproved in discrete time by G�acs in the early 1980's [11] using a

complicated hierarchical construction based on some ideas of Kurdyumov [21]. The

continuous time version has been recently advanced in [13]. A non-uniform solution

(i.e., non-uniform in both space and time) was given earlier by Zirelson [37]. Although

the ideas and structures underlying G�acs' construction are elegant, the construction

itself and its analysis is quite involved. Thus, even though the existence of compli-

cated nonergodic one-dimensional cellular automata has been demonstrated, it is not

clear whether more simple nonergodic automata exist or not, in particular, whether

the soldiers rule is nonergodic.

In this thesis, we prove that the soldiers rule under a biased error model is mixing,

and hence ergodic, and we give tight bounds on the relaxation time which captures

the �nite time convergence property of the system. We prove the same results for

a rule suggested recently by Toom called two-line voting [33]. This rule is similar

to the soldiers rule with respect to the deterministic self-stabilization property (also

called the eroder property), but is a little easier to handle due to its coordinate-

wise monotonicity. For this very reason, we will �rst prove the results in the case of

two-line voting, and then transfer the results to the soldiers rule. The monotonicity

property turns out to be inessential to our arguments.

The main technique employed in this thesis is based on the notion of sparsity

which was used earlier in the opposite context of proving nonergodicity [11]. In the

broader picture, this technology is related to renormalization and scaling in statistical

physics and percolation theory [8, 16]. Renormalization has been explored in the

interacting particle system context in [3]. The gist of the sparsity technique lies in

identifying properties of space-time processes that remain invariant across multiple

scales, and exploiting the self-similar or fractal1 structure to analyze|and in the

1Sparsity and renormalization techniques share the spirit of fractal geometry with respect to

modeling/analyzing natural and arti�cial systems, a paradigm expounded by Mandelbrot [24].
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nonergodicity context, to design|the dynamics of the system at hand. In this thesis,

we show that our error model induces space-time error patterns which obey a certain

self-similar property where errors are distributed \sparsely" in a scale-invariant way

with high probability. This, in turn, allows us to de�ne and analyze a self-similar

property of space-time con�gurations|k-blackishness|which can be shown to thrive

under k-sparse error conditions where k is a scale parameter. The technical di�culty

lies in �rst identifying a suitable set of scale-invariant properties, estimating their

probabilities, and analyzing the dynamics of the system across multiple scales via

recursive space-time arguments.

Next, we will give a concise introduction to cellular automata, leading up to the

statement of the main results. The remaining chapters will be concerned with their

proof.

1.1 Deterministic cellular automata

We de�ne here only one-dimensional nearest-neighbor cellular automata: the gen-

eralizations to several dimensions and larger neighborhoods are evident. A cellular

automaton CA(T;m) is given by a �nite set S of states, a local transition function

T : S3 ! S and a set Zm of sites, or cells. When m =1 then this set is Z, the set of

integers. In the �nite case, it is the set of remainders mod m. When m =1, we will

omit m from CA(T;m). When x is a site and r an integer, x + r will be understood

mod m. A space con�guration is a function � : Zm ! S. Let us de�ne the constant

con�gurations �s, s 2 S, where �s(x) = s for all x. In this thesis, we will restrict

ourselves to discrete-time cellular automata. Given a con�guration �, we will de�ne

the con�guration T (�) as

T (�)(x) = T (�(x� 1); �(x); �(x+ 1)); x 2 Z:

A space-time con�guration is a function � : Zm � Z+ ! S assigning a state to

each site at each nonnegative integer time t. A space-time con�guration � is an
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orbit of T if �(�; t + 1) = T (�(�; t)). By composition, �(�; t) = T t(�(�; 0)). An orbit

� of a deterministic CA is determined by its initial con�guration �(�; 0) and the

transition function. We will omit the words \space" and \space-time" and just refer

to a con�guration if its meaning is clear from the context.

A con�guration � is invariant with respect to a transition rule T if T (�) = �.

Two con�gurations �1, �2 are called equivalent with respect to T if there is a t � 0

such that T t(�1) = T t(�2). In [9], a con�guration � is called attractive if every other

con�guration � with f x : �(x) 6= �(x) g �nite, is equivalent to it. We add the

requirement that � be invariant. We call a transition function conservative if it has

non-equivalent periodic attractive con�gurations.

Toom de�ned conservative transition rules with state set f0; 1g whose attractive
con�gurations are the constant con�gurations �0, �1. These rules can also be viewed

as monotonic Boolean functions. An example is the north-east-center voting rule also

known as Toom's rule. In [9] some conservative one-dimensional cellular automata

were constructed. The simplest example, denoted by L and called the soldiers rule or

GKL rule after the originators G�acs, Kurdyumov, and Levin, is described as follows.

There are two states labeled �1 and 1. Imagine that each cell is a soldier with his/her

nose pointing left (�1) or right (1). The rule is not nearest-neighbor: it uses neighbors
up to a distance of 3. A compact description is given by

L(�)(x) = Maj(�(x); �(x+ �(x)); �(x+ 3�(x))): (1.1.1)

Thus, at each step, each soldier sets its state to the majority of the current state and

the states of its �rst and third neighbors found in the direction determined by where

his nose is pointing.

Theorem 1.1.2 The con�gurations ��1 and �1 are attractive. Moreover, if � is

any con�guration which di�ers from �1 (or ��1) on an interval of size n, then the

perturbation is corrected within a space-time rectangle of size at most 2n� (2n� 2).

This result in not too di�cult to prove and a proof can be found in [4]. The reader may
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�nd it interesting to verify that the con�gurations ��1 and �1 are indeed attractive and

why this is so. Figure 1.1.1 (bottom) shows a �nite black island being erased within

an initial con�guration of otherwise all white cells. The grayish region is actually

a space-time triangle of alternating �1 and 1, where the alternation occurs both in

space and time. At time 0, an alternating region is induced at the right boundary

of the black island which propagates with speed 1 in both directions. When the left

front of this growing region meets the stationary left boundary of the black island, it

gives rise to a growing front of the white region which travels with speed 3 eventually

catching up with the front of the alternating region.

Remark 1.1.3 In [25] and a number of related papers, genetic algorithms have been

used to generate rules with apparently similar properties.

In this thesis, we study the behavior of the GKL rule and a rule recently suggested

by Toom which is similar to L in its important properties, but a little easier to handle

due to its monotonicity. The new rule is called two-line voting [33] and is denoted by

K. The new set of states is S = f0; 1g2 and we represent a state as a 2-element bit

array indexed by �1; 1. The bottom bit of state s is s(�1), the top bit is s(1). For

j 2 f�1; 1g, the rule K is de�ned as follows:

K(�)(x)(j) = Maj(�(x)(�j); �(x� j)(j); �(x� 2j)(j)):

In words, a bottom (top) bit turns into the majority of its top (bottom) counterpart,

and its two nearest right (left) neighbors. Note that the state of the bit itself does

not participate in the vote. All the top bits of a con�guration � can be taken together

as the top track �(�)(1) and similarly for the bottom track �(�)(�1).

Theorem 1.1.4 (eroder) The con�gurations �00 and �11 are attractive. Moreover,

if � is any �nite perturbation which di�ers from �00 or �11 on an interval of size

n, then the perturbation is corrected within a space-time rectangle of size at most

(4n+ 4)� (3n=2 + 2).
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Figure 1.1.1: Space-time snapshots of deterministic eroder property: two-line voting

(top) and GKL rule (bottom). Time ows \downwards."
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Proof. Let � be an orbit. Without loss of generality (by translation invariance),

suppose that �(�; 0) di�ers from �00 only over the segment �n=2 � x < n=2. With

time, 0's slide into the interval [�n=2; n=2) from the right with speed 1 on the bottom

track and from the left on the top track. Once the front of the bottom 0's meets the

front of the top 0's, the 0's begin to extend outward on both tracks with speed 2,

catching up with the 1's that were sliding out with speed 1. Each of these claims can

be veri�ed by inspection of K. Also, note that this argument does not depend on

the values of �(x; 0) for �n=2 � x < n=2. The size of the error-correction space-time

rectangle (4n+4)� (3n=2+2) is attained when the perturbation is \worst-case," i.e.,

an island of all 1's, and this is easily checked by simple calculation. By symmetry, an

analogous argument holds for �11. �

Figure 1.1.1 (top) shows a �nite island of all black being corrected or erased within a

sea of all white. The two shades of gray represent the states 10 and 01, respectively,

with state 01 (the top row is 1) encoded as the darker shade. Notice that with K

both boundaries are nonstationary.

Remark 1.1.5 Two-line voting can be viewed as \hardwiring" the asymmetry of

the GKL rule (i.e., the dependence on a cell's state in determining its relevant

neighborhood|left or right) by introducing two additional states. As Leonid Levin

has pointed out, whereas in the GKL rule the decision from which neighborhood to

take the majority vote is determined by the state of the cell, in two-line voting it

is possible to interprete the top element of a site i as corresponding to the location

2i + 1 on Z and the botton bit being located at 2i, and by switching at every other

time step, the GKL rule can be seen to be embedded in two-line voting whereby the

\parity" is now the determining factor.
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1.2 Probabilistic cellular automata

1.2.1 Transition probabilities

A probability distribution � over the set of all con�gurations SZ is determined by its

values over the cylinder sets

�(s�n; s�n+1; : : : ; sn) � �f � : �(�n) = s�n; : : : ; �(xn) = sn g

for all n and all possible tuples (s�n; : : : ; sn) 2 S2n+1. A sequence �t of distributions

is said to converge (weakly) to a distribution � if for all vectors (s�n; : : : ; sn), the

numbers �t(s�n; s�n+1; : : : ; sn) converge to �(s�n; s�n+1; : : : ; sn). When it does not

lead to confusion we will denote � by \Pr". Probability measures over SZ
2

are de�ned

analogously. A probabilistic cellular automaton PCA(P; m) is de�ned by a transition

matrix which is an array of nonnegative numbers

(P(s j u; v; w))s;u;v;w2S
with

P
sP(s j u; v; w) = 1. A random space-time con�guration � is an orbit of this

automaton if from time t to time t + 1, each cell x makes a transition to state s

independently of all the others with probability

P(s j �(x� 1; t) = u; �(x; t) = v; �(x+ 1; t) = w); s; u; v; w 2 S:

Note that a deterministic transition function T de�nes a special transition matrix with

P(s j u; v; w) = 1 for s = T (u; v; w), and 0 otherwise. If we have P(s j u; v; w) � 1�"
for s = T (u; v; w) then we will say that P is an "-perturbation of T , and PCA(P) is
an "-perturbation of CA(T ). For a random orbit �, let �t denote the distribution of

�(�; t). Then �t obeys the following recursive de�nition:

�t+1(s�n; : : : ; sn) =
X

(r�n�1;::: ;rn+1)

�t(r�n�1; : : : ; rn+1)
nY

i=�n

P(si j ri�1; ri; ri+1):

The above de�nition can also be written as �t+1 = P�t where P is a linear operator

giving �t = P t�0. A probabilistic cellular automaton is a discrete-time Markov

process. If the set of cells is �nite then the PCA de�nes a �nite-state Markov chain.
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1.2.2 Ergodicity and mixing

A distribution � over con�gurations is called invariant if P� = �. We call a PCA

ergodic if it has only one invariant distribution. An ergodic PCA is mixing if for

every probability measure �, the sequence P t� of measures converges to the invariant

distribution. Let us call

min
u;v;w;s

P(s j u; v; w)

the noise lower bound. The cellular automaton is called noisy if the noise lower

bound is positive. It is a textbook result that noisy �nite Markov chains are mixing.

However, there are examples of noisy in�nite cellular automata that are not even

ergodic.

For a mixing probabilistic cellular automaton, it is justi�ed to say that the au-

tomaton cannot remember even a single bit of information for an unbounded time.

Indeed, since the distribution over the con�gurations converges to the invariant one,

all information about the initial distribution is eventually lost. On the other hand,

a nonergodic cellular automaton clearly keeps at least one bit of information since

it can be started up in two di�erent initial invariant measures and this di�erence is

preserved forever.

Remark 1.2.1 At this time, it is not known whether for in�nite noisy cellular au-

tomata ergodicity implies mixing. In the interacting particle systems literature, er-

godicity is de�ned to include the requirement of mixing.

1.2.3 Relaxation time

Since �nite noisy cellular automata are all mixing, it needs some justi�cation that we

want to investigate the problem at all|in practice, many systems are �nite. Let us

introduce the notion of relaxation time. De�ne the following distance between two
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distributions:

dn(�; �) =
X

s2S2n+1

j�(s)� �(s)j:

Clearly, 0 � dn(�; �) � 2. Let L(m;S) denote the set of all possible distributions

over con�gurations where m is the �nite or in�nite space size. Let

Dn(t; P;m) = sup
�;�2L(m;S)

dn(P
t�; P t�): (1.2.2)

Let �� be the distribution that assigns probability 1 to the con�guration �. It is easy

to see that the supremum in Dn is already achieved over measures �; � of the form

��. It is also easy to see that P is mixing over a space of size m i� Dn(t; P;m)& 0.

The relaxation time is de�ned as

Relax(n; %; P;m) = minf t : Dn(t; P;m) < % g:

It is obviously an increasing function of n (de�ned only for n � (m � 1)=2) and a

decreasing function of the accuracy parameter %. We may omitm from the arguments

if it is 1, i.e., Relax(n; %; P ) � Relax(n; %; P;1). We will also omit P if it is clear

from the context. Relaxation measures the rate of information loss: it shows how

long we have to wait until it is guaranteed that no matter what initial con�guration

we started from, on segments of length 2n+ 1, the distribution comes to within % of

the unique invariant distribution. The following fact is easy to prove.

Fact 1.2.3 For all n < (m� 1)=2, % with Relax(n; %; P ) < (m� 1)=2� n, we have

Relax(n; %; P;m) � Relax(n; %; P ):

This implies that if P is mixing over the in�nite space then increasing the �nite space

size m does not increase the relaxation time signi�cantly for any �xed n. In each

segment of length 2n + 1 of any �nite space, information is being lost during the

evolution at least as fast as in the in�nite space. On the other hand, if P is not

mixing over the in�nite space then this is not necessarily so. Indeed, in the known
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examples of in�nite non-ergodic PCA [32],[11] and the ones derived from them, for

any �xed n and %, the relaxation time grows exponentially with the size m of the

�nite-space version.

Remarks 1.2.4

1. In �nite Markov chains, speed of convergence to equilibrium can be measured

by the second-largest eigenvalue �2 of a certain matrix; i.e., the relaxation time

can be estimated by 1=(1 � �2) (see, e.g., [1]). In certain reversible Markov

chains arising in combinatorial optimization, the quantity called \conductance"

was found useful for estimating 1 � �2 [28]. The exponential growth in m

of the relaxation time of the above systems means therefore that their �2 is

exponentially close to 1.

2. Even when Relax(n; �; P ) is �nite, if it grows very fast with n this may make

information storage practical even in mixing cellular automata.

1.3 A brief history

Su�cient criteria for mixing in terms of noise lower bounds were introduced in a

number of papers in the early 1970's by Dobrushin, Shlossman and others: see [23] for

a reference. Nonergodic noisy cellular automata were �rst constructed by Andre Toom

in the mid 1970's [32]. These automata had dimension � 2. Toom's conservative 2-

dimensional north-east-center voting is one such example. The di�cult part of Toom's

result is the theorem stating that for a monotonic transition rule F with state set

f0; 1g, an attractive con�guration �s remains attractive (in a certain probabilistic

sense) under any su�ciently small perturbation of F .

There is no one-dimensional two-state monotonic rule with �0, �1 as attractive

con�gurations, and therefore Toom's theorem cannot be used to exhibit a one-

dimensional nonergodic noisy cellular automaton. The soldiers rule mentioned above



14

is conservative but not monotonic. The two-line voting rule is conservative, monotonic

but has more than two states. Moreover, it is really monotonic only as a function

of the individual bits in its states (i.e., monotonic in the sense of the natural partial

ordering of its states). Still, these rules appear to have better error-correction prop-

erties than local majority voting. This has prompted some e�orts to test the rule

experimentally. Unless the error probability is very large it seems practically impos-

sible to wait until a random orbit breaks away from �s. Nonetheless, the perturbed

rule is believed by many researchers to be ergodic since if a large island of opposite

bits is created arti�cially, then its tendency to disappear is negligible.

For a while, it had been conjectured that all one-dimensional noisy cellular au-

tomata are mixing, also known as the positive rates conjecture. The conjecture could

be based on the following reasoning. Suppose, for simplicity, that �u and �v are two

initial con�gurations that we want to remember where u 6= v. Suppose that we started

in �u. Then, in the very �rst step, with probability "2n+1 an island of size 2n + 1 of

v's arises around site 0. Now, the cells well inside the island will behave as if they

came from �v while the cells at the boundary will have no way of determining whether

they should behave as if they came from �u or from �v. The rules L and K essentially

send \signals" in both directions outward from the meeting point of two islands. If a

signal reaches the other end of the island it starts a higher-speed process that catches

up with the signal running in the other direction. Random errors, however, will stop

such signals within an essentially constant distance. Apparently, therefore, with all

simple rules the boundary of such a big island will just uctuate randomly like a

symmetric random walk. This uctuation takes so long to erase the island (in�nite

expected time) that in the meantime many other islands arise. Figure 1.3.1 shows

the uctuating boundaries2 of K" (top) and L" (bottom), respectively.

The positive rates conjecture in discrete time was refuted in [11] by a complex

2Boundary processes that partition a medium into two stable regions are sometimes called inter-

faces in physics.
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Figure 1.3.1: Space-time snapshots of sample path of "-perturbation: two-line voting

(top) and GKL rule (bottom). Time ows \downwards."
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construction supporting a certain hiearchical pattern. (See also [12] for a hierarchy

supporting 2-dimensional computation.) Some form of hierarchical behavior seems

necessary for non-ergodic one-dimensional cellular automata to overcome the volatil-

ity of simple conservative rules in the presence of random errors outlined above. It

is not even clear, however, how \hierarchical behavior" should be de�ned in general.

The simplest one-dimensional rules that seem to have some error-correction capability

are the local majority vote rules. In the continuous-time context, Gray proved that

these rules are mixing [14]. The discrete time case is technically more di�cult but

Gray has outlined a proof of the mixing property for local majority voting in [15].

1.4 New results

This thesis is a contribution in the direction of showing that one-dimensional rules,

without some form of hierarchical behavior, fail to conserve information. We de�ne

a special perturbation K";� of the rule K, for 0 � � � 1 as follows. Let

�(x; t+ 1)(j) = K(�(x� 2; t); �(x� 1; t); �(x; t); �(x+ 1; t); �(x+ 2; t))(j) (1.4.1)

with probability 1�". With probability �" the bit �(x; t+1)(j) turns into 0 (or stays

there if it was 0 to begin with), and it is set to 1 with probability (1��)". Thus, the

smaller � > 0, the greater the bias in favor of 1's.

Similarly for L";� where �(x; t+1) obeys the deterministic transition L with prob-

ability 1 � "; with probability �" it sets its state to 0 and with probability (1� �)"

�(x; t+ 1) is set to 1.

Theorem 1.4.2 There exist 0 < �� < �� < 1 such that 8� 2 [0; ��) [ (��; 1],

8" 2 (0; 1], K";� and L";� are mixing.

The strong bias is a weak point since it does not preclude the possibility that for

� � 1=2, K";� and L";� are nonergodic. On the other hand, the mixing property holds

for any positive error probability " > 0, and the bias assumption makes it possible
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to apply \renormalization" methods used earlier in the opposite context of proving

fault-tolerance [10]. Referring back to the informal argument above on why simple

noisy automata should be mixing, the boundaries of a large island of 1's that arise

randomly will not just uctuate but will expand with a certain speed, eventually

taking over the whole space making it look \blackish." Thus it corresponds to a

random walk with drift.

Even though the PCA considered here are mixing there is a way to express the

fact that they keep information much better than local voting. To measure these �ner

di�erences we use relaxation time. It is easy to see that if V is a local voting rule

and V" any of its "-perturbations, then Relax(n; %; V") = 
((1=")2). It is possible to

deduce from the proofs in [14], [15] that in continuous time, if V" is any "-perturbation

of a local voting rule V with noise lower bound ", then Relax(n; %; V") = O((1=")2).

Widening the neighborhood will increase the relaxation time to (1=")c for some c > 2

but its logarithm will still be linear in log(1="). Experiments in [4] let the authors

conjecture that for some "-perturbations L" of L, the log relaxation time is 
(1=").

Theorem 1.4.3 There exist 0 < �� < �� < 1, "0 > 0 such that 8� 2 [0; ��)[(��; 1],
8" < "0,

logRelax(n; %;K";�) = �(log2(1=")):

Similarly for Relax(n; %; L";�).

Thus, the log relaxation time grows indeed faster than log(1="). However, with biased

errors, it grows much slower than 1=".

Remarks 1.4.4

1. We actually prove that the lower bound holds for any 0 < � < 1. The expression

of the upper bound is also independent of � but not its proof: after showing

that all-black islands of a certain size arise in time 2c log
2(1=") with constant

probability, we need to make use of the mixing property (which depends on
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�) to be able to say how those islands behave subsequently. We note that the

relaxation time result depends on " being small.

2. The dependence of the relaxation time on n is of auxiliary interest and it will

be investigated elsewhere. We believe the dependence is logarithmic but the

lower bound argument is yet incomplete.

The rest of the thesis is organized as follows. In the next chapter, we will outline the

structure of the proof of the mixing property (Theorem 1.4.2) in the two-line voting

case. This is followed by Chapter 3 which gives the proofs of the various components.

Chapter 4 proves the lower bound and upper bound of the relaxation time. Chapter 5

gives the analogous results and proofs for the GKL rule, �rst with respect to mixing

followed by the lower and upper bounds on the relaxation time. We conclude with a

discussion of our results and future work.



Chapter 2

Proof structure of mixing

property: two-line voting

2.1 Coupling

Let P be the operator of a PCA. According to what was said after the introduc-

tion of Dn in (1.2.2), the mixing property is equivalent to saying that for any two

con�gurations �1; �2, the expression

dn(P
t��1 ; P

t��2) (2.1.1)

converges to 0 as t ! 1 for all n. If �i is a random orbit with �i(�; 0) = �i then

the distribution of �i is P
t��i and (2.1.1) compares these two distributions over the

interval [�n; n] of sites. A joint distribution for the processes �1, �2 will be called a

coupling of �1 and �2. Couplings obviously exist, e.g., we can make the two processes

independent. Let

D0
x(t) = sup

�1;�2

inf Pr(�1(x; t) 6= �2(x; t))

where the in�mum goes over all couplings of orbits �1 and �2 with �i(�; 0) = �i. It is

easy to see that limt!1D0
x(t) = 0 implies mixing. Intuitively, this condition says that

there are random orbits �i with the initial con�gurations �i and a joint distribution,

19



20

such that with time, the probability of �1(x; t) = �2(x; t) converges to 1. Thus, not

only do the distributions become more and more equal but the sample paths of the

random orbits become equal, too.

Let us return to the probabilistic cellular automaton K";�. We will de�ne not

just two random orbits but for each initial con�guration �, we de�ne an orbit ��

with ��(�; 0) = �, with a joint distribution for all these random orbits simultaneously

by a method called basic coupling (see, e.g., [15]). First, for all x; t, j = �1; 1,
we independently toss a coin Ex;t;j which is 0 with probability 1 � " and 1 with

probability ". This is followed by a coin Bx;t;j which is 1 with probability 1�� and 0

with probability �. Now, for each � = �� we proceed as follows. Suppose that �(�; t)
is de�ned up to t. We will de�ne it for t + 1. If Ex;t+1;j = 1 then the de�nition uses

(1.4.1). Otherwise, �(x; t + 1)(j) = Bx;t+1;j. It is easy to check that this is indeed a

coupling and due to the monotonicity of the rule K, the following relation holds: if

�1 � �2 (pointwise) then ��1 � ��2 . Therefore we have

��00(x; t) � ��(x; t) � ��11(x; t):

In other words, all other processes �� are \squeezed" between the processes ��00 and

��11 with the constant initial con�gurations �00, �11. Put �0 = ��00, �1 = ��11 . It

follows that for mixing, it is su�cient to establish

lim
t!1

Pr(�0(x; t) = �1(x; t)) = 1:

In words: we will establish that the process starting from all 0's becomes equal, with

large probability, to the process starting from all 1's.

Remark 2.1.2 With a slight abuse of notation, we will use �� to denote both the ran-

dom process proper (i.e., random orbit) as well as its sample path. The interpretation

should be clear from the context.
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2.2 Spreading of agreement and blackishness

It is not too di�cult to prove the following fact (see, e.g., [14]):

Proposition 2.2.1 If there is a �1 > 0 such that 8n 2 N, 9t0 > 0, 8t > t0

Pr(�0(x; t) = �1(x; t); �n � x � n) > �1; (2.2.2)

then K";� is mixing.

We will prove (2.2.2) in the following way. Let E0(n; t) be the event that �0(x; t) = 11

for x 2 [�n; n], and let E1(n; t) =
S

t0�t E0(n; t0).

Lemma 2.2.3 There are c0; �2; "0 > 0, such that 8t � 0, 8" < "0,

Pr(�0(x; t) = �1(x; t); �t=2 � x � t=2 j E1(c0"�1=2; t)) > �2:

This lemma says that if we start from a su�ciently large island of 11 then the (prob-

able) equality of �0; �1 will spread with speed 1=2 in both directions into the cone

f (x; t) : �t=2 � x � t=2; t � 0 g:

The lemma implies the su�cient (and necessary) condition for mixing of Propo-

sition 2.2.1 with �1 = �2 Pr(E1(c0"�1=2; T )) where it is su�cient that T satisfy

T � "�2c0"�1=2

since Pr(E1(c0"�1=2; T )) % 1 as T ! 1 and E1(c0"�1=2; T ) has constant probability

lower bound for T � "�2c0"�1=2. Since the cone of agreement spreads with speed 1=2

in both directions, the time lower bound in Proposition 2.2.1 is given by

t0 > T + 2n:

Remark 2.2.4 We note that �1 need not be constant for Proposition 2.2.1 to hold.

It is su�cient that �1(") be a function of ". However, in Section 4.2 we will show

a much tighter bound on T in connection with establishing an upper bound on the

relaxation time.
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The reason that the two processes become equal is, alas, simple: they both become

\largely" 11 (i.e., �0 becomes largely 11 and by the monotonicity of basic coupling,

�1 has even more 1's). The precise notion of \largely 11" is called k-black. This

concept is similar to the ones used in [11], [10] and [12]. The de�nition will be given

later; let us just mention that as k increases the level of \blackishness" decreases. Let

us de�ne a trapezoid with parameters y; z; u; v; q as the set

f (x; t) : u � t � v; y � q(t� u) < x < z + q(t� u) g:

For a trapezoid R with these parameters and b � 0, let R(b) be the trapezoid with

parameters y+ b; z� b; u+ b; v; q. Let Ri be given by (yi; zi; ui; vi; qi) for i = 1; 2. We

will say that (R1; b1) is forward-linked to (R2; b2) if

Z� [�1; u2 + b2] \R2 � R1(b2=2):

Lemma 2.2.3 will be implied by the following two lemmas, both of which depend

on a sequence bk and sequence of trapezoids Rk extending into the future which will

be de�ned later for k = 0; 1; : : : in such a way that

(i) (Rk; bk) is forward-linked to (Rk+1; bk+1),

(ii) f (x; t) : �t=2 � x � t=2 g � Sk Rk(bk).

Lemma 2.2.5 (agreement) If �0; �1 are k-black on trapezoid Rk, then we have

�1(x; t) = �0(x; t) for all (x; t) 2 Rk(bk).

Lemma 2.2.6 (stacked blackishness) There are c0; � > 0 such that for all " > 0,

i 2 f0; 1g,

Pr
� 1̂

k=0

�i � Rk is k-black
��� E0(c0"�1=2; 0)

�
> �2:
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Figure 2.2.1: Forward-linked trapezoids Rk�1, Rk, Rk+1 in space-time. The enclosed,

shaded trapezoids represent regions of agreement Rk�1(bk�1), Rk(bk), Rk+1(bk+1).

In words, Rk forms a sequence of trapezoids in which blackishness prevails at level

k, whereas the sequence Rk(bk) � Rk is a further restriction on which the coupled

processes �0, �1 agree. Figure 2.2.1 shows trapezoids Rk�1, Rk, Rk+1 forward-linked

in space-time, with their enclosed trapezoids Rk�1(bk�1), Rk(bk), Rk+1(bk+1) shown

shaded. Figure 2.2.1 is only a schematic depiction and is not drawn to scale. Forward-

linkedness assures that the space-time region of agreement expands without interrup-

tion, and it also provides an overlap needed in the proof of Lemma 2.2.6.

Lemma 2.2.5 is proved by induction in Subsection 3.2. Lemma 2.2.6 will be proved

by showing how blackishness is propagated from Rk to Rk+1. For this, a sequence

Sk � Rk of space-time squares and a property of the error pattern called \k-sparsity

with black-bias" is used which is de�ned later. Intuitively, k-sparsity (with black-

bias) means that there are many errors introducing 1's and few errors introducing

0's. The degree of the bias is determined by the parameter �; however, � does not

contribute to the de�nition of sparsity which is purely a combinatorial property. The

strictness of this condition is governed by the parameter k which becomes weaker with
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S

R
k+1

k+1

SkR k

Figure 2.2.2: k-sparse and (k + 1)-sparse space-time squares Sk, Sk+1 enclosing

forward-linked k-black and (k + 1)-black trapezoids Rk, Rk+1.

the increase in k. k-sparsity of Sk will allow us to conclude that �i � Rk is k-black,

i = 0; 1.

Remarks 2.2.7

1. When we say that a space-time set A is k-sparse, we mean that it is k-sparse

with respect to the error process de�ned in Section 3.1.

2. The symbol \�" denotes restriction. That is, given a function f : A ! B and

C � A, f � C is the partial function taking on the same values as f but being

de�ned only on C.

The following two lemmas will �nish the proof.

Lemma 2.2.8 (stacked sparsity) There exists � < 1=2 such that for all " > 0,

Pr
� 1̂

k=0

Sk is k-sparse with black-bias �
�
> �2:

Lemma 2.2.9 (inheritance)

(a) There is a c0 such that if E0(c0"�1=2; 0) holds and S0 is 0-sparse then �i � R0 is

0-black, i = 0; 1.
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(b) For all k 2 N, i 2 f0; 1g, if �i � Rk is k-black and Sk+1 is (k + 1)-sparse then

�i � Rk+1 is (k + 1)-black.

Lemma 2.2.8 is proved by upper-bounding the probability that Sk is not sparse. It is

a consequence of Lemma 3.1.2 proved in Subsection 3.1. The proof of Lemma 2.2.9

is the main technical task. Part (a) will be implied by Lemma 3.2.4 and part (b) is

proved in Subsection 3.2 by reducing it to Lemma 3.2.2.



Chapter 3

Sparsity and blackishness

3.1 Sparsity

Let us look at the independent coin tosses Ex;t;j; Bx;t;j de�ned in Subsection 2.1 gen-

erating the random orbits ��. We will say there is an error at (x; t) if Ex;t;j = 1

for some j. It is a bad error at j if Ex;t;j = 1 ^ Bx;t;j = 0, and a good error at j if

Ex;t;j = Bx;t;j = 1. That is, a bad error sets its bit to 0, while a good error for j sets its

bit to 1. Note that an error does not necessarily result in a state that is di�erent from

the one dictated by the deterministic cellular automaton rule. We will say that the

set of errors is \sparse" (with black-bias) if the bad errors are few and the good errors

are plentiful. More importantly, space-time regions where this condition is violated

must be \well-separated," and this property must be preserved in a scale-invariant

way. Let c1; c; d be positive constants to be de�ned later. Let

W` = [0; `)� [0; `);

rk = c1"
�1=2ck(k!)2;

where k = 0; 1; 2; : : : and ` > 0.

De�nition 3.1.1 (sparsity) The error process (Ex;t;j; Bx;t;j)x;t;j is 0-sparse with

black-bias over the space-time set A if there are no bad errors in A and for all squares

26
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B of the form (s; t) + Wr0 , if B � A, then there exists a good error site for some

j 2 f�1; 1g in B.

For k � 1, the error process is k-sparse with black-bias over A if for all squares

B of the form (s; t) +Wrk there exists (s0; t0) such that A \ B n (s0; t0) +W3rk�1 is

(k� 1)-sparse. We will call the error process strictly k-sparse if it is k-sparse but not

(k � 1)-sparse.

Lemma 3.1.2 (sparsity) 8c > 1, 9C1 > 0, 0 < �0 < 1=2 such that 80 < � < �0,

0 < " � 1, c1 > C1, k 2 N , the following holds. Let � denote an "-perturbation of K,

K";�. Let A =
S

i2[1;N ] (ai; bi) +Wrk , ai; bi 2 Z, where � � A is de�ned. Let qk be the

probability that � is not k-sparse on A. Then

qk < N2
k�1+(k+1)=2

where 0 <  < 1 is a constant depending only on c.

Proof. The proof goes by induction on k. Let k = 0. For any window W i =

(ai; bi)+Wr0, consider the probability that � is not 0-sparse onW
i. Since r0 = c1"

�1=2,

Pr(� is not 0-sparse on W i) � 2(c1"
�1=2)2"� + (1� "(1� �))2(c1"

�1=2)2

� 2c21� + e�2c21(1��) < ;

where the last inequality holds for c1 su�ciently large and � su�ciently small. Hence

q0 < N which equals the probability bound with k = 0.

Assume the relation holds for k > 0. For i; j 2 f0; 1g, de�ne partition Pi;j of A

as follows:

Pi;j = fA \ rk+1(2s+ i; 2t+ j) +W2rk+1 : s; t 2 Z g:

Each (al; bl) +Wrk+1 is intersected by at most four elements of Pi;j, hence jPj � 16N

where P =
S

i;j Pi;j. Suppose there exists B = (a; b) + Wrk+1 such that � is not

(k + 1)-sparse on A \ B, A \ B 6= ;. Since A \ B � V for some V 2 P, � is not
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(k + 1)-sparse on V . Thus,

qk+1 � 16Nq0 (3.1.3)

where q0 = Pr(� is not (k + 1)-sparse on V ).

Partition V as before but with rk in place of rk+1. Denote the four partitions

by Ri;j, i; j 2 f0; 1g, and let R =
S

i;jRi;j. Since rk+1=rk = c(k + 1)2, jRi;jj �
(c(k + 1)2 + 1)2. Consider the event E : there exist U; U 0 2 R, U \ U 0 = ;, such that

� is not k-sparse on U and U 0.

Claim q0 � Pr(E).

Proof: We will prove the contrapositive: :E =) � is (k+1)-sparse on V . Suppose

:E . That is, if U; U 0 2 R and � is not k-sparse on U and U 0, then U \ U 0 6= ;.
In particular, if we �x U , then all elements of R on which � is not k-sparse must

intersect with U as well as with each other. By de�nition of Ri;j, 8U; U 0 2 R with

U \ U 0 6= ;, there exists (a; b) 2 Z
2 such that U; U 0 � (a; b) +W3rk . (a; b) +W3rk

covers all elements of R on which � is not k-sparse, and by containment, any rk-

window in V on which � is not k-sparse. Hence � is k-sparse on V n (a; b) +W3rk

implying � is (k + 1)-sparse on V . N

By independence, Pr(� is not k-sparse on U and U 0) � q002 where U; U 0 2 R, U\U 0 =

;, and q00 = Pr(� is not k-sparse on A \ (s; t) +W2rk). Since the total number of

disjoint pairs in R is strictly less than jRj2,

q0 � Pr(E) < 16(c(k + 1)2 + 1)4q00
2
:

Using (3.1.3) and the inductive hypothesis on q00,

qk+1 � 16Nq0 < 162N(c(k + 1)2 + 1)442q2k

� 162N(c(k + 1)2 + 1)42(2
k�1+(k+1)=2)

= 163(c(k + 1)2 + 1)4k=2N2
k+(k+2)=2:
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Clearly, for  su�ciently small, 163(c(k + 1)2 + 1)4k=2 < 1; k � 1; which completes

the proof. �

Let us de�ne the sequences Rk, bk, and Sk for k 2 N . First, bk = drk where

d = 100 is a constant used in the de�nition of k-black in Section 3.2. The trapezoid

Rk = (yk; zk; uk; vk; qk) is given by

zk � yk = (50 + 2d)rk;

vk � uk = (80 + 3d) rk+1;

qk = 1=2 + 1=(k + 2:5):

Based on where R0 is located in space-time, Rk is placed such that it is forward-

linked to Rk�1 for k � 1. In particular, for k � 0, if yk = �(25 + d)rk and zk =

(25 + d)rk � 1 (i.e., centered around site 0), then yk+1 = �(25 + d)rk+1, zk+1 =

(25 + d)rk+1 � 1, and uk+1 = vk � bk+1.

Given Rk, Sk is the space-time rectangle of size

(400 + 15d)rk+1 � (80 + 3d)rk+1

such that Rk � Sk is centered within Sk (see Figure 2.2.2). Since rk+1=rk = c(k+1)2,

Sk can be expressed as the disjoint union of (400+15d)(80+3d)c2(k+1)4 space-time

windows Wrk .

Proof of Lemma 2.2.8. We will show that Lemma 3.1.2 =) Lemma 2.2.8. To lower-

bound Pr(
V1

k=0 Sk is k-sparse with bias �), let us upper-bound the probability of its
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complement event Pr(9k : Sk is not k-sparse with bias �).

Pr(9k : Sk is not k-sparse with bias �) �
1X
k=0

Pr(Sk is not k-sparse with bias �)

<
1X
k=0

N0(k + 1)42
k�1+k=2+1=2

=
1X
k=0

N0
2k�1+k=2+1=2�� log(k+1)

<
N0

1� 
< 1� �2

where � = �4= log , N0 = (400 + 15d)(80 + 3d)c2, and we have used Lemma 3.1.2

with N = N0(k + 1)4 for each k � 0. For  su�ciently small, � < 1=2, and the last

two inequalities hold. �

3.2 Blackishness

Whereas sparsity describes the combinatorial structure of errors occurring in a sample

path of an "-perturbation, blackishness is a property of the sample path capturing

the fact that sparse errors are \corrected" locally in space-time, preserving the black-

ishness property.

De�nition 3.2.1 (blackishness) A space-time con�guration � is 0-black over A �
Z�N if �(x; t) = 11 for all (x; t) 2 A. For k � 1, � is k-black over A if for all squares

B of the form (s; t) +Wrk�2drk�1 there exists (s
0; t0) such that � is (k � 1)-black over

A\B n (s0; t0) +Wdrk�1 . We will call � � A strictly k-black if � � A is k-black but not

(k � 1)-black.

Notice that a slightly smaller window size rk � 2drk�1 is used for separating non-k-

black squares in space-time. In essence, we will show that the e�ects of 3rk�1-size

bad errors are corrected and contained within a space-time window of size drk�1.
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Tk

Tk
’

Uk

.
k-continuation
reference point

Figure 3.2.1: Depiction of Expansion Lemma with trapezoids Tk, T 0
k , Uk and k-

continuation reference point.

Lemma 3.2.2 (expansion) Let �k = 1=2 + 1=(k + 2:5). Let Tk = (0; wk; 0; hk; �k)

be a trapezoid where w0 � 50r0, h0 = 280r0, and wk � rk, hk = 3rk for k > 0. Let

T 0
k = (��khk; wk + �khk; hk; hk + h; �k)

where h � 0. Let Uk = (�2rk; wk + 2rk; 0; hk + h; 1). Then, 8� 2 SZ,

�� � Tk is k-black ^ Uk is k-sparse =) �� � (Tk [ T 0
k ) is k-black:

The Expansion Lemma is the main technical lemma. It states that k-sparse errors

are not able to impede the expansion of a su�ciently large k-black region. We will

say that �� is a k-continuation at (��khk; hk) with width wk + 2�khk and extension

h. Notice that this completely determines Tk, T 0
k , and Uk. We will call Tk the context

of the k-continuation. A pictorial depiction is given in Figure 3.2.1.

The proof of the Expansion Lemma goes by induction on k. First, we will prove

a simple fact which will be referred to frequently in later proofs.

Proposition 3.2.3 (speed-of-light) Let �(x) = �0(x) for 0 � x < ` where ` > 0,

�; �0 2 SZ. Then

��(s; t) = ��
0

(s; t); (s; t) 2 A;
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where A = f (s; t) : 2t � s < `� 2t; t > 0 g.

Proof. Note that by coupling ��; ��
0

share the same errors. Let At = f (s; t) : 2t �
s < `� 2t g, t > 0. Clearly,

At+1 � At

with At = At+1 i� At = ;. Let t0 be the minimum t such that At = ;. The proof

goes by induction on t. Assume t = 1. If A1 = ; we are done. For all (s; 1) 2 A1,

��(x; 0) = ��
0

(x; 0) for (x; 0) 2 N (s; 1);

where N (s; 1) = f (s� 2; 0); (s� 1; 0); (s; 0); (s+ 1; 0); (s+ 2; 0) g. Hence, ��(s; 1) =
��

0

(s; 1). Assume the statement holds for 1 < t < t0 � 1. By the same argument,

��; ��
0

must agree on At+1. �

The proposition states that a signal cannot travel faster than the neighborhood size,

i.e., \speed-of-light" (SOL) which is 2 in the case of two-line voting and 3 in the case

of the GKL rule.

Lemma 3.2.4 (bootstrap) Let ' be a sample path of K";� such that '(s; 0) = 11

for s 2 [0; `) where ` � 50r0. Let the trapezoid (�2r0; ` + 2r0; 0; h; 1) be 0-sparse.

Then ' � K is 0-black where

K = f (s; t) : 14r0 � t � s < `� 14r0 + t; 0 � t < h g:

The Bootstrap Lemma says that a black island of su�cient size expands with speed 1

in both directions when subject to 0-sparse errors. We will prove Lemma 2.2.9 using

the Expansion Lemma and the Bootstrap Lemma.

Proof of Lemma 2.2.9. Lemma 3.2.4 =) Lemma 2.2.9 (a). Consider a sample

path ' of K";� with E0(c0"�1=2; 0) where c0 = (80 + 2d)c1. Let K(`) denote the

trapezoid in Lemma 3.2.4 with width `, height h = (80 + 3d)r1, centered at 0. Since
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R0 = (y0; z0; u0; v0; 0:9) where

z0 � y0 = (50 + 2d) c1"
�1=2;

v0 � u0 = (80 + 3d) r1;

R0 � K(c0"�1=2). S0 is 0-sparse and its width (400 + 15d)r1 satis�es the width

requirement in the supposition of Lemma 3.2.4:

(50 + 2d)r0 + 4(80 + 3d)r1 < (400 + 15d)r1:

Hence, ' � K(c0"�1=2) is 0-black which by containment implies ' � R0 is 0-black.

Lemma 3.2.2 =) Lemma 2.2.9 (b). Since Rk being k-black trivially implies it is

(k + 1)-black, the implication holds if (Rk; bk) being forward-linked to (Rk+1; bk+1)

satis�es the supposition of Lemma 3.2.2. Let k = 0. Part (a) has shown that ' � R0

is 0-black. By the de�nition of forward-linkedness, it is easily checked that ' is a

1-continuation at (y1; u1) with width z1 � y1 and extension v1 � u1. Hence, ' � R1 is

1-black. Since v1 � u1 = (80 + 3d)r2 and the expansion factor is at least 1=2 in both

directions, the width of R1 at time v1 is at least (80 + 3d)r2. The previous argument

applies to any k > 0 which carries the induction step. �

3.3 Spreading of blackishness

Proposition 3.3.1 Let ' be an orbit of K with initial condition '(0; 0) = 11,

'(s; 0) = 01, for s 6= 0. Let �l; �r : N ! Z denote the endpoint processes of the

maximum interval [�l(t); �r(t)] such that

'(s; t) =

8<
:

11 if s 2 [�l(t); �r(t)];

01 otherwise.

Then, �l(t) = �2t and �r(t) = �t.

Proof. Let t = 0. Clearly, �l(0) = �r(0) = 0. Assume the relations hold for t > 0.

Consider the space-time points (�2t�2; t+1), (�2t�1; t+1), and (�t; t+1). By the



34

action of K, '(�2t�2; t+1) = '(�2t�1; t+1) = 11, and '(�t; t+1) = 01. All other

sites remain unchanged. Hence, �l(t+ 1) = �2(t + 1) and �r(t+ 1) = �(t + 1). �

We will refer to this deterministic expansion process as a left-moving black cone. By

symmetry, if 01 is replaced by 10, the statement holds with �l(t) = t, �r(t) = 2t. We

will call this a right-moving black cone. It may help to think of all-01 or all-10 space

con�gurations as being \unstable" in the sense that even a single good (bad) error

will give rise to a left (right)-moving black (white) island traveling with speed 2 at

the front and trailing with speed 1 in the back.

Proof of Lemma 3.2.4. We need to show that (a; b) 2 K =) '(a; b) = 11. First,

de�ne four boundary processes �l1; �
l
2; �

r
1; �

r
2 : N ! Z [ f1g as follows:

�l1(t) = maxf s 2 Z : '(i; t) = 00; i � s g;

�r1(t) = minf s 2 Z : '(i; t) = 00; i � s g;

and [�l2(t); �
r
2(t)] is the maximum interval containing the point (`=2; t) such that

'(s; t) = 11 for s 2 [�l2(t); �
r
2(t)]:

Clearly, �l1(0) � 1, �l2(0) � 0, �r2(0) � `� 1, and �r1(0) � `. If no errors occur, it can

be easily checked by induction

�l1(t) � �1� t; �l2(t) � t;

�r2(t) � `� 1� t; �r1(t) � `+ t;

for t < `=2. Moreover, '(s; t) 2 f10; 11g for �l1(t) < s < �l2(t), and '(s; t) 2 f01; 11g
if �r2(t) < s < �r1(t).

Let (a; b) 2 K. Without loss of generality (by symmetry), we may consider only

those points with a � 0. If a 2 [�l2(t); �
r
2(t)], then '(a; b) = 11 and we are done. Let

us de�ne a cone T emanating from (a; b) and going in backwards in time:

T = f (s; t) : �(t� b) + a � s � �2(t� b) + a g:
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If '(s; t) 2 f01; 11g for all (s; t) 2 T and '(s; t) = 11 for at least one (s; t) 2 T , then

by Proposition 3.3.1, this gives rise to at least one left-moving black cone emanating

from T , call it C, and (a; b) 2 C. Let us consider T 0 � T given by

T 0 = f (s; t) 2 T : s < �r1(t) g:

It follows that '(s; t) 2 f01; 11g for all (s; t) 2 T 0, and it su�ces to show that

'(s; t) = 11 for some (s; t) 2 T 0.

Claim There exists (x; y) such that (x; y) +Wr0 � T 0.

Proof: Let (s�; t�) be the intersection point of the two lines

s = �(t� b) + a; (3.3.2)

s = t+ `; (3.3.3)

and let (s�; t�) be the intersection point of (3.3.3) and

s = �2(t� b) + a: (3.3.4)

A straightforward calculation yields (s�; t�) = ((a + b + `)=2; (a + b � `)=2) and

(s�; t�) = ((a+ 2b+ 2`)=3; (a+ 2b� `)=3). The Euclidean distance between (s�; t�)

and (s�; t�) is d = jb+ `� aj=3p2. Since (3.3.2) and (3.3.3) are perpendicular and

the slope of (3.3.4) is �1, a simple argument shows that for a r0 � r0 square to �t

into T 0, it su�ces that d � 2r0. This yields the condition

6
p
2r0 � jb+ `� aj:

Clearly, this is satis�ed for (s; t) 2 K since (s; t) 2 K implies 14r0 < t+ `� s. N

Since ' � (x; y)+Wr0 is 0-sparse, there is at least one good error in (x; y)+Wr0 which

completes the proof. �

Before proceeding with the proof of the main lemma, we will prove the Error-

Correction Lemma which states that a white island sandwiched between two su�-

ciently large blackish islands is erased within a space-time square of a certain size in
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Figure 3.3.1: The backward 01/11-cone T 0 emanating from (a; b) and a 0-sparse r0�r0
space-time square B contained in T 0.

the presence of k-sparse errors.

Lemma 3.3.5 (error-correction) Let ' be a k-continuation at (0; 0) with width `

and extension h, and let ' be a k-continuation at (a; 0) with width `0 and extension

h. Let a > ` and h = a� `+ drk. Let

L = f (s; t) : ��kt < s < �kt+ a + `0; 0 � t < h g;

B = (`� rk; 0) +Wa�`+2rk :

Then ' � L nB is k-black.

Fact 3.3.6 For each k � 0, Lemma 3.2.2 =) Lemma 3.3.5.

Proof. Let

K = f(s; t) : ��kt < s < �kt + `; 0 � t < hg;

K0 = f(s; t) : ��kt+ a < s < �kt + a+ `; 0 � t < hg:

By Lemma 3.2.2, ' is k-black on K and K0.
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0    l a a + l’

k-black
trapezoid

k-black
trapezoid

K K’

exclusion  window  B

Figure 3.3.2: Error-correction Lemma in action: error region sandwiched between the

k-black trapezoids K, K 0 is eaten up. ' � (K [K 0) nB is k-black.

Let (x; y) be the intersection point of the two lines

s = t=2 + `;

s = �t=2 + a:

By simple calculation, (x; y) = ((`+ a)=2; a� `). Since

f (s; t) : t=2 + ` < s < �t=2 + a g � B

for t � 0, and

(s; t) +Wrk � L nB =) (s; t) +Wrk � K _ (s; t) +Wrk � K0; (3.3.7)

noting that �k > 1=2, ' � L nB is k-black. Implication (3.3.7) holds since the size of

B was chosen 2rk larger than necessary to cover the correction process. �

Figure 3.3.2 is a depiction (not drawn to scale) of the error-correction process facil-

itated by Lemma 3.3.5. We will be particularly interested in the case a � ` � 15rk

which accounts for the maximum spreading e�ect of a 3rk � 3rk error window under

the speed-of-light 2 given by 6rk + 3rk + 6rk. The exclusion window that covers the

error e�ect is contained in (`� 2rk; 0) +W17rk . To cover the k-sparse error itself, we
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may use a window of size 20rk � 20rk.

Remarks 3.3.8

1. Lemma 3.3.5, although implied by Lemma 3.2.2 for each level k, is itself used

in the proof of the latter. Hence, Lemma 3.3.5 is proven conjointly with

Lemma 3.2.2 in the induction.

2. In the proof of Fact 3.3.6 we have used a window size rk in showing the k-black

property even though the de�nition of blackishness requires only a window size

of rk� 2drk�1. The stronger property is proved mainly out of convenience. The

de�nition of k-black, however, does require the smaller window size rk�2drk�1.

De�nition 3.3.9 (cover) Let k � 1. Let ' : A ! S be k-black where A =S
i2[1;N ](si; ti) +Wrk , (si; ti) 2 Z� N . C = f (ai; bi) +Wdrk�1 : i 2 [1; n] g is a k-cover

of ' if

' � (A n
[
B2C

B)

is (k � 1)-black. C is minimal if whenever C 0 is a k-cover, this implies jCj � jC 0j.

In the proof of Lemma 3.2.2 we will use coverings of k-sparse errors which are under-

stood similarly with cover elements now being space-time squares of size 3rk�1�3rk�1.

To distinguish between the two notions, we will call them k-black-cover and k-sparse-

cover, respectively, when both are used at the same time.

Remark 3.3.10 We will use the term \well-separatedness" frequently in subsequent

proofs. The meaning of the term will be two-fold depending on the context. First, if

well-separatedness is used in the context of k-sparse errors, it will mean that we are

choosing the constant c su�ciently large such that 3rk�1 � 3rk�1 error windows are

located far from each other in space-time in the Euclidean distance sense (c � 3).

This implication holds since rk=rk�1 = ck. Second, if the term is used in the context
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of k-black regions and their minimal coverings, it will mean that c is chosen large

enough relative to d (c� d) so that the elements of a minimal k-cover are remotely

located from each other in space-time.

Proposition 3.3.11 Let ' : A! S be k-black where A � Z� N is bounded. Let C
be a minimal k-cover of A. Then 8(x; y) 2 Z� N and 8B;B0 2 C with B 6= B0,

(x; y) +Wrk�6drk�1 \ B 6= ; =) (x; y) +Wrk�6drk�1 \ B0 = ;:

Proof. Suppose for some (x; y) 2 Z� N and B;B0 2 C, B 6= B0,

(x; y) +Wrk�6drk�1 \ B 6= ; ^ (x; y) +Wrk�6drk�1 \ B0 6= ;:

It follows that 9 (x0; y0) 2 Z�N such that B;B0 � (x0; y0)+Wrk�4drk�1 . Let us consider

its dilation D = (x0 � drk�1; y
0 � drk�1) +Wrk�2drk�1 . By assumption of ' � A being

k-black, there exists (a; b) 2 Z� N such that

' � A \D n (a; b) +Wdrk�1 is (k � 1)-black.

Let G = (a; b) +Wdrk�1 . We will show that C [ fGg n fB;B0g is a k-cover of ' � A

which contradicts the minimality assumption of C.
We need to show that for every (rk�1 � 2drk�2)-window H,

' � H \ A n
� [

U2CnfB;B0g

U [ G
�

is (k�1)-black. If H does not intersect B, B0 then we are done since, by assumption,

C is a k-cover of A. If H \ (B[B0) 6= ; then H � D. But we know that ' � A\D nG
is (k � 1)-black. Hence, ' � H \ A nG is (k � 1)-black. �

Thus Proposition 3.3.11 shows that elements of a minimal k-cover are well-separated

in space-time. A similar result holds for minimal k-sparse-covers.

Proof of Lemma 3.2.2. The proof goes by induction on k. Let k = 0. First,

Lemma 3.2.4 is applied to the all-black space interval [0; w0) at time t = 0 to yield
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the all-black space interval [�h0 + 14r0; w0 + h0 � 14r0) at t = h0. Since T0 occupies
[��0h0; w0+�0h0) at t = h0 and �0 = 0:9, h0 = 280r0, it follows that [�h0+14r0; w0+

h0 � 14r0) is strictly larger than [��0h0; w0 + �0h0) by 14r0 on both sides. Hence

Lemma 3.2.4 can be applied again to the space interval [�h0 + 14r0; w0 + h0 � 14r0)

at t = h0 to conclude that �� is 0-black on the trapezoid (�h0 + 28r0; w0 + h0 �
28r0; h0; h0 + h; 1). Since

T 0
0 � (�h0 + 28r0; w0 + h0 � 28r0; h0; h0 + h; 1);

the basis is proven.

Assume the statement holds for k � 0. Let Cb be a minimum (k + 1)-black-cover

of Tk+1 and let Cs be a minimum (k+1)-sparse-cover of Uk+1. Let Bi = (si; ti)+W3rk ,

i = 1; 2; : : : ; N be an enumeration of Cs such that i < j i�

ti < tj or ti = tj ^ si < sj:

To each Bi, we associate Ci = (si� drk=2; ti)+Wdrk . Let C� = fCi : i 2 [1; N ] g. We

will prove that

C� is a (k + 1)-black-cover of T �
k+1 (3.3.12)

where T �
k+1 = (Tk+1 [ T 0

k+1) \ Z� [hk+1 � rk+1;1). The Lemma follows from the

above statement by the next fact.

Claim I (3.3.12) =) �� � (Tk+1 [ T 0
k+1) is (k + 1)-black.

Proof: Let D = (a; b) + Wrk+1�2drk be a test window of (k + 1)-blackness. Let

H = D\ (Tk+1[T 0
k+1). If H � Tk+1, then by assumption of �� � Tk+1 being (k+1)-

black, there exists A = (x; y) +Wdrk such that �� � H n A is k-black. If H � T �
k+1,

then there exists A 2 C� such that �� � H n A is k-black. This follows from the

minimality of Cs which assures that elements in Cs are well-separated which, in

turn, implies that 8Bi; Bj 2 C�, i 6= j, Bi \D 6= ; =) Bj \D = ;. N
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The proof of (3.3.12) goes by induction on the size of Cs. Assume n = jCsj = 0. That

is, Uk+1 is k-sparse. Let

C 0b = fB 2 Cb : B \ Tk+1 \ Z� [0; hk) 6= ; g:

If jC 0bj = 0, then by the inductive assumption, �� is a k-continuation at (��k+1hk; hk)

with width wk+1 + 2�k+1hk and extension hk+1 + h� hk. Hence, �
� � (��khk; wk+1 +

�khk; hk; hk+1 + h; �k) is k-black. Since

T �
k+1 � (��khk; wk+1 + �khk; hk; hk+1 + h; �k);

�� � T �
k+1 is k-black.

Assume jC 0bj > 0. Let (s�; t�) +Wdrk 2 C 0b be an element such that t� is maximal.

Let K = Tk+1 \ Z� [t� + drk; t
� + drk + hk).

Claim II �� � K is k-black.

Proof: Let D = (x; y) +Wrk�2drk�1 be any test window such that H = D \K 6= ;.
Since B 2 C 0b =) B\H = ;, we only need consider B 2 CbnC 0b such that B\H 6= ;.
Let B = (a; b) +Wdrk be such an element. Well-separatedness, B 2 Cb n C 0b, and Cb
being a (k+ 1)-black-cover imply that �� is a k-continuation at (a0; b0), b0 = b� rk,

a0 = maxfa� rk;��k+1b
0g, with width ` = minfdrk + 2rk; wk+1 + �k+1b

0 � a0g and
extension drk + hk + rk. Hence,

�� � (a0; a0 + `; b0; b0 + drk + hk + rk; �k) is k-black:

Since �k > 1=2 for all k � 0, H � (a0; a0 + `; b0; b0 + drk + hk + rk; �k) and �� � H is

k-black. N

Claim II implies that �� is a k-continuation at (��k+1(t
� + drk + hk); t

� + drk + hk)

with width wk+1 + 2�k+1(t
� + drk + hk) and extension hk+1 + h � t� � drk � hk. It

follows that �� � T �
k+1 is k-black.

Assume (3.3.12) holds for jCsj = n � 0. Let Bn+1 = (sn+1; tn+1)+W3rk be the last

element in the enumeration of Cs. We will consider the cases tn+1 < hk+1 � rk+1 �
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drk � hk � 3rk and tn+1 � hk+1 � rk+1 � drk � hk � 3rk, separately.

Claim III If tn+1 < hk+1� rk+1�drk�hk� 3rk then (3.3.12) holds for jCsj = n+1.

Proof: The assumption of the claim implies that

Uk+1 \ Z� [hk+1 � rk+1 � drk � hk;1) is k-sparse.

Thus an argument analogous to the proof of Claim II can be applied to the smaller

trapezoid Tk+1 \ Z� [hk+1 � rk+1 � drk � hk;1) to conclude that �� � Tk+1 \ Z�
[hk+1 � rk+1; hk+1) is k-black from which the claim follows. N

Let tn+1 � hk+1 � rk+1 � drk � hk � 3rk. We will consider the three cases

sn+1 > wk+1 + �k+1tn+1 + 5rk;

wk+1 + �k+1tn+1 � 3drk < sn+1 � wk+1 + �k+1tn+1 + 5rk;

��k+1tn+1 + 3drk � sn+1 � wk+1 + �k+1tn+1 � 3drk;

separately. Note that without loss of generality (by symmetry) we may consider only

the right boundary.

Case (i). Let sn+1 > wk+1 + �k+1tn+1 + 5rk. By the speed-of-light, �� � (Tk+1 [
T 0
k+1) \ L,

L = f (s; t) : s � �2(t� tn+1) + sn+1; t � 0 g;

takes on the same values irrespective of whether the error event Bn+1 occurred or

not. Let D = (x; y) +Wrk�2drk�1 be any test window such that

H = D \
�
T �
k+1 n

[
C2C�

C
�
6= ;: (3.3.13)

If D � L then by the inductive assumption on jCsj, �� � H is k-black. Assume

D \ Lc 6= ;. Let K be the trapezoid

(wk+1 + �k+1tn+1 � 2(drk + 2hk + 3rk)� rk; wk+1 + �k+1tn+1; tn+1 � hk; tn+1; �k):
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If sn+1 � wk+1 + �k+1tn+1 + 3(drk + 2hk + 3rk), then �� � K is k-black. This is

a straightforward consequence of well-separatedness since if tn+1 � hk+1, then by

inductive assumption on jCsj,

C� n fCn+1g is a (k + 1)-black-cover of T �
k+1 \ Z� [0; tn+1):

If tn+1 < hk+1 and for some B = (a; b) + Wdrk 2 Cb, B \ K 6= ;, then by well-

separatedness �� is a k-continuation at (a � drk=2; b) with width minf 2drk; wk+1 +

�k+1b�a+drk=2 g and extension 2drk which implies that �� � B0\Tk+1 is k-black where

B0 is the rk-dilation of B. By Proposition 3.3.11, this contradicts the minimality of

Cb and hence �� � K must be k-black.

Since �� is a k-continuation at (wk+1 + �k+1tn+1 � 2(drk + 2hk + 3rk) � rk; tn+1)

with width 2(drk+2hk+3rk)+rk and extension hk+1+h� tn+1, �
� � K[K0 is k-black

where K0 is the trapezoid

(wk+1 + �k+1tn+1 � 2(drk + 2hk + 3rk)� rk; wk+1 + �k+1tn+1; tn+1; hk+1 + h; �k):

Let M = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk; tn+1 + 3rk + drk + 2hk).

Claim IV �� �M is k-black.

Proof: If sn+1 > wk+1 + �k+1tn+1 + 3(drk + 2hk + 3rk) then M � L, and by the

inductive assumption on jCsj, �� �M is k-black. Assume sn+1 � wk+1+�k+1tn+1+

3(drk + 2hk + 3rk). Let U = (a; b) + Wrk�2drk�1 be any test window such that

U \M 6= ;. By the de�nition of L and K0,

U \M � L or U \M � K0:

We already know that �� � K0 is k-black. Assume U \ M � L. Since tn+1 �
hk+1 � rk+1 � drk � hk � 3rk, M � T �

k+1. By the inductive assumption on jCsj,
C�nfCn+1g is a (k+1)-black-cover of T �

k+1\L, and since Cn+1 is the last element in

the enumeration of C�, it follows that �� �M\L is k-black. Since U \M �M\L,
�� � U \M is k-black. N
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LetM0 = (Tk+1 [ T 0
k+1)\Z� [tn+1 +3rk + drk + hk;1). An immediate consequence

of Claim IV (by the inductive assumption on k) is that �� � M0 is k-black. Since

D \ Lc 6= ;, by the de�nition of L, K0, and M0,

H � K [K0 or H �M0:

Hence, (3.3.12) holds for jCsj = n+ 1.

Case (ii). Let ��k+1tn+1+3drk � sn+1 � wk+1+ �k+1tn+1� 3drk. If tn+1 � hk+1,

then by the inductive assumption on jCsj, �� is a k-continuation at both (sn+1�6rk�
3drk; tn+1+3rk) and (sn+1+9rk; tn+1+3rk) with extension hk+1+h� tn+1� 3rk and

widths 3drk and maxf 3drk� 9rk; wk+1+�k+1(tn+1+3rk)� sn+1� 9rk g, respectively.
If tn+1 < hk+1, �

� remains a k-continuation at both (sn+1� 6rk� 3drk; tn+1+3rk)

and (sn+1 + 9rk; tn+1 + 3rk) with the same parameters as before. Suppose this were

not the case, i.e., for some B = (a; b) +Wdrk 2 Cb,

B \ (KL [ KR) 6= ;

where KL and KR are the contexts corresponding to the two k-continuations at (sn+1�
6rk� 3drk; tn+1+3rk) and (sn+1+9rk; tn+1+3rk), respectively. Let (x; y) denote the

upper-left corner of KL and let wL denote the width of KL at t = y. If b > y, then ��

is a k-continuation at (x; y) with width wL and extension hk+1 + h � y, and by the

inductive assumption on k, �� � KL is k-black. If b � y, then �� is a k-continuation at

(x; b) with width wL��k(y� b) and extension hk+1+h� b, hence �� � KL is k-black.

A similar argument holds for KR.

Using Lemma 3.3.5 (error correction), �� � K n Cn+1 is k-black where

K = (sn+1 � 6rk � 3drk; wk+1 + �k+1tn+1; tn+1; hk+1 + h; �k):

By SOL, �� � (Tk+1 [ T 0
k+1) \ L takes on the same values irrespective of whether

the error event Bn+1 occurred or not where

L = f (s; t) : s � �2(t� tn+1) + sn+1 or s � 2(t� tn+1) + sn+1 + 3rk; t � tn+1 g:
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Let M = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk; tn+1 + 3rk + drk + 2hk).

Claim V �� �M is k-black.

Proof: Let U = (a; b) +Wrk�2drk�1 be any test window such that U \M 6= ;. By
the de�nition of L and K,

U \M � L or U \M � K n Cn+1:

We have already established that �� � K n Cn+1 is k-black. Let U \M � L. Since
tn+1 � hk+1 � rk+1 � drk � hk � 3rk, M � T �

k+1. By the inductive assumption on

jCsj, C� n fCn+1g is a (k + 1)-black-cover of T �
k+1 \ L, and since Cn+1 is the last

element in the enumeration of C�, it follows that �� � M \ L is k-black. Since

U \M �M\ L, �� � U \M is k-black. N

Let D = (x; y) +Wrk�2drk�1 be any test window satisfying (3.3.13). If D � L we are

done. If D \ Lc 6= ;, then

H � K n Cn+1 or H �M0

where M0 = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk;1). Since Claim V implies

that �� �M0 is k-black, (3.3.12) holds for jCsj = n + 1.

Case (iii). Let wk+1+ �k+1tn+1� 3drk < sn+1 � wk+1+ �k+1tn+1+5rk. It su�ces

to show that �� is k-black on K where

K = f (s; t) : wk+1 + �k+1tn+1 � 3drk + �k(t� tn+1) � s �

wk+1 + �k+1tn+1 + 3drk + �k(t� tn+1); tn+1 � 2drk � t � tn+1 g;

since then the arguments of Case (ii) can again be applied from which (3.3.12) follows.

Consider the space-time point

p = (wk+1 + �k+1(tn+1 + 3rk � u); tn+1 + 3rk � u)

where u = rk+1=3. Let p
0 = p+ (�5drk; 0) be the space-translation of p by �5drk.

Claim VI �� is a k-continuation at p0 with width 5drk and extension u� 3rk.
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Proof: First, for any window V = (s; t) +Wu such that Bn+1 � V (recall that

Bn+1 is the last element in the enumeration of Cs), (Tk+1 [ T 0
k+1) \ V is k-sparse.

This is a direct consequence of well-separatedness (i.e., choose c su�ciently large

such that rk+1=3 < rk+1� 6rk) and the de�nition of sparsity. Let H be the context

of the (as yet to be determined) k-continuation in the claim. Let (a; b) be the

upper-left corner point of H, and let wH denote the width of H at t = b. To prove

the claim, it su�ces to show that �� � H is k-black since by the de�nition of u and

well-separatedness (c� d), the trapezoid

(a� 2rk; a+ wH + 2rk; b; tn+1; 1)

is k-sparse. Suppose for some B = (a0; b0) +Wdrk 2 Cb, B \ H 6= ;. If b0 > b, then

by Cb being a minimal (k + 1)-cover, �� is a k-continuation at (a; b) with width

wH and extension hk which implies that �� � H is k-black. If b0 � b, then �� is a

k-continuation at (a; b0) with width wk+1 + �k+1b
0 � a and extension drk + hk, and

hence �� � H is k-black. N

Let H0 = (a; a + wH; b; tn+1; �k). Claim VI implies that �� � H0 is k-black. We

will prove that K � H0 from which (3.3.12) follows. Since p0 = p + (�5drk; 0) and
1=2 < �k < 1, it su�ces to show that

wk+1 + �k+1tn+1 + 3drk � wk+1 + �k+1(tn+1 + 3rk � u) + �k(u� 3rk)

() 3drk � (�k � �k+1)(u� 3rk): (3.3.14)

Claim VII There exist c; d > 0 such that (3.3.14) holds.
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β
kβk+1

(k+1)-sparse error

p

u

.

Figure 3.3.3: Slope deection in the proof of Lemma 3.2.2, case (iii).

Proof: By the inductive assumption on k, �k = 1=2 + 1=(k + 2:5), and (3.3.14) is

equivalent to

3drk �
�
1

2
+

1

k + 2:5
� 1

2
� 1

k + 3:5

�
(rk+1=3� 3rk)

() 9drk � 4

(2k + 5)(2k + 7)
(c(k + 1)2rk � 9rk)

() 9d � 4

(2k + 5)(2k + 7)
(c(k + 1)2 � 9) (3.3.15)

where we have used u = rk+1=3 and rk+1 = c(k + 1)2rk. Upon rearrangement,

(3.3.15) holds i�

(4c� 36d)k2 + (8c� 216d)k + 4c� 315d� 36 � 0:

This is satis�ed, for all k � 0, if c � 79d+ 9. N

It is easily checked that all the claims in the proof using the well-separatedness prop-

erty with respect to c� d are satis�ed if c = 100d. �

Figure 3.3.3 depicts the occurrence of a (k + 1)-sparse error near the right boundary

of the trapezoid Tk+1 [ T 0
k+1 (case (iii) in the proof of Lemma 3.2.2) and the \slope



48

deection" it induces (�k+1 < �k).

3.4 Spreading of agreement

In this subsection, we will prove that if the coupled processes �0; �1 are k-black on

a trapezoid Rk, then they concur on the slightly smaller trapezoid Rk(bk) � Rk

(Lemma 2.2.5). Thus the problem of showing the spreading of agreement is reduced

to the problem of showing the spreading of blackishness (Lemma 2.2.9). First, we

state some simple facts.

Fact 3.4.1 If �0; �1 concur on a space interval [x; x+ a)� T , then they continue to

concur on the space-time triangle

f (s; t) : x + 2(t� T ) � s � x+ a� 2(t� T ); t � T g:

Proof. A direct consequence of SOL since by the de�nition of basic coupling, if

�0(s; t) = �1(s; t) and �0; �1 concur in the rest of their neighborhood f (s� 2; t); (s�
1; t); (s+ 1; t); (s+ 2; t) g, then �0(s; t+ 1) = �1(s; t+ 1). �

Fact 3.4.2 Let '; '0 : Z � N ! S be space-time con�gurations such that ' � '0.

Let A � Z� N. Then

' � A is k-black =) '0 � A is k-black:

Proof. The basis (k = 0) holds trivially. Assume the statement holds for k > 0. Let

W be a (rk+1 � 2drk)-window such that A \W 6= ;. Let ' � A be (k + 1)-black.

This implies that there exists drk-window B such that ' � (A \W n B) is k-black.
By inductive assumption, '0 � (A \W nB) is k-black as well. Since this holds for an

arbitrary W and we are able to identify an exclusion window B for '0 via ', '0 � A

is (k + 1)-black. �
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Fact 3.4.3 Let '; '0 : Z � N ! S be space-time con�gurations such that ' � '0.

Then for all A � Z� N,

C is a k-cover of ' � A =) C is a k-cover of '0 � A:

Proof. Assume k = 1. (Note that a k-cover is only meaningful for k � 1 although for

k = 0 we may de�ne the 0-cover to be the empty set.) Let C be a 1-cover of ' � A;

i.e., ' is black on A nSB2C B. If C were not a 1-cover of '0 � A, this would lead to a

contradiction since ' � '0.

Assume the statement holds for k > 0. Let C be a (k+1)-cover of ' � A. That is,

' is k-black on A nSB2C B. By Fact 3.4.2, this implies '0 is k-black on A nSB2C B.

If C were not a (k + 1)-cover of '0 � A, it would mean that '0 � A n SB2C B is not

k-black which is a contradiction. �

Proof of Lemma 2.2.5. Let k = 0. Since �0; �1 are 0-black on trapezoid R0 =

(y; z; u; v; q), i.e., �0(s; t) = �1(s; t) = 11 for (s; t) 2 R0, the basis follows directly.

Assume the statement holds for k > 0. Let C be a minimum (k + 1)-cover of

�0 � Rk+1. Monotonicity allows us to work with a single cover since by Fact 3.4.3, C
is also a (k + 1)-cover of �1 � Rk+1. If C = ;, then �0(s; t) = �1(s; t) on Rk+1(bk) and

the lemma is trivially true since Rk+1(bk+1) � Rk+1(bk).

Assume C 6= ;. Let us consider the trapezoid R0
k+1 = (y + 5drk; z � 5drk; u +

2drk; v; q):

Claim If for all B 2 C, B � R0
k+1, then �0; �1 concur on R0

k+1.

Proof: Since elements in C are well-separated, using Fact 3.4.1, it is easily checked

by induction that for all B 2 C,

�0(s; t) = �1(s; t); (s; t) 2 B

from which the claim follows. N
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Let us call

y + 5drk � s � z � 5drk (3.4.4)

the space-separation condition and let

t � u+ 2drk (3.4.5)

be the time-separation condition. The additional drk in the de�nition of R0
k+1 stems

from an application of the inductive hypothesis which by itself yields the trapezoid

Rk+1(bk). We remind the relationship

R0
k+1 � Rk+1(bk) � Rk+1:

The previous claim fails to hold if for some B 2 C the space-and/or time-separation

conditions are violated.

First, consider the time-separation case. Let B = (x; w)+Wdrk 2 C be an element

with maximum time coordinate w such that (3.4.5) is violated, i.e., w < u + 2drk.

Ignoring the e�ect of space-separation on x for the moment, we obtain the time

su�ciency condition

2drk + drk + drk < drk+1 = bk+1 (3.4.6)

where a further drk is needed to account for the size of B, and the �nal drk represents

a subsequent application of the inductive hypothesis. The inequality holds since

rk+1 = c(k + 1)2rk and c� d.

Second, let us consider the space-separation case. W.l.o.g. (by symmetry), we will

consider the left boundary of the trapezoid Rk+1. Let B = (x; w) +Wdrk 2 C be an

element with maximum space coordinate x violating (3.4.4). That is,

x < y + q(t� w) + 5drk:
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A space su�ciency condition is obtained by adding drk to account of the size of B

followed by a further application of the inductive hypothesis:

5drk + drk + drk < drk+1 = bk+1: (3.4.7)

Thus, combining conditions (3.4.6) and (3.4.7), we can see that Rk+1(bk+1) satis�es

both, and using the previous claim it follows that �0 and �1 concur on Rk+1(bk+1) �
R0
k+1. �



Chapter 4

Relaxation time

4.1 Relaxation lower bound

4.1.1 Supersparsity

To show that the all-00 initial con�guration remains \whitish" for a long time, we

will use a scheme analogous to the proof of mixing. We need the new notion \k-

supersparse" which is a more restrictive counterpart of the sparsity de�nition used

earlier. Let us de�ne a new window size r0k,

r0k = "�1=4ck:

De�nition 4.1.1 (supersparsity) The error process is 0-supersparse on a space-

time set A if it is empty. It is k-supersparse, k � 1, if for all squares B of the form

(s; t) +Wr0k
either A \ B is (k � 1)-supersparse, or there exists (s0; t0) such that the

following two conditions hold:

(i) (A \ B) n (s0; t0) +W3r0k�1
is (k � 1)-supersparse,

(ii) there are no errors on (A \B \ (s0 � dr0k�1=2; t
0) +Wdr0k�1

) n (s0; t0) +W3r0k�1
.

Lemma 4.1.2 (supersparsity) There exists 0 < "0 < 1=2, v > c > 1 such that

for all 0 < " < "0, 0 � k � (log 1=")=8 log v, � > 0 the following holds. Let � denote

52
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an "-perturbation of K, K";�. Let A =
S

i2[1;N ] (ai; bi) +Wr0k
, ai; bi 2 Z, where � � A

is de�ned. Let qk be the probability that � is not k-supersparse on A. Then

qk < N"(k+1:2)=4vk(k�1):

Proof. The proof goes by induction on k. Let k = 0. For any window W i =

(ai; bi) + Wr0
0
, consider the probability that � is not 0-supersparse on W i. Since

r00 = "�1=4,

Pr(� is not 0-supersparse on W i) � 2("�1=4)2" = 2"1=2 < "0:3

for " su�ciently small. Hence q0 < N"0:3 which equals the probability bound with

k = 0.

Assume the relation holds for k > 0. For i; j 2 f0; 1g, de�ne partition Pi;j of A

as follows:

Pi;j = fA \ r0k+1(2s+ i; 2t+ j) +W2r0k+1
: s; t 2 Z g:

Each (al; bl) +Wr0k+1
is intersected by at most four elements of Pi;j, hence jPj � 16N

where P =
S

i;j Pi;j. Suppose there exists B = (a; b) + Wr0k+1
such that � is not

(k + 1)-supersparse on A \ B, A \ B 6= ;. Since A \ B � V for some V 2 P, � is

not (k + 1)-supersparse on V . Thus,

qk+1 � 16Nq0 (4.1.3)

where q0 = Pr(� is not (k + 1)-supersparse on V ).

Partition V as before but with r0k in place of r0k+1. Denote the four partitions by

Ri;j, i; j 2 f0; 1g, and let R =
S

i;jRi;j. Since r
0
k+1=r

0
k = c, jRi;jj � (c+1)2. Consider

the events E ; E 0 where E is the event that there exist U; U 0 2 R, U \ U 0 = ;, such
that � is not k-supersparse on U and U 0, and E 0 denotes the event that V is not k-

supersparse and there exists r0k(2s+i; 2t+j)+W3r0k
such that V nr0k(2s+i; 2t+j)+W3r0k

is k-supersparse and

�
V \ (r0k(2s+ i)� dr0k�1=2; r

0
k(2t+ j)) +Wdr0k

�
n r0k(2s+ i; 2t+ j) +W3r0k
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is not error-free.

Claim q0 < Pr(E) + Pr(E 0).

Proof: We will prove the contrapositive: :E ^ :E 0 =) � is (k + 1)-supersparse

on V . Suppose :E . That is, if U; U 0 2 R and � is not k-supersparse on U and U 0,

then U \ U 0 6= ;. In particular, if we �x U , then all elements of R on which � is

not k-supersparse must intersect with U as well as with each other.

By de�nition of Ri;j, 8U; U 0 2 R with U \U 0 6= ;, there exists r0k(2s+ i; 2t+j) such

that U; U 0 � r0k(2s+i; 2t+j)+W3r0k
. r0k(2s+i; 2t+j)+W3r0k

covers all elements ofR
on which � is not k-supersparse, and by containment, any r0k-window in V on which

� is not k-supersparse. Hence � is k-supersparse on V n r0k(2s + i; 2t + j) +W3r0k
.

The possibility that

�
V \ (r0k(2s+ i)� dr0k�1=2; r

0
k(2t+ j)) +Wdr0k

�
n r0k(2s+ i; 2t+ j) +W3r0k

is not error-free is excluded by :E 0. N

By independence, Pr(� is not k-supersparse on U and U 0) � q002 where U; U 0 2 R,
U \U 0 = ;, and q00 = Pr(� is not k-supersparse on A \ (s; t)+W2r0k

). Since the total

number of disjoint pairs in R is strictly less than jRj2,

Pr(E) < 16(c+ 1)4q00
2
:

To bound Pr(E 0), notice that

E 0 �
_
s;t;i;j

�
V \ r0k(2s+ i; 2t+ j) +W3r0k

is not k-supersparse
^

(r0k(2s+ i)�dr0k�1=2; r
0
k(2t+ j))+Wdr0k

n r0k(2s+ i; 2t+j)+W3r0k
is not error-free

�
:

Thus,

Pr(E 0) � 9(c+ 1)2qk2(dr
0
k)

2" = 18d2(c+ 1)2qk"
1=2c2k;
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and we have

q0 < 16(c+ 1)4q00
2
+ 18d2(c+ 1)2qk"

1=2c2k:

Using (4.1.3) and the inductive hypothesis on q00,

qk+1 � 16Nq0 < 16N
�
16(c+ 1)442q2k + 18d2(c+ 1)2qk"

1=2c2k
�

< N
�
163(c+ 1)4"(k+1:2)=2v2k(k�1) + 288d2(c+ 1)2"(k+1:2)=4vk(k�1)"1=2c2k

�

= N"(k+2:2)=4v(k+1)k
�
163(c+ 1)4"(k+0:2)=4vk(k�3) + 288d2(c+ 1)2(c=v)2k"1=4

�
:

Clearly, 288d2(c+ 1)2(c=v)2k"1=4 < 1=2 for v > c and " su�ciently small.

To achieve 163(c+ 1)4"(k+0:2)=4vk(k�3) < 1=2, �rst

163(c+ 1)4"(k+0:2)=4vk(k�3) = 163(c+ 1)4 exp((k + 0:2)(log ")=4 + k(k � 3) log v)

� 163(c+ 1)4 exp(k2 log v � (k=4) log 1="� 0:05 log 1="):

Let F (k) = k2 log v � (k=4) log 1=" � 0:05 log 1=" denote the exponent. F 0(k) =

2k log v � (1=4) log 1=", and the parabola attains its minimum at F 0(k) = 0, i.e.,

k0 = (1=8 log v) log 1=":

Since F 0(0) = �(1=4) log 1=" < 0 and F (0) = �0:05 log 1=" < 0, F (k) is monotoni-

cally decreasing for 0 � k � (1=8 log v) log 1=". Hence,

163(c+ 1)4 exp(k2 log v � (k=4) log 1="� 0:05 log 1=") � 163(c+ 1)4e�0:05 log 1="

= 163(c+ 1)4"0:05

< 1=2

for su�ciently small " where we have substituted k = 0. �

We remark that by a similar argument qk is monotonically decreasing for 0 � k �
(log 1=")=8 logv.



56

Let k0 = (log 1=")=8 log v. We will consider a sequence of space-time rectangles

S 0k, k = 0; 1; : : : ; k0, where S
0
k (k < k0) has size 17r

0
k � 4r0k, and S 0k0 is of the size

17 � 2c2 log2 1=" � 4 � 2c2 log2 1="

where c2 > 0 is a positive constant. We will view S 0k as a union of two subrectangles

SU
k ; S

B
k � S 0k each of size 17r0k � 3r0k if k < k0 and

17 � 2c2 log2 1=" � 3 � 2c2 log2 1="

if k = k0. Note that given S 0k, S
U
k and SB

k are uniquely determined.

Lemma 4.1.4 There exist � > 0, c2 > 0 such that for all su�ciently small " (de-

pending on �)

Pr
� k0^

k=0

(SU
k is k-supersparse ^ SB

k is (k � 1)-supersparse)
�

> �

where (�1)-supersparse is interpreted to mean 0-supersparse.

Proof. Let us upper-bound the probability of the complement event: for some

k � k0, S
U
k is not k-supersparse or SB

k is not (k � 1)-supersparse. First, since qk is

monotonically decreasing for 0 � k � (log 1=")=8 log v, we have

Pr(SU
k is not k-supersparse) < 51"0:3;

Pr(SB
k is not (k � 1)-supersparse) < 51c2"0:3;

where we have used r0k+1 = cr0k in the second bound. Second, it is easy to check that

Pr(SU
k is not k-supersparse) � Pr(SU

k is not (k � 1)-supersparse):

With these two facts in hand,
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Pr(9k � k0 : S
U
k is not k-supersparse _ SB

k is not (k � 1)-supersparse)

�
k0X
k=0

�
Pr(SU

k is not k-supersparse) + Pr(SB
k is not (k � 1)-supersparse)

�

� 2Pr(SB
k0
is not (k0 � 1)-supersparse) + 2

k0�1X
k=0

Pr(SB
k is not (k � 1)-supersparse)

< 51 � 22c2 log2 1=""((k0�1)+1:2)=4v(k0�1)(k0�2) + "0:351c2k0

< 51 exp(2c2 log 2 log
2 1=" + k20 log v � (k0=4) log 1=" � 0:05 log 1=")

+ "0:351c2(log 1=")=8 log v

= 51 exp((2c2 log 2� 1=64 log v) log2 1="� 0:05 log 1=") + "0:3(log 1=")51c2=8 log v

Clearly, for c2 < 1=(128 log 2 log v) and " su�ciently small (depending on �),

Pr(9k � k0 : S
U
k is not k-supersparse _ SB

k is not (k � 1)-supersparse) � 1� �

which completes the proof. �

4.1.2 Shrinking region of consolidation

For each � > 0, site x, time t � Relax(n; �;K";�), and k = 0; : : : ; k0, we de�ne a

sequence R0
k � S 0k of trapezoids

R0
k = (xk; xk + 17`k; yk; yk + 4`k;�2)

extending into the past such that

(i) `k0 = 2c2 log
2 1=", `k = r0k, k 2 [0; k0);

(ii) yk0 = �3`k0 , yk = yk+1 + 4`k+1 � 3`k, k 2 [0; k0);

(iii) xk0 = x� `k0=2, xk = xk+1 + 8`k+1 + (`k+1 � 17`k)=2, k 2 [0; k0);

(iv) R0
k \ Z� [yk; yk + 3`k) � SU

k , R
0
k \ Z� [yk + `k; yk + 4`k) � SB

k .
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Condition (ii) allows for a 3`k overlap between R
0
k+1 and R

0
k, and condition (iii) implies

that (x; t) 2 R0
0\Z� [y0+3`0;1). The lower bound on the relaxation time is implied

by the next lemma.

Lemma 4.1.5 In �0, we have Pr(
Vk0

k=0 �0 � R
0
k is k-white) > �. The same holds

with �1 and k-black.

Thus an immediate corollary of Lemma 4.1.5 is that �0(x; t) = 00 with probability at

least � if t = O(2c2 log
2 1="). Note that R0

k0
is the essential trapezoid for achieving the

relaxation time lower-bound, the remaining trapezoids being there to pinpoint a cell

with state 00 as the stringency of the supersparsity condition is reduced. Lemma 4.1.5

will be implied by Lemma 4.1.4 and Lemma 4.1.6 which shows the existence of a

shrinking region of increasing \white-consolidation" in space-time.

Lemma 4.1.6 (consolidation) For all k = 0; : : : ; k0 � 1, if �0 � R
0
k+1 is (k + 1)-

white, SU
k+1 is (k + 1)-supersparse, SB

k+1 is k-supersparse, and SU
k is k-supersparse,

then �0 � R
0
k is k-white. The same holds with k-black.

Before proving Lemma 4.1.6, we will establish a couple of useful facts. The next

result states that a k-white (or k-black) con�guration \quickly" returns to all-white

(all-black) in the absence of errors.

Proposition 4.1.7 (attraction) Let k � 1. Let � : Z� N ! S be a deterministic

orbit such that �(�; 0) is k-white (k-black). Then �(�; �r0k�1) is 0-white (0-black) where

�, 4d < � < c, is a �xed constant.

Proof. The proof goes by induction on k. Let k = 1. Let C be a minimum 1-cover

of �(�; 0). Note that if C = ; then the basis is trivially true. By Theorem 1.1.4, for

every B 2 C there exists sB 2 Z such that

� �
�
(Z� N) n

[
B2C

(sB; 0) +W3dr0k�1

�
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is 0-white. Since � > 4d the basis is proven.

Assume the statement holds for k � 1. Let C be a minimum (k + 1)-cover of

�(�; 0). Let B = (sB; 0) +Wdr0k
be an element of C. Let us consider � restricted on

the space interval

I = (sB + dr0k; sB + r0k+1 � dr0k]:

Clearly, � � (I � [0; 0]) is k-white.

By the inductive assumption and speed-of-light,

� � I 0 � [�r0k�1; �r
0
k�1) is 0-white

where I 0 = (sB+dr0k+2�r0k�1; sB+r0k+1�dr0k�2�r0k�1]. Using well-separatedness and

symmetry, we can apply Theorem 1.1.4 to conclude that �(�; �r0k�1+3(dr0k+4�r0k�1))

is 0-white. Since

�r0k�1 + 3(dr0k + 4�r0k�1) < 4dr0k < �r0k;

the proposition follows. �

Lemma 4.1.8 Let k � 0 and let � be an orbit of K";�. Let E = (x; y) +W3r0k
and

let U = (x� 50r0k; y) +W100r0k
. Let

M = f (s; t) : x� dr0k=2 + 2(t� y) � s < x + dr0k=2� 2(t� y); t � y g:

If Mn E is 0-supersparse and � � (Mn E) \ Z� [y; y] is k-white, then

� � (M\ Z� [y + 3r0k;1)) n U is 0-white.

Proof. By the speed-of-light, � � M is not a�ected by what values � takes on on

Mc \ Z� [y;1). Let

K = f (s; t) : x� 2(t� y) � s < x + 3r0k + 2(t� y); t � y g:
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M
U

E

Figure 4.1.1: Error correction under k-supersparse errors.

By Proposition 4.1.7 and noting that �r0k�1 < 3r0k (� is the time variable in the

proposition),

� � (MnK) \ Z� [y + 3r0k; y + 3r0k] is 0-white.

Theorem 1.1.4 (deterministic eroder property) implies that the error island

K \ Z� [y + 3r0k; y + 3r0k]

which has length 15r0k is corrected within a space-time rectangle of size at most

75r0k � 75r0k. Hence the error correction process, inclusive the (k + 1)-supersparse

error E, is covered by U . For the previous arguments to hold, we must choose d

su�ciently large such that U � M. It is easily checked that this is the case if

d = 1000. �

Figure 4.1.1 depicts the error correction process subject to a (k+1)-supersparse error

described in the proof of Lemma 4.1.8.

Remark 4.1.9 Let (a; b) be the intersection point of the left boundaries ofM and K.
If d = 1000, then b = y+125r0k and it follows that � �M\Z� [y+100r0k; y+125r0k)

is 0-white. We will use this property in the proof of Lemma 4.1.10.
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Lemma 4.1.10 Let Tk = (0; wk; 0; hk;�2), T 0
k = (2hk; wk � 2hk; hk; hk + h;�2)

where wk � 17r0k, hk = 3r0k, and h � 0. Let � be an orbit of K";�. Then,

� � Tk is k-white ^ Tk [ T 0
k is k-supersparse =) � � (Tk [ T 0

k ) is k-white:

The same holds true if k-white is replaced by k-black.

We will call � a k-continuation (with respect to supersparsity) at (2hk; hk) with width

wk � 4hk and extension h. This lemma is the main technical tool in the proof of

Lemma 4.1.6, and its structure follows the inductive proof of the Expansion Lemma.

However, it is much simpler due to absence of boundary e�ects facilitated by the two

sides of the trapezoids Tk, T 0
k shrinking with the speed-of-light.

Proof of Lemma 4.1.10. The proof goes by induction on k. Let k = 0. Since � � T0
is all-white and no errors occur in T0 [ T 0

0 , the basis follows trivially from SOL.

Assume the statement holds for k � 0. Let Cb, C 0b, Cs, C�, and T �
k be de�ned as in

the proof of the Expansion Lemma (Lemma 3.2.2) where Cb is now a minimum (k+1)-

white-cover of Tk+1. Let Bi = (si; ti) +W3r0k
, i = 1; 2; : : : ; n, be the corresponding

enumeration of Cs. It su�ces to prove

C� is a (k + 1)-white-cover of T �
k+1 (4.1.11)

since (4.1.11) implies that � � (Tk+1[T 0
k+1) is (k+1)-white. (See Claim I in the proof

of the Expansion Lemma with k-black in place of k-white.)

The proof of (4.1.11) goes by induction on the size of Cs. Assume n = jCsj = 0. If

jC 0bj = 0, then � is a k-continuation at (2hk; hk) with width wk+1� 4hk and extension

hk+1 + h� hk. By the inductive assumption on k,

� � (2hk; wk+1 � 2hk; hk; hk+1 + h;�2)

is k-white from which (4.1.11) follows.

Assume jC 0bj > 0. Let (s�; t�) +Wdr0k
2 C 0b be an element such that t� is maximal.

Let K = Tk+1 \ Z� [t� + dr0k; t
� + dr0k + hk).
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Claim I � � K is k-white.

Proof: Let D = (x; y) +Wr0k�2dr0k�1
be any test window such that H = D \K 6= ;.

Since B 2 C 0b =) B \ H = ;, we only need consider B 2 Cb n C 0b such that

B \ H 6= ;. Let B = (a; b) + Wdr0k
be such an element. Well-separatedness,

B 2 Cb n C 0b, and Cb being a (k + 1)-white-cover imply that � is a k-continuation at

(a0; b), a0 = maxfa�3r0k�2dr0k; 2bg, with width ` = minf5dr0k+6r0k; wk+1�2b�a0g
and extension dr0k + hk. Hence,

� � (a0 � 2r0k; a
0 + `+ 2r0k; b� r0k; b+ r0k + dr0k + hk;�2)

is k-white. Since H � (a0� 2r0k; a
0+ `+2r0k; b� r0k; b� r0k + dr0k+ hk;�2), it follows

that � � H is k-white. N

Claim I implies that � is a k-continuation at (2(t� + dr0k + hk); t
� + dr0k + hk) with

width wk+1� 4(t�+ dr0k+hk) and extension hk+1+h� t�� dr0k�hk. Hence, � � T �
k+1

is k-white.

Assume (4.1.11) holds for jCsj = n � 0. Let Bn+1 = (sn+1; tn+1) +W3r0k
be the

last element in the enumeration of Cs. If tn+1 < hk+1 � r0k+1 � dr0k � hk � 3r0k then

(Tk+1 [ T 0
k+1) \ Z� [hk+1 � r0k+1 � dr0k � hk;1) is k-supersparse;

and hence an argument analogous to the proof of Claim I can be applied to the smaller

trapezoid Tk+1 \ Z� [hk+1 � r0k+1 � dr0k � hk;1) to conclude that

� � Tk+1 \ Z� [hk+1 � r0k+1; hk+1)

is k-white from which (4.1.11) follows.

Let tn+1 � hk+1 � r0k+1 � dr0k � hk � 3r0k. If Bn+1 � (Tk+1 [ T 0
k+1)

c, then by

SOL and the inductive assumption on jCsj, (4.1.11) holds for jCsj = n + 1. Let

Bn+1 \ (Tk+1 [ T 0
k+1) 6= ;. Note that since � � (Tk+1 [ T 0

k+1) is independent of

� � (Tk+1 [ T 0
k+1)

c \ Z� [0;1);
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we may assume any values for � � (Tk+1 [T 0
k+1)

c \Z� [0;1), in particular, all-white,

without a�ecting the analysis. By the same reason, we may view (Tk+1[T 0
k+1)

c\Z�
[0;1) as being 0-supersparse. Let

M = f (s; t) : sn+1 � dr0k=2 + 2(t� tn+1) � s < sn+1 + dr0k=2� 2(t� tn+1); t � tn+1 g:

Claim II � � (MnBn+1) \ Z� [tn+1; tn+1] is k-white.

Proof: If tn+1 � hk+1, then by the inductive assumption on jCsj, C� n fCn+1g is a
(k+1)-white-cover of � � T �

k+1\Z� (�1; tn+1� 1], and by well-separatedness and

SOL, the claim follows. Let t < hk+1 and assume for some B = (a; b) +Wdr0k
2 Cb,

B \ (MnBn+1) \ Z� [tn+1; tn+1] 6= ;:

Well-separatedness implies that � is a k-continuation at (a � 2dr0k � 2r0k; b) with

width 5dr0k + 4r0k and extension tn+1 � b from which the claim follows. N

Using Lemma 4.1.8, an immediate consequence of Claim II is that

� � (M\ Z� [tn+1 + 3r0k;1)) n U is 0-white (4.1.12)

where U = (sn+1 � 50r0k; tn+1) +W100r0k
. Let

K = f (s; t) : sn+1 � 2(t� tn+1) � s < sn+1 + 3r0k + 2(t� tn+1); t � tn+1 g:

Let v = 2dr0k + 2hk + 2(dr0k � 100r0k � hk) + 2hk.

Claim III � is a k-continuation at (sn+1� v; tn+1+100r0k+ hk) with width 2v+3r0k

and extension dr0k � 100r0k.

Proof: We need to show that � is k-white on the trapezoid

A = (sn+1 � v � 2hk; sn+1 + v + 3r0k + 2hk; tn+1 + 100r0k; tn+1 + 100r0k + hk;�2):

Let D = (a; b) +Wr0k�2dr0k�1
be a test window such that H = D \ A 6= ;. By the

de�nition of v, K, M, and A,

H � Kc or H �M:
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If H � Kc, then by well-separatedness and the inductive assumption on jCsj, � � H
is k-white. If H �M, then by (4.1.12) and Remark 4.1.9, � � H is 0-white. N

Claim IV C� is a (k + 1)-white cover of (Tk+1 [ T 0
k+1) \ Z� [0; tn+1 + dr0k + hk).

Proof: Let D = (a; b) +Wr0k�2dr0k�1
be a test window such that

H = D \
�
(Tk+1 [ T 0

k+1) \ Z� [0; tn+1 + dr0k + hk) n
[
C2C�

C
�
6= ;:

Let A0 be the same trapezoid as A in the proof of Claim III except that its second

time parameter is changed from tn+1 + 100r0k + hk to tn+1 + dr0k + hk. By the

de�nition of K and A0,

H � Kc or H � A0:

In either case, � � H is k-white which proves the claim. N

Since Bn+1 = (sn+1; tn+1)+W3r0k
is the last element in the enumeration of Cs, Claim IV

implies that � is a k-continuation at (2(tn+1 + dr0k + hk); tn+1 + dr0k + hk) with width

wk+1� 4(tn+1 + dr0k + hk) and extension hk+1 + h� (tn+1 + dr0k + hk). It follows that

C� is a (k + 1)-white-cover of T �
k+1. �

Proof of Lemma 4.1.6. First, SB
k+1 being k-supersparse implies that R0

k+1 \ Z �
[yk+1 + rk+1;1) is k-supersparse. Since the last element of Cs, Bn = (sn; tn) +W3r0k

,

has tn < yk+1 + rk+1, it is easy to deduce from the proof of Lemma 4.1.10 that

� � R0
k+1 \ Z� [yk+1 + 2rk+1;1) is k-white. Since R0

k is k-supersparse and R0
k+1, R

0
k

overlap by 3r0k, it follows by Lemma 4.1.10 that � � R0
k is k-white. �

Note that for k = k0, " needs to be chosen su�ciently small such that 2c2 log
2 1=" � r0k0 .

This has the e�ect of making the width wk0 and extension h in Lemma 4.1.6 large

when applying the lemma to R0
k0
, S 0k0. The height of the context, hk0 , may be kept

at r0k0 .



65

4.2 Relaxation upper bound

The upper bound will follow from a lower bound to Pr(E1(c0"�1=2; T )) as a function of

T . For this, we will use the fact that in the absence of bad errors, an \approximately"

well-placed good error can increase the size of the island by a constant factor. There-

fore an island of size c0"
�1=2 arises from O(log(1=")) well-placed good errors, and the

probability for this to happen will be of the order of "c2 log(1=") = 2�c2 log
2(1=") for some

constant c2 > 0. If we wait until 2c2 log
2(1=") we will see such an event with constant

probability, i.e., E1(c0"�1=2; 2c2 log
2(1=")) has constant probability.

Let us de�ne the window size

rk = c1c
k

where c1 > c > 1 are �xed constants. Consider the initial con�guration � where

�(s) = 11 for s � 0 and �(s) = 00 for s > 0. Let ' be a sample of K";� with

initial con�guration � such that at the sequence of space-time points (Ti; Ti); i =

0; 1; 2; : : : an error event setting '(Ti; Ti) = 11 occurs but otherwise ' is error-free. By

Proposition 3.3.1, a left-moving black cone arises at these space-time points. Fixing

(T0; T0), the sequence (Ti; Ti) is inductively de�ned as follows: For i � 1, (Ti; Ti) is

the unique point such that the cones starting at (Ti�1; Ti�1) and (Ti; Ti) meet for the

�rst time at site 0. A simple calculation shows that

Ti =

�
4

3

�i

T0:

The maximum width of the cone starting at (Ti; Ti) is given by wi = Ti=2.

To amplify the probability of ' occurring for i = O(log(1=")), we de�ne a growing

area Ai in which at least one good error is required to occur. We will de�ne a new

sequence of space-time points (T 0i ; T
0
i ) lying adjacent to the diagonal s = t as follows.

Let T 00 > 0 be given. Let A0 = (T 00; T
0
0��T 00)+W�T 0

0
��T 0

0
where 0 < � < 1 is a constant.

Let au0 = (T 00; T
0
0 � �T 00) be the upper-left corner of A0 and let al0 = (T 00 + �T 00; T

0
0)

be the lower-right corner point. De�ne a cone C0 induced by the two lines passing
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through au0 ; a
l
0 with slope �1 and �2, respectively:

C0 = f (s; t) : �2(t� T 00 � �T 00) + T 00 � s � �(t� T 00) + T 00 � �T 00; s � 0 g:

For i � 1, (T 0i ; T
0
i ) is de�ned to be the unique space-time point such that Ci�1 and

Ci meet for the �rst time at site 0 where Ai = (T 0i ; T
0
i � �T 0i ) +W�T 0i��T

0
i
. A pictorial

depiction is shown in Figure 4.2.1.

Lemma 4.2.1 Let T 0i , i = 0; 1; 2; : : : be de�ned as above. Then

T 0i =

�
4� 2�

3 + 2�

�i

T 00:

Moreover, w0
i = (1 + 3�)T 0i=2.

Proof. Assume we are given (T 0i ; T
0
i ). To �nd (T 0i+1; T

0
i+1), �rst note that the line

passing through aui with slope �1 intersects the space axis s = 0 at (0; 2T 0i � �T 0i ).

By de�nition of (T 0i+1; T
0
i+1), a

l
i+1 must lie on the line passing through (0; 2T 0i � �T 0i )

with slope �2,

s = �2(t� (2� �)T 0i ): (4.2.2)

Since ali+1 = (T 0i+1; T
0
i+1 + �T 0i+1), substituting a

l
i+1 into equation (4.2.2) yields

T 0i+1 =
4� 4�

3 + 2�
T 0i :

The width w0
i is obtained by computing the intersection point of the lines passing

through aui+1 and ali+1 with slopes �1 and �2, respectively, then halving the space

coordinate. Simple calculation yields

((1 + 3�)T 0i+1; (1� 2�)T 0i+1);

from which w0
i+1 = (1 + 3�)T 0i+1=2 follows immediately. �

Thus, � < 1=4 ensures that a constant factor expansion is attained at successive

iterations. At � = 0, we have T 0i = Ti and w0
i = wi. In the following, we will set

c =
4� 2�

3 + 2�
:
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Hence, T 0i = c1c
i where T 00 = c1.

We will use a sequence Si of space-time rectangles where

Si = (0; ri) +W4ri:

Let A+
i be the space-time square of size �ri � �ri:

A+
i = (ri � �ri; ri) +W�ri:

Let A�
i be the symmetric reection of A+

i around the space axis s = 0. That is,

A�
i = (�ri; ri) +W�ri . Given the error processes Ex;t;j; Bx;t;j, we will call Si black-

spotted if

(i) There are no bad errors in Si.

(ii) There is at least one good error in each A+
i ; A

�
i , respectively.

Lemma 4.2.3 Let k � (log 1=2c21� + log 1=")=2 log c. There exists c1 > 0 such that

Pr
� k̂

i=0

Si is black-spotted
�
> e�a log

2 1="

where a = (1 + log 1=2c21�)=2 log c.

Proof. First, Pr(Si contains no bad errors) � 1� "�c21c
2i and

Pr(A+
i ; A

�
i each contain at least one good error) � "(1� �)�2c21c

2i:

Since

Pr(Si is black-spotted) � Pr(Si contains no bad errors) �

Pr(A+
i ; A

�
i each contain at least one good error);
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we have

Pr
� k̂

i=0

Si is black-spotted
�
�

kY
i=0

(1� "�c21c
2i)(1� �)k"k�2kc2k1 c

P
i 2i

�
�
�2c21
2

�k kY
i=0

(1� "�c21c
2i)"kck

2+k

�
�
�2c21
4

�k

"kck
2+k

where the last inequality follows from the restriction on k. For su�ciently large c1,

(�2c21=4)
k = 1, and we have

Pr
� k̂

i=0

Si is black-spotted
�
� "k � e�a log

2 1="

where a = (1 + log 1=2c21�)=2 log c. �

Theorem 4.2.4 There are constants c2; � > 0 such that

Pr(E1(c0"�1=2; 2c2 log
2 1=")) > �:

Proof. Lemma 4.2.1 gives us the constant expansion factor c = (4�2�)=(3+2�) > 1

for � < 1=4, and Lemma 4.2.3 restricts the number of iterations to k � (log 1=2c21�+

log 1=")=2 log c. Starting with an initial island of size T 00 = c1, after k iterations

w0
k � c1

2
ck =

c1
2
c(log 1=2c

2
1�+log 1=")=2 log c

=
c1
2
e(log 1=2c

2
1
�+log 1=")=2 =

c1
2

1p
2c21�

"�1=2

=
1

2
p
2�

"�1=2 � "�1=2

2

for � � 1=2.

Since we want 2w0
k � c0"

�1=2, we need c0 copies of such events occurring adjacent

to each other at the same time. Let us denote this event by A. Then

Pr(A) > "c0c1e�c0a log
2 1=" = ec0c1 log "e�c0a log

2 1=" � e�c0(a+c1) log
2 1="
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where a = (1+log 1=2c21�)=2 log c and we have used Lemma 4.2.3. Thus c2 = c0(a+c1)

which completes the proof. �

i

i+1

T’

T’

w’
i

w’
i+1

Space

Time

Figure 4.2.1: Constant factor growth of black island due to approximately placed

single error.



Chapter 5

GKL rule

5.1 Proof structure of mixing

The proof structure is similar to two-line voting except that the nonmonotonic nature

of the GKL rule forces us to consider the behavior of all trajectories ��, � 2 SZ, rather

than just the two ��00 , ��11 a�orded by the \sandwiching property" in the monotonic

case. (Note, we are using S = f0; 1g as the state set instead of f�1; 1g.) One further
di�erence is the presence of two di�erent interfaces, one behaving similarly to the

interface of two-line voting, and the other resembling a simple random walk.

Let us de�ne a system of trajectories of the probabilistic cellular automaton L";�

joined by a common probability space using basic coupling analogous to two-line

voting. First, for all x; t we independently toss a coin Ex;t with the property

Pr(Ex;t = u) =

8<
:

1� " if u = 0,

" if u = 1.

This is followed by a coin Bx;t which will be 1 with probability 1 � � and 0 with

probability �. Now, for each � = ��, � 2 SZ, we proceed as follows. Suppose that

�(�; t) is de�ned up to t > 0. We will de�ne it for t+1. If Ex;t+1 = 1 then the de�nition

obeys the deterministic transition given by (1.1.1). Otherwise, �(x; t+ 1) = Bx;t+1.

70
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Proposition 5.1.1 If there is a �1 > 0 such that 8n 2 N, 9t0 > 0, 8t > t0,

8�; �0 2 SZ

Pr(��(x; t) = ��
0

(x; t); �n � x � n) > �1; (5.1.2)

then L";� is mixing.

Proof. It is su�cient to show that the supposition implies

lim
t!1

Pr(��(x; t) = ��
0

(x; t); �n � x � n) = 1:

Consider a sequence of trapezoids Ci = (�wi; wi; ui; ui + t0(wi); 3), i = 1; : : : ; m,

f (x; t) : ui � t0(wi) � t � ui; �wi + 3t < x < wi � 3t g

going backward in time such that

w1 = n;

wi+1 = wi + 3t0(wi); 0 < i � m� 1;

u1 > 0;

ui+1 = ui � t0(wi); 0 < i � m� 1;

where t0(�) is the time lower bound function. (See Figure 5.1.1.) Clearly, for any

m > 0, we can choose u1 > 0 su�ciently large such that

Ci � Z� [t0(wm);1); i = 1; : : : ; m:

Let Ai denote the event

��(x; ui) = ��
0

(x; ui); �wi � x � wi:

Using the assumption, we have Pr(:Ai j Bi(�; � 0)) � 1� �1, for all �; �
0 2 SZ, where

Bi(�; � 0) is the event

��(�; ui � t0(wi)) = � ^ ��
0

(�; ui � t0(wi)) = � 0:
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t (w )
1

t (w    )m-1

t (w  )m Cm

Cm-1

C1

.

.

.

0

0

0

Figure 5.1.1: Ampli�cation trapezoids.

Hence,

Pr
� m̂

i=1

:Ai

���Bi(�; � 0)
�
� (1� �1)

m � e��1m:

However, by SOL, if Ai holds for some 1 < i � m, then A0 must hold as well. Thus,

Pr(A0) > 1� e��1m;

and Pr(A0)! 1 as m!1 (t!1). �

We will prove (5.1.2) in the following way. Let E0(n; s; t) be the event

Ex;t = 1 ^ Bx;t = 1; x 2 [s� n; s+ n];

and let E1(n; s; t) =
S

t0�t E0(n; s; t). That is, Ei(n; s; t), i = 1; 2, correspond to the

Ei's of two-line voting translated in space by s 2 Z.

Lemma 5.1.3 There are c0; �2 > 0 such that 8�; �0 2 SZ, 8s 2 Z, 8t � 0, 8" > 0,

Pr(��(x; t) = ��
0

(x; t); s+ t=8 � x � s+ t=2 j E1(c0"�1=2; s; t)) > �2:

Notice that the trapezoid of agreement is skewed in the positive direction with a net

expansion factor of 3=8.

Proposition 5.1.4 Lemma 5.1.3 =) (5.1.2).
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Proof. Since E1(c0"�1=2; s; T ) has constant probability lower bound for T � "�c0"
�1=2

,

�1 = �2 Pr(E1(c0"�1=2; s; T )):

For any n, let

t0 = T +
16

3
n:

Since the skewed trapezoids in Lemma 5.1.3 expand linearly with a net speed of 3=8,

the width of agreement at time t0 is at least 2n. Clearly, for each t > t0, we can

choose s 2 Z such that

[�n; n]� t � B

where B is a skewed trapezoid emanating from (s; 0) + [0; c0"
�1=2) � T (due to

E1(c0"�1=2; s; T )) on which all ��, � 2 SZ, concur. �

Lemma 5.1.3 will be implied by the following two lemmas, both of which depend

on a sequence Ri = (yi; zi; ui; vi; qi; pi), i = 0; 1; : : : of skewed trapezoids

f (x; t) : ui � t � vi; yi + qi(t� ui) < x < zi + pi(t� ui) g;

0 < qi < pi, forward-linked in space-time. Let (bi)i2N be an increasing sequence to be

de�ned later. We will say that (Ri; bi) is forward-linked to (Ri+1; bi+1) if

Z� [1; ui+1 + bi+1) \ Ri+1 � Ri(bi+1=2):

Figure 5.1.2 depicts three forward-linked skewed trapezoids where the shaded region

is the region of agreement. Analogously to two-line voting, we will de�ne a sequence

Sk, k 2 N , of space-time rectangles such that Rk � Sk.

Lemma 5.1.5 (agreement) For all �; �0 2 SZ, if ��; ��
0

are k-black on skewed

trapezoid Rk then 8(x; t) 2 Rk(bk),

��(x; t) = ��
0

(x; t):
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Rk

Rk+1

R
k-1

R     (b     
k+1k+1

)

)R     (b     k-1 k-1

R   (b   
k k )

Figure 5.1.2: Forward-linked skewed trapezoids Rk�1, Rk, Rk+1. The enclosed, shaded

trapezoids represent regions of agreement Rk�1(bk�1), Rk(bk), Rk+1(bk+1).

Lemma 5.1.6 There are c0; �2 > 0 such that for all " > 0, � 2 SZ,

Pr
� 1̂

k=0

�� � Rk is k-black
��� E0(c0"�1=2; 0)

�
> �2:

The following two lemmas will �nish the proof.

Lemma 5.1.7 There exists � < 1=2 such that for all " > 0,

Pr
� 1̂

k=0

Sk is k-sparse with black-bias �
�
> �2:

Lemma 5.1.8 (inheritance)

(a) There is a c0 such that for all � 2 SZ if E0(c0"�1=2; 0) holds and S0 is 0-sparse

then �� � R0 is 0-black.

(b) For all � 2 SZ, k 2 N, if �� � Rk is k-black and Sk+1 is (k + 1)-sparse then

�� � Rk+1 is (k + 1)-black.



75

5.2 Sparsity and blackishness

Given the error processes Ex;t, Bx;t, we will say a good error has occured at (x; t) if

Ex;t = 1 ^ Bx;t = 1;

and there is a bad error at (x; t) if Ex;t = 1 ^ Bx;t = 0. Sparsity is de�ned analogously

to two-line voting. The only di�erence is that there is one less index. The window

size is given by

rk = c1"
�1=2ck(k!)2

for k = 0; 1; 2; : : : . The constants, including c0, d, will be slightly di�erent from the

two-line voting case; however, otherwise, there are no essential di�erences.

The sparsity lemma has the same form as before (Lemma 3.1.2). It is stated again

for L";�.

Lemma 5.2.1 (sparsity) 8c > 1, 9C1 > 0, 0 < �0 < 1=2 such that 80 < � < �0,

0 < " � 1, c1 > C1, k 2 N , the following holds. Let � denote an "-perturbation of L,

L";�. Let A =
S

i2[1;N ] (ai; bi) +Wrk, ai; bi 2 Z, where � � A is de�ned. Let qk be the

probability that � is not k-sparse on A. Then

qk < N2
k�1+(k+1)=2

where 0 <  < 1 is a constant depending only on c.

Remark 5.2.2 The proof is exactly the same as for K";� except for a missing

constant 2 in the basis case. Speci�cally, the upper bounding calculation of

Pr(� is not 0-sparse on W i) is replaced by

Pr(� is not 0-sparse on W i) � (c1"
�1=2)2"� + (1� "(1� �))(c1"

�1=2)2

� c21� + e�c
2
1
(1��) < ;

which again holds for c1 su�ciently large and � su�ciently small.
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Let us de�ne the sequences Rk, bk, and Sk for k 2 N . First, bk = drk where

d = 150 is a constant used in the de�nition of k-black in Section 3.2. The skewed

trapezoid Rk = (yk; zk; uk; vk; qk; pk) is given by

zk � yk = (50 + 2d)rk;

vk � uk = 8(80 + 3d)rk+1=3;

qk = 1=8� 1=(k + 8);

pk = 1=2 + 1=(k + 2:5):

Based on where R0 is located in space-time, Rk is placed such that it is forward-linked

to Rk�1 for k � 1. Given Rk, Sk is the space-time rectangle of size

56(80 + 3d)rk+1=3� 8(80 + 3d)rk+1=3

such that Rk � Sk is centered within Sk at the top (t = uk). Since rk+1=rk = c(k+1)2,

Sk can be expressed as the disjoint union of 448(80 + 3d)2c2(k + 1)4=9 space-time

windows Wrk .

Proof of Lemma 5.1.7. We will show that Lemma 3.1.2 =) Lemma 5.1.7. To lower-

bound Pr(
V1

k=0 Sk is k-sparse with bias �), let us upper-bound the probability of its

complement event Pr(9k : Sk is not k-sparse with bias �).

Pr(9k : Sk is not k-sparse with bias �) �
1X
k=0

Pr(Sk is not k-sparse with bias �)

<
1X
k=0

N0(k + 1)42
k�1+k=2+1=2

=
1X
k=0

N0
2k�1+k=2+1=2�� log(k+1)

<
N0

1� 
< 1� �2

where � = �4= log , N0 = 448(80 + 3d)2c2=9, and we have used Lemma 3.1.2 with

N = N0(k + 1)4 for each k � 0. For  su�ciently small, � < 1=2, and the last two

inequalities hold. �
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5.3 Spreading of blackishness

The de�nition of k-black is the same as in two-line voting. The next lemma is the

main technical lemma in the mixing proof of the GKL rule.

Lemma 5.3.1 (expansion) Let �Lk = 1=8 � 1=(k + 8), �Rk = 1=2 + 1=(k + 2:5).

Let Tk = (0; wk; 0; hk; �
L
k ; �

R
k ) be a skewed trapezoid where w0 � 50r0, h0 = 3r0, and

wk � rk, hk = 3rk for k > 0. Let

T 0
k = (�Lk hk; wk + �Rk hk; hk; hk + h; �Lk ; �

R
k )

where h � 0. Let Uk = (�2rk; wk + 2rk; 0; hk + h; 0; 1). Then, 8� 2 SZ,

�� � Tk is k-black ^ Uk is k-sparse =) �� � (Tk [ T 0
k ) is k-black:

We will say that �� is a k-continuation at (�Lk hk; hk) with width wk + (�Rk � �Lk )hk

and extension h. Notice that this completely determines Tk, T 0
k , and Uk. We will call

Tk the context of the k-continuation.

Lemma 5.3.2 (bootstrap) Let ' be a sample path of L";� such that '(s; 0) = 11

for s 2 [0; `) where ` � 50r0. Let (�2r0; `+ 2r0; 0; h; 0; 1) be 0-sparse. Then ' � K is

0-black where

K = f (s; t) : 0 � s < `� 14r0 + t; 0 � t < h g:

Proof. The proof is exactly analogous to the two-line voting case. The only two

di�erences are, one, that the left-moving black cones now travel with speed 3 at the

front instead of 2 which only increases the volume of the backward cone T 0 in the

proof of Lemma 3.2.4; and, two, the left boundary remains stationary. In fact, it

expands slightly toward the left, a property which we are not going to exploit. �

Proof of Lemma 5.1.8. Lemma 5.3.2 =) Lemma 5.1.8 (a). Consider a sample path

' of L";� with E0(c0"�1=2; 0) where c0 = (80 + 2d)c1. Let K(`) denote the trapezoid
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in Lemma 5.3.1 with width `, height h = 8(80 + 3d)r1=3, centered at 0. Since

R0 = (y0; z0; u0; v0; 0; 0:9) where

z0 � y0 = (50 + 2d)c1"
�1=2;

v0 � u0 = 8(80 + 3d)r1=3;

R0 � K(c0"�1=2). S0 is 0-sparse and its width 56(80 + 3d)r1=3 satis�es the width

requirement in the supposition of Lemma 5.3.2:

(50 + 2d)c1"
�1=2 + 32(80 + 3d)r1=3 < 56(80 + 3d)r1=3:

Hence, ' � K(c0"�1=2) is 0-black which by containment implies ' � R0 is 0-black.

Lemma 5.3.1 =) Lemma 5.1.8 (b). The proof goes by induction on k. Since Rk

being k-black trivially implies it is (k+1)-black, the implication holds if (Rk; bk) being

forward-linked to (Rk+1; bk+1) satis�es the supposition of Lemma 5.3.1. Let k = 0.

Part (a) has shown that ' � R0 is 0-black. By the de�nition of forward-linkedness,

it is easily checked that ' is a 1-continuation at (y1 � �1; u1) with parameters (z1 �
y1 + 2�1; 3rk; v1 � u1). Hence, ' � R1 is 1-black. Since v1 � u1 = 8(80 + 3d)r2=3 and

the net expansion factor is at least 3=8, i.e.,

�Rk � �Lk =

�
1

2
+

1

k + 2:5

�
�
�
1

8
� 1

k + 8

�
>

3

8
;

the width of R1 at time v1 is at least (80 + 3d)r2. The previous argument applies to

any k > 0 which carries the induction step. �

Lemma 5.3.3 (error-correction) Let ' be a k-continuation at both (0; 0) and

(a; 0) with extension h and widths `, `0, respectively. Let a > ` and h = a� ` + drk.

Let

L = f (s; t) : �Lk t < s < �Rk t+ a + `0; 0 � t < h g;

B = (`� rk; 0) +W8(a�`)=3+2rk :

Then ' � L nB is k-black.
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Fact 5.3.4 For each k � 0, Lemma 5.3.1 =) Lemma 5.3.3.

Proof. Let

K = f (s; t) : �Lk t < s < �Rk t + `; 0 � t < h g;

K0 = f (s; t) : �Lk t+ a < s < �Rk t + a+ `; 0 � t < h g:

By Lemma 5.3.1, ' is k-black on K and K0.

Let (x; y) be the intersection point of the two lines given by

s = t=2 + `;

s = t=8 + a:

Calculation of the intersection point yields

(x; y) = ((4a� `)=3; 8(a� `)=3):

Since

f (s; t) : t=2 + ` < s < t=8 + a g � B

for t � 0, and

(s; t) +Wrk � L nB =) (s; t) +Wrk � K _ (s; t) +Wrk � K0;

noting �Lk < 1=8, �Rk < 1=2, it follows that ' � L is k-black. The last implication

holds since the size of B was chosen 2rk larger than necessary to cover the correction

process. The width requirement on `, `0 is independent of the size of the error island

a� ` since the widths of K, K 0 both expand in time. �

Figure 5.3.1 is a depiction (not drawn to scale) of the error-correction process facil-

itated by Lemma 5.3.3. We will be interested in the case when a � ` = 21rk which

accounts for the worst-case spreading e�ect of a 3rk � 3rk error window under the

speed-of-light 3. The exclusion window that covers the error e�ect is contained in
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k-black
trapezoid

k-black
trapezoid

K K’

exclusion  window  B

0  l a a + l’

Figure 5.3.1: Error-correction Lemma in action: error region sandwiched between the

k-black trapezoids K, K 0 is eaten up; ' � (K [K 0) nB is k-black.

(`� 16rk; 0) +W60rk since

8(a� `)=3 + 2rk = 56rk + 2rk < 60rk

where we have substituted 21rk for a � `. The additional 2rk in the window size

is needed to get the inclusion implication at the end of the proof. Hence, d = 100

su�ces to cover the error correction process including the k-sparse error.

Again, Lemma 5.3.3, although implied by Lemma 5.3.1 for each level k, is itself

used in the proof of the latter. Hence, Lemma 5.3.3 it is proven conjointly with

Lemma 5.3.1 in the induction.

Proposition 5.3.5 Let ' be a trajectory of L with initial condition '(0; 0) =

'(�1; 0) = '(1; 0) = 1, and for all other s, '(s; 0) 6= '(s + 1; 0) and '(s; 0) 6=
'(s� 1; 0). Let �l; �r : N ! Z denote the endpoint processes of the maximum interval

[�l(t); �r(t)] such that

'(s; t) =

8<
:

1 if s 2 [�l(t); �r(t)];

0 otherwise.

Then �l(t) = �3t� 1 and �r(t) = �t + 1.
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Proof. Let t = 0. Clearly, �l(0) = �1 and �r(0) = 1. Assume the relations hold for

t > 0. Consider the space-time points (�3t�4; t+1), (�3t�3; t+1), (�3t�2; t+1),

and (�t + 1; t + 1). By the action of L, '(�3t � 4; t + 1) = '(�3t � 3; t + 1) =

'(�3t�2; t+1) = 1, and '(�t+1; t+1) = 0. Moreover, for all�3t�1 � s < �t+1 the
sites remain unchanged whereas for all other sites their values toggle to the opposite

value. Hence, �l(t+ 1) � �3(t + 1)� 1 and �r(t+ 1) � �(t + 1) + 1. �

Proof of Lemma 5.3.1. The proof is analogous to two-line voting and contains no

essential di�erences. The constants change slightly due to the increased speed-of-

light 3, and we need a separate slope deection calculation for the left boundary. We

will repeat the induction proof, leaving out parts which are obviously the same and

concentrating on the di�erences which themselves are relatively minor.

The proof goes by induction on k. Assume k = 0. First, Lemma 5.3.2 is applied

to the all-black space interval [0; w0) at time t = 0 to yield the all-black space interval

[0; w0 + h0 � 14r0) at t = h0. Since T0 occupies [�L0 h0; w0 + �R0 h0) at t = h0 where

�L0 = 0, �R0 = 0:9, and h0 = 280r0, it follows that [0; w0 + h0 � 14r0) is strictly larger

than [�L0 h0; w0+ �R0 h0) by 14r0 on the right side. Hence Lemma 5.3.2 can be applied

again to the space interval [0; w0+ h0� 14r0) at t = h0 to conclude that �
� is 0-black

on the trapezoid (0; w0 + h0 � 28r0; h0; h0 + h; 0; 1). Since

T 0
0 � (0; w0 + h0 � 28r0; h0; h0 + h; 0; 1);

the basis is proven.

Assume the statement holds for k � 0. Let Cs, Cb, C 0b, C�, and T �
k+1 be de�ned

exactly as in the two-line voting case. We will prove that

C� is a (k + 1)-black-cover of T �
k+1 (5.3.6)

which implies the Expansion Lemma by the following implication:

(5:3:6) =) �� � (Tk+1 [ T 0
k+1):
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The implication is stated as Claim I in the proof of two-line voting and its proof is

exactly the same.

The proof of (5.3.6) goes by induction on the size of Cs. Assume n = jCsj =
0. That is, Uk+1 is k-sparse. If jC 0bj = 0, then by the inductive assumption, �� is

a k-continuation at (�Lk+1hk; hk) with width wk+1 + (�Rk+1 � �Lk+1)hk and extension

hk+1 + h � hk. Hence, �� � (�Lk+1hk; wk+1 + (�Rk+1 � �Lk+1)hk; hk; hk+1 + h; �Lk ; �
R
k ) is

k-black. Since

T �
k+1 � (�Lk+1hk; wk+1 + (�Rk+1 � �Lk+1)hk; hk; hk+1 + h; �Lk ; �

R
k );

�� � T �
k+1 is k-black.

Assume jC 0bj > 0. Let (s�; t�) +Wdrk 2 C 0b be an element such that t� is maximal.

Let K = Tk+1 \ Z� [t� + drk; t
� + drk + hk).

Claim II �� � K is k-black.

Proof: Let D = (x; y) +Wrk�2drk�1 be any test window such that H = D \K 6= ;.
Since B 2 C 0b =) B\H = ;, we only need consider B 2 CbnC 0b such that B\H 6= ;.
Let B = (a; b) +Wdrk be such an element. Well-separatedness, B 2 Cb n C 0b, and Cb
being a (k+ 1)-black-cover imply that �� is a k-continuation at (a0; b0), b0 = b� rk,

a0 = maxfa� 3rk � drk=8; �
L
k+1b

0g, with width ` = minfdrk + 4rk + drk=8; wk+1 +

�Rk+1b
0 � a0g and extension drk + hk + rk. Hence,

�� � (a0; a0 + `; b0; b0 + drk + hk + rk; �
L
k ; �

R
k )

is k-black. Since H � (a0; a0+ `; b0; b0+ drk+hk+ rk; �
L
k ; �

R
k ), �

� � H is k-black. N

Claim II implies that �� is a k-continuation at (�Lk+1(t
�+drk+hk); t

�+drk+hk) with

width wk+1 + (�Rk+1 � �Lk+1)(t
� + drk + hk) and extension hk+1 + h� t� � drk � hk. It

follows that �� � T �
k+1 is k-black.

Assume (5.3.6) holds for jCsj = n � 0. Let Bn+1 = (sn+1; tn+1) +W3rk be the last

element in the enumeration of Cs. If tn+1 < hk+1 � rk+1 � drk � hk � 3rk, then by

Claim III in the proof of the Expansion Lemma of two-line voting, (5.3.6) holds for
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jCsj = n+1. Let tn+1 � hk+1� rk+1� drk� hk� 3rk. We will consider the �ve cases

sn+1 > wk+1 + �Rk+1tn+1 + 5rk; (5.3.7a)

wk+1 + �Rk+1tn+1 � 5drk < sn+1 � wk+1 + �Rk+1tn+1 + 5rk; (5.3.7b)

�Lk+1tn+1 + 5drk � sn+1 � wk+1 + �Rk+1tn+1 � 5drk; (5.3.7c)

�Lk+1tn+1 � 5rk � sn+1 < �Lk+1tn+1 + 5drk; ; (5.3.7d)

sn+1 < �Lk+1tn+1 � 3rk: (5.3.7e)

Case (5.3.7e) is analogous to case (5.3.7a) and will not be considered separately.

Cases (5.3.7a), (5.3.7b), and (5.3.7c) are proven analogously to their corresponding

counterparts in two-line voting except for the change in speed-of-light from 2 to 3.

Case (i). Let sn+1 > wk+1 + �Rk+1tn+1 + 5rk. By the speed-of-light, �� � (Tk+1 [
T 0
k+1) \ L,

L = f (s; t) : s � �3(t� tn+1) + sn+1; t � 0 g;

takes on the same values irrespective of whether the error event Bn+1 occurred or

not. Let D = (x; y) +Wrk�2drk�1 be any test window such that

H = D \
�
T �
k+1 n

[
C2C�

C
�
6= ;: (5.3.8)

If D � L then by the inductive assumption on jCsj, �� � H is k-black. Assume

D \ Lc 6= ;. Let K be the trapezoid

(wk+1+�Rk+1tn+1�4(drk+2hk+3rk)�rk; wk+1+�Rk+1tn+1; tn+1�hk; tn+1; �
L
k ; �

R
k ):

If sn+1 � wk+1 + �Rk+1tn+1 + 4(drk + 2hk + 3rk), then �� � K is k-black. This is a

straightforward consequence of well-separatedness since if tn+1 � hk+1, then by the

inductive assumption on jCsj, C�nfCn+1g is a (k+1)-black-cover of T �
k+1\Z�[0; tn+1).

If tn+1 < hk+1 and for some B = (a; b) + Wdrk 2 Cb, B \ K 6= ;, then by well-

separatedness �� is a k-continuation at (a � drk=2; b) with width minf 2drk; wk+1 +
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�Rk+1b�a+drk=2 g and extension 2drk which implies that �� � B0\Tk+1 is k-black where

B0 is the rk-dilation of B. By Proposition 3.3.11, this contradicts the minimality of Cb
and hence �� � K must be k-black. Since �� is a k-continuation at (wk+1+�Rk+1tn+1�
4(drk + 2hk + 3rk) � rk; tn+1) with width 4(drk + 2hk + 3rk) + rk and extension

hk+1 + h� tn+1, �
� � K [K0 is k-black where K0 is the trapezoid

(wk+1 + �Rk+1tn+1 � 4(drk + 2hk + 3rk)� rk; wk+1 + �Rk+1tn+1; tn+1; hk+1 + h; �Lk ; �
R
k ):

Let M = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk; tn+1 + 3rk + drk + 2hk).

Claim IV �� �M is k-black.

Proof: If sn+1 > wk+1 + �Rk+1tn+1 + 4(drk + 2hk + 3rk) then M � L, and by

the inductive assumption (on jCsj), �� � M is k-black. Assume sn+1 � wk+1 +

�Rk+1tn+1+4(drk+2hk+3rk). Let U = (a; b)+Wrk�2drk�1 be any test window such

that U \M 6= ;. By the de�nition of L and K0,

U \M � L or U \M � K0:

We already know that �� � K0 is k-black. Assume U \ M � L. Since tn+1 �
hk+1 � rk+1 � drk � hk � 3rk, M � T �

k+1. By the inductive assumption on jCsj,
C�nfCn+1g is a (k+1)-black-cover of T �

k+1\L, and since Cn+1 is the last element in

the enumeration of C�, it follows that �� �M\L is k-black. Since U \M �M\L,
�� � U \M is k-black. N

LetM0 = (Tk+1 [ T 0
k+1)\Z� [tn+1 +3rk + drk + hk;1). An immediate consequence

of Claim IV (by the inductive assumption on k) is that �� � M0 is k-black. Since

D \ Lc 6= ;, by the de�nition of L, K0, and M0,

H � K [K0 or H �M0:

Hence, (5.3.6) holds for jCsj = n+ 1.

Case (ii). Let �Lk+1tn+1 + 5drk � sn+1 � wk+1 + �Rk+1tn+1 � 5drk. If tn+1 � hk+1,

then by the inductive assumption on jCsj, �� is a k-continuation at both (sn+1�9rk�
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4drk; tn+1 + 3rk) and (sn+1 + 12rk; tn+1 + 3rk) with extension hk+1 + h � tn+1 � 3rk

and widths 4drk + rk and maxf 5drk � 12rk; wk+1 + �Rk+1(tn+1 + 3rk)� sn+1 � 12rk g,
respectively.

If tn+1 < hk+1, �
� remains a k-continuation at both (sn+1� 9rk� 4drk; tn+1+3rk)

and (sn+1 + 12rk; tn+1 + 3rk) with the same parameters as before. Suppose this were

not the case, i.e., for some B = (a; b) +Wdrk 2 Cb,

B \ (KL [ KR) 6= ;

where KL and KR are the contexts corresponding to the two k-continuations at (sn+1�
9rk�4drk; tn+1+3rk) and (sn+1+12rk; tn+1+3rk), respectively. Let (x; y) denote the

upper-left corner of KL and let wL denote the width of KL at t = y. If b > y, then ��

is a k-continuation at (x; y) with width wL and extension hk+1 + h � y, and by the

inductive assumption on k, �� � KL is k-black. If b � y, then �� is a k-continuation at

(x; b) with width wL��Rk (y� b) and extension hk+1+h� b, hence �� � KL is k-black.

A similar argument holds for KR.

Using Lemma 5.3.3 (error correction), �� � K n Cn+1 is k-black where

K = (sn+1 � 9rk � 4drk; wk+1 + �Rk+1tn+1; tn+1; hk+1 + h; �Lk ; �
R
k ):

By SOL, �� � (Tk+1 [ T 0
k+1) \ L takes on the same values irrespective of whether

the error event Bn+1 occurred or not where

L = f (s; t) : s � �3(t� tn+1) + sn+1 or s � 3(t� tn+1) + sn+1 + 3rk; t � tn+1 g:

Let M = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk; tn+1 + 3rk + drk + 2hk).

Claim V �� �M is k-black.

Proof: Let U = (a; b) +Wrk�2drk�1 be any test window such that U \M 6= ;. By
the de�nition of L and K,

U \M � L or U \M � K n Cn+1:



86

We have already established that �� � K n Cn+1 is k-black. Let U \M � L. Since
tn+1 � hk+1 � rk+1 � drk � hk � 3rk, M � T �

k+1. By the inductive assumption on

jCsj, C� n fCn+1g is a (k + 1)-black-cover of T �
k+1 \ L, and since Cn+1 is the last

element in the enumeration of C�, it follows that �� � M \ L is k-black. Since

U \M �M\ L, �� � U \M is k-black. N

Let D = (x; y) +Wrk�2drk�1 be any test window satisfying (5.3.8). If D � L we are

done. If D \ Lc 6= ;, then

H � K n Cn+1 or H �M0

where M0 = (Tk+1 [ T 0
k+1) \ Z� [tn+1 + 3rk + drk + hk;1). Since Claim V implies

that �� �M0 is k-black, (5.3.6) holds for jCsj = n+ 1.

Case (iii). Let wk+1+ �Rk+1tn+1� 5drk < sn+1 � wk+1+ �Rk+1tn+1+3rk. It su�ces

to show that �� is k-black on K where

K = f (s; t) : wk+1 + �Rk+1tn+1 � 5drk + �Rk (t� tn+1) � s �

wk+1 + �Rk+1tn+1 + 5drk + �Rk (t� tn+1); tn+1 � 2drk � t � tn+1 g;

since then the arguments of Case (ii) can again be applied from which (5.3.6) follows.

Consider the space-time point

p = (wk+1 + �Rk+1(tn+1 + 3rk � u); tn+1 + 3rk � u)

where u = rk+1=3. Let p
0 = p+ (�5drk; 0) be the space-translation of p by �5drk.

Claim VI �� is a k-continuation at p0 with width 5drk and extension u� 3rk.

Proof: First, for any window V = (s; t) +Wu such that Bn+1 � V (recall that

Bn+1 is the last element in the enumeration of Cs), (Tk+1 [ T 0
k+1) \ V is k-sparse.

This is a direct consequence of well-separatedness (i.e., choose c su�ciently large

such that rk+1=3 < rk+1� 6rk) and the de�nition of sparsity. Let H be the context

of the (as yet to be determined) k-continuation in the claim. Let (a; b) be the

upper-left corner point of H, and let wH denote the width of H at t = b. To prove
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the claim, it su�ces to show that �� � H is k-black since by the de�nition of u and

well-separatedness (c� d), the trapezoid

(a� 2rk; a+ wH + 2rk; b; tn+1; 0; 1)

is k-sparse. Suppose for some B = (a0; b0) +Wdrk 2 Cb, B \ H 6= ;. If b0 > b, then

by Cb being a minimal (k + 1)-cover, �� is a k-continuation at (a; b) with width

wH and extension hk which implies that �� � H is k-black. If b0 � b, then �� is a

k-continuation at (a; b0) with width wk+1 + �Rk+1b
0 � a and extension drk + hk, and

hence �� � H is k-black. N

Let H0 = (a; a+wH; b; tn+1; �
L
k ; �

R
k ). Claim VI implies that �� � H0 is k-black. We will

prove that K � H0 from which (5.3.6) follows. Since p0 = p + (�5drk; 0), �Lk < �Lk+1,

and �Rk+1 < �Rk < 1, it su�ces to show that

wk+1 + �Rk+1tn+1 + 5drk � wk+1 + �Rk+1(tn+1 + 3rk � u) + �Rk (u� 3rk)

() 5drk � (�Rk � �Rk+1)(u� 3rk): (5.3.9)

Claim VII There exist c; d > 0 such that (5.3.9) holds.

Proof: By the inductive assumption on k, �Rk = 1=2 + 1=(k + 2:5), and (5.3.9) is

equivalent to

5drk �
�
1

2
+

1

k + 2:5
� 1

2
� 1

k + 3:5

�
(rk+1=3� 3rk)

() 15drk � 4

(2k + 5)(2k + 7)
(c(k + 1)2rk � 9rk)

() 15d � 4

(2k + 5)(2k + 7)
(c(k + 1)2 � 9) (5.3.10)

where we have used u = rk+1=3 and rk+1 = c(k + 1)2rk. Upon rearrangement,

(5.3.10) holds i�

(4c� 60d)k2 + (8c� 360d)k + 4c� 525d� 36 � 0:

This is satis�ed, for all k � 0, if c � 132d+ 9. N
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Case (iv). Let �Lk+1tn+1 � 5rk � sn+1 < �Lk+1tn+1 + 5drk. It su�ces to show that

�� is k-black on K where

K = f (s; t) : �Lk+1tn+1 � 5drk + �Lk (t� tn+1) � s �

�Lk+1tn+1 + 5drk + �Lk (t� tn+1); tn+1 � 2drk � t � tn+1 g;

since then the arguments of Case (ii) can again be applied from which (5.3.6) follows.

Consider the space-time point

p = (wk+1 + �Lk+1(tn+1 + 3rk � u); tn+1 + 3rk � u)

where u = rk+1=3.

Claim VIII �� is a k-continuation at p with width 5drk and extension u� 3rk.

Proof: First, for any window V = (s; t) +Wu such that Bn+1 � V (recall that

Bn+1 is the last element in the enumeration of Cs), (Tk+1 [ T 0
k+1) \ V is k-sparse.

This is a direct consequence of well-separatedness (i.e., choose c su�ciently large

such that rk+1=3 < rk+1� 6rk) and the de�nition of sparsity. Let H be the context

of the (as yet to be determined) k-continuation in the claim. Let (a; b) be the

upper-left corner point of H, and let wH denote the width of H at t = b. To prove

the claim, it su�ces to show that �� � H is k-black since by the de�nition of u and

well-separatedness (c� d), the trapezoid

(a� 2rk; a+ wH + 2rk; b; tn+1; 0; 1)

is k-sparse. Suppose for some B = (a0; b0) +Wdrk 2 Cb, B \ H 6= ;. If b0 > b, then

by Cb being a minimal (k + 1)-cover, �� is a k-continuation at (a; b) with width

wH and extension hk which implies that �� � H is k-black. If b0 � b, then �� is a

k-continuation at (a � �Lk (b � b0); b0) with width wH and extension drk + hk, and

hence �� � H is k-black. N

Let H0 = (a; a + wH; b; tn+1; �
L
k ; �

R
k ). Claim VIII implies that �� � H0 is k-black. We

will prove that K � H0 from which (5.3.6) follows. Since �Lk < �Lk+1, using Claim VIII,
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it is su�cient to show that

�Lk+1(tn+1 + 3rk � u) + �Lk (u� 3rk) � �Lk+1tn+1 � 5drk

() �(�Lk+1 � �Lk )(u� 3rk) � �5drk (5.3.11)

Claim IX There exist c; d > 0 such that (5.3.11) holds.

Proof: By the inductive assumption on k, �Lk = 1=8 � 1=(k + 8), and (5.3.11) is

equivalent to

5drk �
�
1

8
� 1

k + 9
� 1

8
+

1

k + 8

�
(rk+1=3� 3rk)

() 15drk � 1

(k + 9)(k + 8)
(c(k + 1)2rk � 9rk)

() 15d � 1

(k + 9)(k + 8)
(c(k + 1)2 � 9) (5.3.12)

where we have used u = rk+1=3 and rk+1 = c(k + 1)2rk. Upon rearrangement,

(5.3.12) holds i�

(c� 15d)k2 + (2c� 255d)k + c� 1080d� 9 � 0:

This is satis�ed, for all k � 0, if c � 1080d+ 9. N

It is easily checked that all the claims in the proof using the well-separatedness prop-

erty with respect to c� d are satis�ed if c = 1500d. �

5.4 Spreading of agreement

Fact 5.4.1 For all �; �0 2 SZ, if ��; ��
0

concur on a space interval [x; x + a) � T ,

then they continue to concur on the space-time triangle

f (s; t) : x + 3(t� T ) � s � x+ a� 3(t� T ); t � T g:

Proof. Immediate consequence of SOL and basic coupling. �
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Proof of Lemma 5.1.5. Assume k = 0. Since ��; ��
0

are 0-black on R0, i.e., �
�(s; t) =

��
0

(s; t) = 1 for (s; t) 2 R0, the basis follows directly.

Assume the statement holds for k > 0. The inductive step is similar to the two-line

voting case except that Fact 3.4.3 cannot be used since the GKL rule is nonmonotonic.

Hence, we need to work with two coverings instead of just one. Let C; C 0 be minimum

(k + 1)-covers of �� � Rk+1 and ��
0

� Rk+1, respectively. If C = C 0 = ;, then by the

inductive assumption,

��(s; t) = ��
0

(s; t); 8(s; t) 2 Rk+1(bk):

Hence they also concur on Rk+1(bk+1). Assume C 6= ; _ C 0 6= ;. Let T = C [ C 0.

Claim If for every 10drk-window W with W \Rk+1 6= ; at most one element from

T has nonempty intersection with W , then �� and ��
0

concur on Rk+1(bk+1).

Proof: We can apply the same argument as in the proof of Lemma 2.2.5 which

only depends on the well-separatedness of elements belonging to a covering. The

fact that T is a union of C, C 0 and the skewed nature of the trapezoid Rk+1 does

not a�ect the argument. Both �� and ��
0

are k-black on

Rk+1 n
[

B2C[C0

B

which allows us to carry out the induction if well-separatedness of elements in T is

ensured. The size of the window W , 10drk, can be easily checked to be su�cient

to apply Fact 5.4.1 which reects the speed-of-light 3 of the GKL rule. Changes in

constants are absorbed by c� d. N

More generally, let us consider a special covering (by intersection) U of T by 10drk-

windows W given by

8B 2 T ; 9W 2 U : W \B 6= ;:

It is an immediate consequence of well-separatedness that at most two elements from

T , one from each C and C 0, can have nonempty intersection with a 10drk-window W .
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Let U be also minimal. Let us partition U = U1 [ U2 where

U2 = fW 2 U : 9B;B0 2 T ; B 6= B0; W \ B 6= ; ^ W \ B0 6= ; g:

For W 2 U1, we can use the size of W itself as the separation condition to apply

Fact 5.4.1 to the element B 2 T with W \ B 6= ;. Let T1 denote the set of all such
B 2 T corresponding to some W 2 U1. For W 2 U2, we can choose c su�ciently

large, so that Fact 5.4.1 can be applied to 2W , the dilution of W by factor 2 such

that both its intersecting elements of T are contained in 2W . Since both �� and ��
0

are k-black on

Rk+1 n
[
B2T1
W2U2

(B [ 2W );

this allows us to repeat the argument of Lemma 2.2.5 as in the previous claim. �

5.5 Relaxation time

5.5.1 Relaxation lower bound

The proof structure of the relaxation time lower bound is the same as in two-line

voting. The main di�erence arises from the change in speed of light which changes

the dimensions of the space-time rectangles and trapezoids, and the statement of

deterministic eroder property for the GKL rule which is used in Proposition 5.5.5.

The de�nition of supersparsity is exactly as before.

Lemma 5.5.1 (supersparsity) There exists 0 < "0 < 1=2, v > c > 1 such that

for all 0 < " < "0, 0 � k � (log 1=")=8 log v, � > 0 the following holds. Let � denote

an "-perturbation of L, L";�. Let A =
S

i2[1;N ] (ai; bi) +Wr0k
, ai; bi 2 Z, where � � A is

de�ned. Let qk be the probability that � is not k-supersparse on A. Then

qk < N"(k+1:2)=4vk(k�1):
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The statement and proof of the Supersparsity Lemma are exactly as in two-line voting.

The only di�erence in the proof is the absence of the constant 2 in the upper bounding

of Pr(� is not 0-supersparse on W i) in the basis.

Let k0 = (log 1=")=8 log v. We will consider a sequence of space-time rectangles

S 0k, k = 0; 1; : : : ; k0, where S
0
k (k < k0) has size 25r

0
k � 4r0k, and S 0k0 is of the size

25 � 2c2 log2 1=" � 4 � 2c2 log2 1="

where c2 > 0 is a positive constant. We will view S 0k as a union of two subrectangles

SU
k ; S

B
k � S 0k each of size 25r0k � 3r0k if k < k0 and

25 � 2c2 log2 1=" � 3 � 2c2 log2 1="

if k = k0. Note that given S 0k, S
U
k and SB

k are uniquely determined.

Lemma 5.5.2 There exist � > 0, c2 > 0 such that for all su�ciently small " (de-

pending on �)

Pr
� k0^

k=0

(SU
k is k-supersparse ^ SB

k is (k � 1)-supersparse)
�

> �

where (�1)-supersparse is interpreted to mean 0-supersparse.

Proof. Let us upper-bound the probability of the complement event: for some

k � k0, S
U
k is not k-supersparse or SB

k is not (k � 1)-supersparse. First, since qk is

monotonically decreasing for 0 � k � (log 1=")=8 log v, we have

Pr(SU
k is not k-supersparse) < 75"0:3;

Pr(SB
k is not (k � 1)-supersparse) < 75c2"0:3;

where we have used r0k+1 = cr0k in the second bound. Second, it is easy to check that

Pr(SU
k is not k-supersparse) � Pr(SU

k is not (k � 1)-supersparse):
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With these two facts in hand,

Pr(9k � k0 : S
U
k is not k-supersparse _ SB

k is not (k � 1)-supersparse)

�
k0X
k=0

�
Pr(SU

k is not k-supersparse) + Pr(SB
k is not (k � 1)-supersparse)

�

� 2Pr(SB
k0
is not (k0 � 1)-supersparse) + 2

k0�1X
k=0

Pr(SB
k is not (k � 1)-supersparse)

< 75 � 22c2 log2 1=""((k0�1)+1:2)=4v(k0�1)(k0�2) + "0:375c2k0

< 75 exp(2c2 log 2 log
2 1=" + k20 log v � (k0=4) log 1=" � 0:05 log 1=")

+ "0:375c2(log 1=")=8 log v

= 75 exp((2c2 log 2� 1=64 log v) log2 1="� 0:05 log 1=") + "0:3(log 1=")75c2=8 log v

Clearly, for c2 < 1=(128 log 2 log v) and " su�ciently small (depending on �),

Pr(9k � k0 : S
U
k is not k-supersparse _ SB

k is not (k � 1)-supersparse) � 1� �

which completes the proof. �

5.5.2 Shrinking region of consolidation

For each � > 0, site x, time t � Relax(n; �;K";�), and k = 0; : : : ; k0, we de�ne a

sequence R0
k � S 0k of trapezoids

R0
k = (xk; xk + 25`k; yk; yk + 4`k;�3)

extending into the past such that

(i) `k0 = 2c2 log
2 1=", `k = r0k, k 2 [0; k0);

(ii) yk0 = �3`k0 , yk = yk+1 + 4`k+1 � 3`k, k 2 [0; k0);

(iii) xk0 = x� `k0=2, xk = xk+1 + 12`k+1 + (`k+1 � 25`k)=2, k 2 [0; k0);

(iv) R0
k \ Z� [yk; yk + 3`k) � SU

k , R
0
k \ Z� [yk + `k; yk + 4`k) � SB

k .



94

Condition (ii) allows for a 3`k overlap between R
0
k+1 and R

0
k, and condition (iii) implies

that (x; t) 2 R0
0\Z� [y0+3`0;1). The lower bound on the relaxation time is implied

by the next lemma.

Lemma 5.5.3 In �0, we have Pr(
Vk0

k=0 �0 � R
0
k is k-white) > �. The same holds

with �1 and k-black.

Thus an immediate corollary of Lemma 5.5.3 is that �0(x; t) = 00 with probability

at least � if t = O(2c2 log
2 1="). Lemma 5.5.3 will be implied by Lemma 5.5.2 and

Lemma 5.5.4 which shows the existence of a shrinking region of increasing \white-

consolidation" in space-time.

Lemma 5.5.4 (consolidation) For all k = 0; : : : ; k0 � 1, if �0 � R
0
k+1 is (k + 1)-

white, SU
k+1 is (k + 1)-supersparse, SB

k+1 is k-supersparse, and SU
k is k-supersparse,

then �0 � R
0
k is k-white. The same holds with k-black.

Before proving Lemma 5.5.4, we will establish a couple of useful facts. The next

result states that a k-white (or k-black) con�guration \quickly" returns to all-white

(all-black) in the absence of errors.

Proposition 5.5.5 (attraction) Let k � 1. Let � : Z� N ! S be a deterministic

orbit such that �(�; 0) is k-white (k-black). Then �(�; �r0k�1) is 0-white (0-black) where

�, 4d < � < c, is a �xed constant.

Proof. The proof goes by induction on k. Let k = 1. Let C be a minimum 1-cover

of �(�; 0). Note that if C = ; then the basis is trivially true. By Theorem 1.1.2, for

every B 2 C there exists sB 2 Z such that

� �
�
(Z� N) n

[
B2C

(sB; 0) +W3dr0k�1

�

is 0-white. Since � > 4d the basis is proven.
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Assume the statement holds for k � 1. Let C be a minimum (k + 1)-cover of

�(�; 0). Let B = (sB; 0) +Wdr0k
be an element of C. Let us consider � restricted on

the space interval

I = (sB + dr0k; sB + r0k+1 � dr0k]:

Clearly, � � (I � [0; 0]) is k-white.

By the inductive assumption and speed-of-light,

� � I 0 � [�r0k�1; �r
0
k�1) is 0-white

where I 0 = (sB+dr0k+3�r0k�1; sB+r0k+1�dr0k�3�r0k�1]. Using well-separatedness and

symmetry, we can apply Theorem 1.1.2 to conclude that �(�; �r0k�1+3(dr0k+6�r0k�1))

is 0-white. Since

�r0k�1 + 3(dr0k + 6�r0k�1) < 4dr0k < �r0k;

the proposition follows. �

Lemma 5.5.6 Let k � 0 and let � be an orbit of L";�. Let E = (x; y) +W3r0k
and

let U = (x� 50r0k; y) +W100r0k
. Let

M = f (s; t) : x� dr0k=2 + 3(t� y) � s < x + dr0k=2� 3(t� y); t � y g:

If Mn E is 0-supersparse and � � (Mn E) \ Z� [y; y] is k-white, then

� � (M\ Z� [y + 3r0k;1)) n U is 0-white.

Proof. By the speed-of-light, � � M is not a�ected by what values � takes on on

Mc \ Z� [y;1). Let

K = f (s; t) : x� 3(t� y) � s < x + 3r0k + 3(t� y); t � y g:
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M

U

E

Figure 5.5.1: Error correction under k-supersparse errors.

By Proposition 5.5.5 and noting that �r0k�1 < 3r0k (� is the time variable in the

proposition),

� � (MnK) \ Z� [y + 3r0k; y + 3r0k] is 0-white.

Theorem 1.1.2 (deterministic eroder property) implies that the error island

K \ Z� [y + 3r0k; y + 3r0k]

which has length 21r0k is corrected within a space-time rectangle of size at most

70r0k � 70r0k. Hence the error correction process, inclusive the (k + 1)-supersparse

error E, is covered by U . For the previous arguments to hold, we must choose d

su�ciently large such that U � M. It is easily checked that this is the case if

d = 1600. �

Figure 5.5.1 depicts the error correction process subject to a (k+1)-supersparse error

described in the proof of Lemma 5.5.6.

Remark 5.5.7 Let (a; b) be the intersection point of the left boundaries ofM and K.
If d = 1600, then b = y+125r0k and it follows that � �M\Z� [y+100r0k; y+125r0k)

is 0-white. We will use this property in the proof of Lemma 5.5.8.
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Lemma 5.5.8 Let Tk = (0; wk; 0; hk;�3), T 0
k = (3hk; wk�3hk; hk; hk+h;�3) where

wk � 25r0k, hk = 3r0k, and h � 0. Let � be an orbit of L";�. Then,

� � Tk is k-white ^ Tk [ T 0
k is k-supersparse =) � � (Tk [ T 0

k ) is k-white:

The same holds true if k-white is replaced by k-black.

We will call � a k-continuation (with respect to supersparsity) at (3hk; hk) with width

wk � 6hk and extension h. This lemma is the main technical tool in the proof of

Lemma 5.5.4, and its structure follows the inductive proof of the Expansion Lemma.

However, it is much simpler due to absence of boundary e�ects facilitated by the two

sides of the trapezoids Tk, T 0
k shrinking with the speed-of-light.

Proof of Lemma 5.5.8. The proof goes by induction on k. Let k = 0. Since � � T0 is
all-white and no errors occur in T0 [ T 0

0 , the basis follows trivially from SOL.

Assume the statement holds for k � 0. Let Cb, C 0b, Cs, C�, and T �
k be de�ned as in

the proof of the Expansion Lemma (Lemma 3.2.2) where Cb is now a minimum (k+1)-

white-cover of Tk+1. Let Bi = (si; ti) +W3r0k
, i = 1; 2; : : : ; n, be the corresponding

enumeration of Cs. It su�ces to prove

C� is a (k + 1)-white-cover of T �
k+1 (5.5.9)

since (5.5.9) implies that � � (Tk+1 [ T 0
k+1) is (k+ 1)-white. (See Claim I in the proof

of the Expansion Lemma with k-black in place of k-white.)

The proof of (5.5.9) goes by induction on the size of Cs. Assume n = jCsj = 0. If

jC 0bj = 0, then � is a k-continuation at (3hk; hk) with width wk+1� 6hk and extension

hk+1+h�hk. By the inductive assumption on k, � � (3hk; wk+1�3hk; hk; hk+1+h;�3)
is k-white from which (5.5.9) follows.

Assume jC 0bj > 0. Let (s�; t�) +Wdr0k
2 C 0b be an element such that t� is maximal.

Let K = Tk+1 \ Z� [t� + dr0k; t
� + dr0k + hk).

Claim I � � K is k-white.
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Proof: Let D = (x; y) +Wr0k�2dr0k�1
be any test window such that H = D \K 6= ;.

Since B 2 C 0b =) B \ H = ;, we only need consider B 2 Cb n C 0b such that

B \ H 6= ;. Let B = (a; b) + Wdr0k
be such an element. Well-separatedness,

B 2 Cb n C 0b, and Cb being a (k + 1)-white-cover imply that � is a k-continuation at

(a0; b), a0 = maxfa�7r0k�3dr0k; 3bg, with width ` = minf7dr0k+14r0k; wk+1�3b�a0g
and extension dr0k + hk. Hence,

� � (a0 � 3r0k; a
0 + `+ 3r0k; b� r0k; b+ r0k + dr0k + hk;�3)

is k-white. Since H � (a0� 2r0k; a
0+ `+2r0k; b� r0k; b� r0k + dr0k+ hk;�2), it follows

that � � H is k-white. N

Claim I implies that � is a k-continuation at (3(t� + dr0k + hk); t
� + dr0k + hk) with

width wk+1� 6(t�+ dr0k+hk) and extension hk+1+h� t�� dr0k�hk. Hence, � � T �
k+1

is k-white.

Assume (5.5.9) holds for jCsj = n � 0. Let Bn+1 = (sn+1; tn+1) +W3r0k
be the last

element in the enumeration of Cs. If tn+1 < hk+1 � r0k+1 � dr0k � hk � 3r0k then

(Tk+1 [ T 0
k+1) \ Z� [hk+1 � r0k+1 � dr0k � hk;1) is k-supersparse;

and hence an argument analogous to the proof of Claim I can be applied to the smaller

trapezoid Tk+1 \ Z � [hk+1 � r0k+1 � dr0k � hk;1) to conclude that � � Tk+1 \ Z �
[hk+1 � r0k+1; hk+1) is k-white from which (5.5.9) follows.

Let tn+1 � hk+1 � r0k+1 � dr0k � hk � 3r0k. If Bn+1 � (Tk+1 [ T 0
k+1)

c, then by SOL

and the inductive assumption on jCsj, (5.5.9) holds for jCsj = n + 1. Let Bn+1 \
(Tk+1 [ T 0

k+1) 6= ;. Note that since � � (Tk+1 [ T 0
k+1) is independent of � � (Tk+1 [

T 0
k+1)

c \ Z� [0;1), we may assume any values for � � (Tk+1 [ T 0
k+1)

c \ Z� [0;1),

in particular, all-white, without a�ecting the analysis. By the same reason, we may

view (Tk+1 [ T 0
k+1)

c \ Z� [0;1) as being 0-supersparse. Let

M = f (s; t) : sn+1 � dr0k=2 + 3(t� tn+1) � s < sn+1 + dr0k=2� 3(t� tn+1); t � tn+1 g:
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Claim II � � (MnBn+1) \ Z� [tn+1; tn+1] is k-white.

Proof: If tn+1 � hk+1, then by the inductive assumption on jCsj, C� n fCn+1g is a
(k+1)-white-cover of � � T �

k+1\Z� (�1; tn+1� 1], and by well-separatedness and

SOL, the claim follows. Let t < hk+1 and assume for some B = (a; b) +Wdr0k
2 Cb,

B \ (MnBn+1) \ Z� [tn+1; tn+1] 6= ;:

Well-separatedness implies that � is a k-continuation at (a � 3dr0k � 3r0k; b) with

width 7dr0k + 6r0k and extension tn+1 � b from which the claim follows. N

Using Lemma 5.5.6, an immediate consequence of Claim II is that

� � (M\ Z� [tn+1 + 3r0k;1)) n U is 0-white (5.5.10)

where U = (sn+1 � 50r0k; tn+1) +W100r0k
. Let

K = f (s; t) : sn+1 � 3(t� tn+1) � s < sn+1 + 3r0k + 3(t� tn+1); t � tn+1 g:

Let v = 3dr0k + 3hk + 3(dr0k � 100r0k � hk) + 3hk.

Claim III � is a k-continuation at (sn+1� v; tn+1+100r0k+ hk) with width 2v+3r0k

and extension dr0k � 100r0k.

Proof: We need to show that � is k-white on the trapezoid

A = (sn+1 � v � 3hk; sn+1 + v + 3r0k + 3hk; tn+1 + 100r0k; tn+1 + 100r0k + hk;�3):

Let D = (a; b) +Wr0k�2dr0k�1
be a test window such that H = D \ A 6= ;. By the

de�nition of v, K, M, and A,

H � Kc or H �M:

If H � Kc, then by well-separatedness and the inductive assumption on jCsj, � � H
is k-white. If H �M, then by (5.5.10) and Remark 5.5.7, � � H is 0-white. N

Claim IV C� is a (k + 1)-white cover of (Tk+1 [ T 0
k+1) \ Z� [0; tn+1 + dr0k + hk).



100

Proof: Let D = (a; b) +Wr0k�2dr0k�1
be a test window such that

H = D \
�
(Tk+1 [ T 0

k+1) \ Z� [0; tn+1 + dr0k + hk) n
[
C2C�

C
�
6= ;:

Let A0 be the same trapezoid as A in the proof of Claim III except that its second

time parameter is changed from tn+1 + 100r0k + hk to tn+1 + dr0k + hk. By the

de�nition of K and A0,

H � Kc or H � A0:

In either case, � � H is k-white which proves the claim. N

Since Bn+1 = (sn+1; tn+1)+W3r0k
is the last element in the enumeration of Cs, Claim IV

implies that � is a k-continuation at (3(tn+1 + dr0k + hk); tn+1 + dr0k + hk) with width

wk+1� 6(tn+1 + dr0k + hk) and extension hk+1 + h� (tn+1 + dr0k + hk). It follows that

C� is a (k + 1)-white-cover of T �
k+1. �

Proof of Lemma 5.5.4. First, SB
k+1 being k-supersparse implies that R0

k+1 \ Z �
[yk+1 + rk+1;1) is k-supersparse. Since the last element of Cs, Bn = (sn; tn) +W3r0k

,

has tn < yk+1 + rk+1, it is easy to deduce from the proof of Lemma 5.5.8 that � �

R0
k+1 \ Z � [yk+1 + 2rk+1;1) is k-white. Since R0

k is k-supersparse and R0
k+1, R

0
k

overlap by 3r0k, it follows by Lemma 5.5.8 that � � R0
k is k-white. �

5.5.3 Relaxation upper bound

The results and proofs in the relaxation upper bound are exactly analogous to two-

line voting except that a black cone now extends with speed 3 (instead of 2) and one

of the boundaries remains stationary. The �rst di�erence only helps to reduce the

number of good errors needed to form a black island of a certain size. However, since

the left boundary is stationary, we are only able to grow an island of size at least

c0"
�1=2=2 in the same time (see Lemma 4.2.4), and we need twice as many copies as

before which changes the constant c2 in Lemma 4.2.4 by a factor of 2.



Chapter 6

Conclusion and future work

This thesis has shown that two simple, one-dimensional cellular automata possessing

the eroder property|GKL (soldiers rule) and two-line voting|are not able to con-

serve information in the long run when subject to strongly biased, independent noise.

The mixing property was shown to hold for any positive error probability " > 0 when

the bias � is a su�ciently small (or \large") constant. The strong bias assumption is

a weak point and leaves room for further improvement since it does not preclude the

possibility that for � � 1=2 the processes K";�, L";� become nonergodic. We believe,

however, that K";�, L";� are mixing for all 0 � � � 1. The bias assumption allowed

us to show that K";� and L";� are mixing for all " > 0 which is of independent inter-

est given that most results in probabilistic cellular automata and interacting particle

systems require that " be su�ciently small, thus leaving a gap in the error probability.

We have also shown that the �nite-time, information-conservation quality of a

mixing system as represented by the relaxation time has a tight, slightly superpoly-

nomial bound as a function of 1=". The lower bound was shown to be independent

of the bias assumption, and so was the expression of the upper bound but not its

proof: after showing that black (or white) islands of a certain size arise with constant

probability in time 2c log
2 1=", we need to make use of the mixing property to predict

the probable fate of those islands. Both the lower bound and upper bound results

required that the error probability be su�ciently small.

101
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With respect to future work, one immediate task is to narrow the bias gap and,

as a special case, prove that K";� and L";� remain mixing when � = 1=2. As Larry

Gray has pointed out, it may be the case that the most di�cult situation arises when

� is very close to 1=2 but not equal to 1=2 since, then, neither the strength in bias

nor the symmetry available with � = 1=2 may be easily exploitable.

A second avenue of exploration lies in the detailed characterization of the interface

arising in one-dimensional rules possessing the eroder property such as GKL and two-

line voting. The width of the interface seems to be a function of the error probability

", and the existence of unstable subcon�gurations|light gray and dark gray regions

in two-line voting, and regions of alternating black and white states in GKL|seems

to give rise to complex interactions including phenomena resembling branching pro-

cesses. This may render the analysis of such systems more di�cult than, say, local

majority voting. Even between two-line voting and GKL the interface dynamics is

slightly di�erent: white and black islands cannot \interpenetrate" each other in the

GKL rule whereas in two-line voting they can. This may make the GKL rule a little

easier to handle than two-line voting.

In this thesis, a notion of boundary was achieved by identifying lines in space-time

on one side of which a sample path was assured to be \well-behaved," i.e., k-black

or k-white. It is not clear whether the k-black property will remain useful in the

context of symmetric errors since k-black subcon�gurations may not be su�ciently

persistent in the presence of unbiased sparse errors. Indeed, if they were, it would

imply that K";1=2 and L";1=2 are nonergodic which goes against the conjecture held

by many in this �eld. However, k-blackishness may still be useful if a weaker form of

persistence could be fruitfully exploited. We note that supersparsity was introduced

to yield more manageable error patterns which are oblivious to the sign of errors but

which embody a stronger form \self-similar infrequency." The probability estimates

for supersparse errors was su�cient to carry out the relaxation time lower-bound

argument for k up to O(log 1=") while still making use of the k-black (white) space-
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time con�guration property. For higher values of k, supersparsity is a too strong

requirement to yield e�ective probabilities. Our upper-bound result suggests that

supersparsity may already be su�ciently weak.

A third, more practical research goal lies in the application of spar-

sity/renormalization techniques to the design and analysis of large-scale distributed

systems such as the Internet. Fault-tolerance issues are ubiquitous in such environ-

ments, ranging from reliable distributed service provision including access to alternate

name servers and document depositories, to the graceful, responsive provision of these

services when multiple components are subject to failures including temporary con-

gestion. For scaling arguments to yield e�ective estimates, the size of the underlying

system needs to be su�ciently large so that constants arising in sparsity analysis can

be absorbed. The rapid growth of computer networks promises to provide a domain

where these techniques may be feasibly applied.
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