
15

Chapter 3: Survey of Convolution Algorithms and Techniques

This chapter surveys algorithms for linear and cyclic convolution in a form that is convenient for

automatic generation. All of the algorithms are presented using the uniform mathematical notation

of bilinear algorithms and are derived systematically using polynomial algebra and properties of

the tensor product. Algorithms implicitly refer to bilinear algorithms, and operations on bilinear

algorithms use the definitions in Section 2.3.

3.1 Linear Convolution

3.1.1 Standard Algorithm

In a few rare cases, the standard method of multiplying polynomials learned in high school might

be the best choice for a linear convolution algorithm. This can be turned into a bilinear algorithm

of matrices in the obvious way.

Example 4 A 3× 3 linear convolution given by the Standard Algorithm is :

sb3 =







1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 0 1




,




1 0 0
0 1 0
1 0 0
0 0 1
0 1 0
1 0 0
0 0 1
0 1 0
0 0 1




,




1 0 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1
0 1 0
0 0 1
0 0 1







= (sb3[C], sb3[A], sb3[B])

3.1.2 Toom-Cook Algorithm

The Toom-Cook algorithm [28, 7, 15] uses evaluation and interpolation to compute the product

of two polynomials. To compute the product h(x) = f(x)g(x), where f and g are N − 1 degree

polynomials, first evaluate each polynomial at 2N − 1 distinct values αi. Next compute the 2N − 1

multiplications h(αi) = f(αi)g(αi). Finally, use the 2N − 1 points (αi, h(αi)) and the Lagrange

interpolation formula to recover

h(x) =
2N−2∑

j=0

h(αi)
∏

k 6=j

x− αk

αj − αk
.



16

This algorithm can be expressed as a bilinear algorithm using the following notation.

Definition 5 (Bar Notation)

Let A(x) = a0+a1x+a2x
2+. . .+anxn we will denote by A(x) the equivalent vector

[
a0 a1 . . . an

]T

Definition 6 (Vandermonde Matrix)

V[α0, . . . , αn] =




1 α0 α2
0 . . . αn

0

1 α1 α2
1 . . . αn

1
...

...
...

. . .
...

1 αn α2
n . . . αn

n


 .

The matrix V applied to the vector of coefficients of f(x) is equal to the vector containing

the evaluations f(α0), f(α1), . . . , f(αn), and applying V−1 to the vector of evaluations returns

the original coefficients. Therefore V−1 corresponds to interpolation and can be computed using

Lagrange’s formula. The following theorem summarizes these observations.

Theorem 7 (Toom-Cook Algorithm) The bilinear algorithm (V−1,V′,V′), where V′ is the

(2N − 1) × N matrix containing the first N columns of V [α0, . . . , α2N−1], computes the N -point

linear convolution of two vectors.

This theorem is a special case of Theorem 3 and follows from the Chinese Remainder theo-

rem applied to f(x) =
∏2N−1

i=0 (x − αi). The matrix R in this case is the Vandermonde matrix

V [α0, . . . , α2N−1].

The Toom-Cook algorithm reduces the number of “general” multiplications from N2 (computed

by definition) to 2N−1 at the cost of more additions. A general multiplication is one that cannot be

precomputed at compile time, or reduced to a series of additions at run-time. For small input sizes

when there are sufficiently many convenient evaluation points such as 0, 1,−1,∞, then the reduction

in general multiplications corresponds to a reduction in actual multiplications. What is meant by

evaluating at ∞ is if f(x) = f0 + f1x + . . . + fkxk, with fk non-zero, then f(∞) = fk. (To see why

this makes sense, consider the limit of f(x)/fkxk as x tends to infinity.)

Example 3 corresponds to the Toom-Cook algorithm using evaluation points 0, 1, and ∞; the

following 3 point example uses evaluation points 0, 1, −1, 2, and ∞.

Example 5 A 3× 3 linear convolution given by the Toom-Cook algorithm is:



17

tc3 =







1 0 0 0 0
−1/2 1 −1/3 −1/6 2
−1 1/2 1/2 0 −1
1/2 −1/2 −1/6 1/6 −2

0 0 0 0 1




,




1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1




,




1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1







= (tc3[C], tc3[A], tc3[B])

Note further that the algorithm can be improved to use fewer operations by using:

tc3[A] = tc3[B] =




1 0 0
1 1 1
1 −1 1
1 2 4
0 0 1




=




1 0 0 0 0 0
0 1 0 0 0 0
1 0 1 0 0 0
0 1 1 1 1 0
0 0 0 0 0 1







1 0 0 0
1 1 0 0
0 0 1 0
0 1 0 0
0 1 0 0
0 0 0 1







1 0 0
0 1 1
0 −1 1
0 0 1




3.1.3 Combining Linear Convolutions

The tensor product can be used to combine small linear convolution algorithms into larger ones in

an efficient manner. This is important, because the tensor product of smaller convolution algorithms

will generally use fewer operations than a direct larger convolution algorithm. For example combining

a Toom-Cook algorithm of size 2 with a Toom-Cook algorithm of size 3, creates a linear convolution

of size 6 that uses many fewer (62 versus 114 for real inputs with one vector fixed) operations than

a Toom-Cook convolution of size 6.

Theorem 8 (Tensor Product of Linear Convolutions) Let Lm and Ln be bilinear algorithms

for linear convolution of size m and n respectively. Then Om,n(Lm⊗Ln) is a bilinear algorithm for

linear convolution of size mn, where Om,n is a sparse (2m−1)(2n−1)×(2mn−1) matrix. The non-

zero entries are equal to one and occur in locations jm+i, j(2m−1)+i and jm+i, (j−1)(2m−1)+m+i

for 0 ≤ j < 2n− 1 and 0 ≤ i < m− 1.

The proof is most easily seen from the polynomial interpretation of convolution. Let a(x) and b(x)

be polynomials of degree mn− 1, and let

A(x, y) =
n−1∑

i=0

Ai(x)yi and B(x, y) =
n−1∑

j=0

Bj(x)yj ,



18

where Ai(x) and Bj(x) are polynomials of degree m− 1. Next, substitute y = xm, a(x) = A(x, xm)

and b(x) = B(x, xm). Consequently, if C(x, y) = A(x, y)B(x, y), then c(x) = C(x, xm). By Lemma 1

and Example 2, Lm⊗Ln computes C(x, y). The matrix Om,n corresponds to the reduction obtained

from substituting y = xm into C(x, y).

Example 6

O2,3 =




1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1




The following generalization is obtained using induction and simple properties of the tensor product.

Theorem 9 Let N = n1, . . . , nt and let Lni , 0 ≤ i < t be linear convolution algorithms of size ni.

Then On1,... ,nt(Ln1⊗· · ·⊗Lnt) = Ln1···nt , where On1,... ,nt is a sparse (2n1−1) · · · (2nt−1)×(2N−1)

matrix defined by On1,... ,nt = On1,n2···nt(I2n1−1 ⊗On2,... ,nt).

3.2 Linear Convolution via Cyclic Convolution

Tolimieri in [27] points out that linear convolution can be obtained from generalized cyclic

convolution corresponding to polynomial multiplication modulo a polynomial. For example, if g(x) =

g0 + g1x + g2x
2 and h(x) = h0 + h1x + h2x

2, then g(x)h(x) can be computed by first convolving g

and h via a 4-point cyclic convolution and then adding the vector g2h2m(x) where m(x) = x4 − 1.

The following theorem expresses Tolimieri’s method in terms of bilinear algorithms.

Theorem 10 (Linear from Cyclic) Let g(x), h(x) be polynomials of degree n − 1 and m(x) =

x2n−2 +
∑2n−3

i=0 mix
i, be a monic polynomial of degree 2n−2. Assume that (Cm, Am, Bm) is a bilin-

ear algorithm that computes g(x)h(x) mod m(x). Then the bilinear algorithm (C,A, B) computes

f(x)g(x), where



19

C =




1 m0

. . .
...

1 m2n−3

1




[
Cm

1

]
,

A =
[

Am

1

]



1
. . .

1
1


 ,

B =
[

Bm

1

]



1
. . .

1
1




Proof

Let c(x) = g(x)h(x) mod m(x). Therefore, f(x)g(x) = c(x) + q(x)m(x), and since m(x) is monic

and of degree 2n− 2, g(x)h(x) = c(x) + gnhnm(x).

(C, A,B) (g, h) =




1 m0

. . .
...

1 m2n−3

1




[
Cm (Amg •Bmh)

gnhn

]

= g(x)h(x) mod m(x) + gnhnm(x)

= g(x)h(x).

3.3 Cyclic Convolution

Convolution modulo f(x) refers to polynomial multiplication modulo a third polynomial. Al-

gorithms for convolution modulo f(x) can be obtained from linear convolution algorithms by mul-

tiplying by a matrix, which corresponds to computing the remainder in division by f(x). Let

M(f(x)) denote the reduction matrix defined by M(f(x))A(x) = A(x) mod f(x). The exact form

of M(f(x)) depends on the degree of A(x). If (C, A,B) is a bilinear algorithm for linear convolution,

then (M(f(x))C,A, B) is a bilinear algorithm for convolution modulo f(x).

Example 7 Composing

M(x2 − 1) =


 1 0 1

0 1 0


 ,



20

with the Toom-Cook bilinear algorithm of equation 2.6, the bilinear algorithm

(M(x2 − 1)C2, A2, B2) =





 1 0 1

−1 1 −1


 ,




1 0

1 1

0 1




,




1 0

1 1

0 1







for 2-point cyclic convolution is obtained.

3.3.1 Convolution Theorem

The well-known convolution theorem provides a bilinear algorithm for computing cyclic convolu-

tion.

Theorem 11 (Convolution Theorem)

The bilinear algorithm (DFT−1
N , DFTN , DFTN ) computes N -point cyclic convolution.

Proof

Let ωN be a primitive N -th root of unity, then xN−1 =
∏N−1

i=0 (x−ωi
N ). Since, V[1, ωN , . . . , ωN−1

N ] =

DFTN , the convolution theorem follows from Theorem 3.

When N = RS, xN − 1 =
∏S−1

i=0 (xR − ωi
S). Applying the Chinese Remainder theorem to

this factorization leads to the following theorem which allows the DFT to be combined with other

convolution algorithms.

Theorem 12 Let N = RS and let Ci, i = 0, . . . , S − 1, be bilinear algorithms to multiply two

polynomials modulo xR − ωi
S. Then

(DFT−1
S ⊗IR)

(
S−1⊕

i=0

Ci

)
(DFTS ⊗IR)

is a bilinear algorithm to compute N -point convolution.

Proof

Let f(x) be a polynomial of degree N − 1 and write f(x) =
∑S−1

j=0 fj(x)xRj , where deg(fj(x)) < R.

Then f(x) mod xR − ωi
S =

∑S−1
j=0 fj(x)ωj

S . Therefore, the matrix R = [R0 R1 . . . RS−1]T with

Rif = f(x) mod xR − ωi
j is equal to DFTS ⊗IR.

Note that multiplication modulo xR − α can easily be transformed into cyclic convolution. Ob-

serve that if βR = α, and h(x) = f(x)g(x) mod xR − α, then

hβ(x) = h(βx) = f(βx)g(βx) (mod (βx)R − α)

= f(βx)g(βx) (mod (βx)R − α)

= f(βx)g(βx) (mod α(xR − 1)).



21

Therefore, h(x) = hβ(x/β).

Applying this observation and the previous theorem leads to the following construction related

to the FFT shown in (2.7).

Theorem 13 Let CR be a bilinear algorithm to compute R-point cyclic convolution, and let FS =

((DFTS ⊗IR), TN
R (DFTS ⊗IR), TN

R (DFTS ⊗IR)). Then (IS ⊗ CR)FS computes N -point cyclic con-

volution.

The following example uses Theorem 12 and the matrix exchange theorem to obtain a result that is

similar to Theorem 13 but without the need for Twiddle factors.

Example 8 Let Fn represent a size n FFT, and let α = e2πi/n. Now let Lm = (Cm, Am, Bm)

represent a linear convolution of size m. From Theorem 12 a size mn cyclic convolution is computed

by

(F−1
n ⊗ Im)

(
n−1⊕

i=0

M(xm − αi)Lm

)
(Fn ⊗ Im) (3.1)

Now suppose (C, A, B) is the bilinear algorithm representing the size mn cyclic convolution of (3.1),

then

C = = (F−1
n ⊗ Im)

(
n−1⊕

i=0

M(xm − αi)Cm

)

A =

(
n−1⊕

i=0

Am

)
(Fn ⊗ Im)

= (In ⊗Am)(Fn ⊗ Im)

B =

(
n−1⊕

i=0

Bm

)
(Fn ⊗ Im)

= (In ⊗Bm)(Fn ⊗ Im)

Note that the direct sums for A and B can be changed to tensor products because Am and Bm do

not change with i, (this of course is not true for C).

After applying matrix exchange the following theorem has just been derived and proved.

Theorem 14 (Mixed Convolution Theorem)

Let α = e2πi/n, Fn be a size n FFT, and (Cm, Am, Bm) be a size m linear convolution. Then

J · (Fn ⊗ Im)(In ⊗AT
m) ·D · (In ⊗Bm)(Fn ⊗ Im)



22

is a size mn cyclic convolution, where

D =

(
n−1⊕

i=0

M(xm − αi)Cm

)T

· (F−1
n ⊗ Im) · Jv,

J is the anti-identity matrix, and v is a fixed input vector.

3.3.2 Winograd Convolution Algorithm

Winograd’s algorithm [29] for computing cyclic convolution follows from the Chinese Remainder

Theorem when applied to the irreducible rational factors of the polynomial XN −1. The irreducible

rational factors of xN − 1 are called cyclotomic polynomials.

Definition 7 (Cyclotomic Polynomials)

The cyclotomic polynomials can be defined recursively from the formula

xN − 1 =
∏

d|N
Φd(x).

Alternatively

ΦN (x) =
∏

gcd(j,N)=1

(x− ωj
N ),

where ωN is a primitive N -th root of unity. It follows that deg(ΦN (x)) = φ(N), where φ is the

Euler φ function. It is well known [16] that ΦN (x) has integer coefficients and is irreducible over

the rationals.

Applying Theorem 3 to xN − 1 =
∏

d|N Φd(x) leads to the following algorithm.

Theorem 15 (Winograd Convolution Algorithm)

Let Cf denote a bilinear algorithm that multiplies elements of C[x]/f(x). Then

R−1


⊕

d|n
CΦd(x)


R (3.2)

where R = [Rd1 Rd2 . . . Rdk
]T and Rdif = f(x) mod Φdi(x) is a bilinear algorithm for N -point

cyclic convolution.

Using the 2-point cyclic convolution algorithm in Example 7 and the cyclotomic polynomials

Φ1(x) = (x − 1), Φ2(x) = (x + 1), and Φ4(x) = (x2 + 1) the following 4-point cyclic convolution

algorithm is obtained.



23

Example 9



R−1
4




1

1

1 0 −1

−1 1 −1




,




1

1

1 0

1 1

0 1




R4,




1

1

1 0

1 1

0 1




R4




,

where R4 is the R matrix in Example 1.

The results in the next section provide a more efficient method for computing R4.

3.3.3 CRT-Based Cyclic Convolution Algorithms for Prime Powers

Selesnick and Burrus [22] have shown that when N = pk is a prime power, the Winograd

algorithm has additional structure. This structure follows from the properties

Φp(x) = xp−1 + · · ·+ x + 1

Φpk(x) = Φp(xpk−1
).

The composition structure of Φpk(x) provides an efficient way to compute Rpk .

Theorem 16 Let Rpk = [R0, Rp, . . . , Rpk ]t be the pk × pk reduction matrix where Rpif(x) =

f(x) mod Φpi(x) for f(x) of degree pk − 1. Then

Rpk =


 1p ⊗Rpk−1

Gp ⊗ Ipk−1


 ,

where Gn is the (n− 1)× n matrix:

Gn =




1 −1

1 −1
. . . −1

1 −1




,

and 1n is the 1× n matrix filled with 1′s. Moreover, Rpk = (Rpk−1 ⊕ I(p−1)pk−1)(Rp ⊗ Ipk−1).

Proof

First observe that if f(x) = f0 + f1x + · · · fm−1x
m−1 + xm and A(x) =

∑m
i=0 aix

i, then A(x)

mod f(x) =
∑m−1

i=0 (ai − fi)xi. Therefore reduction of A(x) modulo f(x) is given by

R =




1 −f0

. . . −f1

1 −fm−1




.



24

When f(x) = 1 + x + · · · + xn−1 the matrix Gn is obtained. Next, observe that if A(x) =
∑m

i=0 Ai(x)xni, where deg(Ai) < n, then A(x) mod f(xn) =
∑m

i=0(Ai(x)−fiAm(x))xni. Therefore

reduction of A(x) mod f(xn) is given by R⊗In, and reduction modulo Φpk(x) = Φp(xpk−1
) is given

by Gp⊗Ipk−1 . Finally, since xpk−1
mod Φpk−1 = 1, reduction of A(x) modulo {Φpi(x), i = 0, . . . , k}

is given by 1p ⊗Rpk−1 . These observations prove the first part of the theorem. The factorization in

the second part is obtained using the multiplicative property of the tensor product.

A simple block matrix multiplication provides the following computation of the inverse of Rpk .

Theorem 17

R−1
pk = 1/p

(
1t

p ⊗R−1
pk−1 Vp ⊗ Ipk−1

)
,

where Vn is the n× (n− 1) matrix



n− 1 −1 −1 . . . −1

−1 n− 1 −1 . . . −1
...

. . .
...

−1 . . . −1 n− 1 −1

−1 . . . −1 −1 n− 1

−1 . . . −1 −1 −1




Moreover, R−1
pk = (R−1

p ⊗ Ipk−1)(R−1
pk−1 ⊕ I(p−1)pk−1).

Example 10 A bilinear algorithm for a cyclic convolution of size 27 is (C,A, B), where Ln =

(Ln[C],Ln[A],Ln[B]) is a bilinear algorithm for a linear convolution of size n of any method, and

C = R−1
33




1
M(x2 + x + 1)L2[C]

M(x6 + x3 + 1)L6[C]
M(x18 + x9 + 1)L18[C]


 ,

A =




1
L2[A]

L6[A]
L18[A]


 R33 ,

B =




1
L2[B]

L6[B]
L18[B]


 R33 ,

and

R33 =




1 1 1
1 0 −1
0 1 −1

I24










1 1 1
1 0 −1
0 1 −1


⊗ I3

I18









1 1 1
1 0 −1
0 1 −1


⊗ I9






25

3.3.4 The Agarwal-Cooley and Split-Nesting Algorithms

The Agarwal-Cooley [1] algorithm uses the tensor product to create a larger cyclic convolution

from smaller cyclic convolutions. The Split-Nesting algorithm, due to Nussbaumer [19], follows

directly from Agarwal-Cooley using simple properties of the tensor product.

The Agarwal-Cooley algorithm follows from the fact that when gcd(m,n) = 1, the algebra

F[x]/(xmn − 1) is isomorphic to F[y, z]/(ym − 1, zn − 1), which by Example 2 is isomorphic to

F[y]/(ym − 1) ⊗ F[z]/(zn − 1). The isomorphism is obtained by mapping x to yz which maps xi

to y(i mod m)z(i mod n). Using the reordering required by this mapping and Lemma 1 leads to the

following theorem which shows how to build an mn-point cyclic convolution algorithm from the

tensor product of m-point and n-point cyclic convolution algorithms.

Theorem 18 (Agarwal-Cooley Algorithm)

Assume gcd(m,n) = 1 and let Cm = (Cm, Am, Bm) and Cn = (Cn, An, Bn) be bilinear algorithms

for cyclic convolution of size m and n. Let Q−1
m,n be the permutation that maps i to (i mod m)n+(i

mod n). Then Q−1
m,n(Cm ⊗ Cn)Qm,n computes a cyclic convolution of size mn.

The permutation Qm,n is defined by the mapping in + j 7→ iem + jen mod mn, 0 ≤ i < m,

0 ≤ j < n, where em ≡ 1 mod m, em ≡ 0 mod n, en ≡ 0 mod m, en ≡ 1 mod n, are the

idempotents defining the Chinese remainder theorem mapping for the integers m and n.

Let R−1
m

(⊕k1
i=0 Cmi

)
Rm and R−1

n

(⊕k2
i=0 Cni

)
Rn be bilinear algorithms to compute m, and n-

point Winograd cyclic convolutions. Then combining Agarwal-Cooley with the Winograd algorithm

yields the bilinear algorithm

Q−1
m,n

(
R−1

m

(
k1⊕

i=0

Cmi

)
Rm

)
⊗


R−1

n




k2⊕

j=0

Cnj


Rn


Qm,n (3.3)

for computing an mn-point cyclic convolution, (provided gcd(m,n) = 1). Using the multiplicative

property of the tensor product, this is equal to

Q−1
m,n(R−1

m ⊗R−1
n )




(
k1⊕

i=0

Cmi

)
⊗




k2⊕

j=0

Cnj





 (Rm ⊗Rn)Qm,n. (3.4)

Rearranging this equation into a double sum of tensor products leads to the “Split-Nesting

Algorithm” which was first derived by Nussbaumer [19], who observed that it requires fewer additions

then equation 3.3. The following theorem describes this transformation.



26

Theorem 19 (Split Nesting) Let C =
⊕s−1

i=0 Ci and D =
⊕t−1

j=0Dj. Then

C ⊗ D = P−1




s−1⊕

i=0

t−1⊕

j=0

Ci ⊗Dj


 P,

where P is a permutation.

Proof

Using the first part of Theorem 6,

C ⊗ D =
s−1⊕

i=0

Ci ⊗
t−1⊕

j=0

Dj =
s−1⊕

i=0


Ci ⊗

t−1⊕

j=0

Dj


 .

Using the second part of Theorem 6, the previous equation is equal to

s−1⊕

i=0

P−1
i




t−1⊕

j=0

Ci ⊗Dj


 Pi, which is equal to P−1




s−1⊕

i=0

t−1⊕

j=0

Ci ⊗Dj


 P,

where P =
⊕s−1

i=0 Pi.

Example 11 Let C4 = R−1
4 (1⊕ 1⊕ C2)R4 and C27 = R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27, where

C2 = M(x2+1)L2, D2 = M(x2+x+1)L2, D6 = M(x6+x3+1)L6, D18 = M(x18+x9+1)L18, are the

algorithms for cyclic convolution on 4 and 27 points given in Examples 9 and 10. By Agarwal-Cooley,

Q−1
4,27(R

−1
4 (1⊕ 1⊕ C2)R4)⊗ (R−1

27 (1⊕D2 ⊕D6 ⊕D18)R27)Q4,27

is an algorithm for cyclic convolution on 108 points. The split nesting theorem transforms this

algorithm into

(Q−1
4,27(R

−1
4 ⊗R−1

27 )P−1

(1⊕D2⊕D6⊕D18)⊕(1⊕D2⊕D6⊕D18)⊕(C2⊕C2⊗D2⊕C2⊗D6⊕C2⊗D18))

P (R4 ⊗R27)Q4,27

where P = I27 ⊕ I27 ⊕ P3 and P3 = (I2 ⊕ L4
2 ⊕ L12

2 ⊕ L36
2 )L54

27.

3.3.5 The Improved Split-Nesting Algorithm

The split-nesting algorithm combined with the prime power algorithm provides a method for

computing any size cyclic convolution. Since the prime power algorithm consists of direct sums of

linear convolutions combined with various reductions, and the split-nesting algorithm commutes the

direct sums and tensor products, all cyclic convolutions computed via split-nesting become direct

sums of reduced tensor products of linear convolutions. It may not be immediately clear as yet, but



27

in fact, any of the linear convolutions and tensor products of linear convolutions can be replaced by

other linear convolutions or tensor products of linear convolutions. This is the main idea behind the

improved split-nesting algorithm. Simply stated, the improved split-nesting algorithm replaces any

linear convolution or tensor product of linear convolutions, with optimal substitutes. Here optimal

may mean fastest run-time, fewest operations, etc.

Example 12 To make this idea more clear, consider example 11 again. One of the components of

this algorithm is C2 ⊗ D18, where C2 = M(x2 + 1)L2 and D18 = M(x18 + x9 + 1)L18, so that this

component is really (M(x2 +1)⊗M(x18 +x9 +1))(L2⊗L18) or more generally a reduction composed

with a tensor product of two linear convolutions (e.g. M(L2 ⊗ L18)).

It will be shown in chapter 6 that the optimal L2 is the Toom-Cook linear algorithm tc2 that

requires 6 operations, and that the optimal L18 is O3,2,3sb3⊗ tc2⊗ tc3, that is obtained by combining

the standard algorithm of size 3 with Toom-Cook’s of size 2 and 3. It will be shown in chapter 6 that

this algorithm requires 366 operations.

Next note that L2 ⊗ L18 is related to L36 since the latter is just O2,18(L2 ⊗ L18). Because of

matrix exchange, the O matrix has no cost, so that the number of operations required for L2 ⊗L18,

is the same as that of L36.

Table 3.1 below, shows a table of size 36 convolutions built using the methodology discussed in

chapter 6. If the optimal L2 and L18 are chosen, the algorithm for L2⊗L18 would cost the same as

Lin36i, or 1272 operations. However the improved split-nesting algorithm would substitute Lin36d,

which could be made equivalent to L2 ⊗ L18 via the commutation theorem. That is,

L2 ⊗ L18 = tc2 ⊗O3,2,3(sb3 ⊗ tc2 ⊗ tc3)
= (I3 ⊗O3,2,3)(tc2 ⊗ sb3 ⊗ tc2 ⊗ tc3) (3.5)
= (I3 ⊗O3,2,3)(L15

3 (sb3 ⊗ tc2)L6
3 ⊗ tc2 ⊗ tc3) (3.6)

Note that (3.5) is related to Lin36i requiring 1272 operations, and that (3.6) is related to Lin36d

requiring only 1092 operations. Thus the cost of the size 108 cyclic convolution can be reduced by at

least 180 operations via the improved split-nesting algorithm.

In Chapter 4 an infrastructure is discussed that automates the implementation of the algorithms

discussed in this chapter.



28

Table 3.1: Operation Counts for Linear Convolution

B B At At Diag Total
Method Adds Muls Adds Muls Muls Ops
Lin36a = O3,3,2,2(sb3 ⊗ sb3 ⊗ tc2 ⊗ tc2) 45 0 738 0 729 1512
Lin36b = O3,2,3,2(sb3 ⊗ tc2 ⊗ sb3 ⊗ tc2) 99 0 792 0 729 1620
Lin36c = O3,2,2,3(sb3 ⊗ tc2 ⊗ tc2 ⊗ sb3) 135 0 828 0 729 1692
Lin36d = O3,2,2,3(sb3 ⊗ tc2 ⊗ tc2 ⊗ tc3) 159 0 528 0 405 1092
Lin36e = O3,2,3,2(sb3 ⊗ tc2 ⊗ tc3 ⊗ tc2) 189 0 558 0 405 1152
Lin36f = O3,3,2,2(sb3 ⊗ tc3 ⊗ tc2 ⊗ tc2) 234 0 603 0 405 1242
Lin36g = O2,3,3,2(tc2 ⊗ sb3 ⊗ sb3 ⊗ tc2) 261 0 954 0 729 1944
Lin36h = O2,3,2,3(tc2 ⊗ sb3 ⊗ tc2 ⊗ sb3) 297 0 990 0 729 2016
Lin36i = O2,3,2,3(tc2 ⊗ sb3 ⊗ tc2 ⊗ tc3) 249 0 618 0 405 1272
Lin36j = O2,3,3,2(tc2 ⊗ sb3 ⊗ tc3 ⊗ tc2) 279 0 648 0 405 1332
Lin36k = O2,2,3,3(tc2 ⊗ tc2 ⊗ sb3 ⊗ sb3) 405 0 1098 0 729 2232
Lin36l = O2,2,3,3(tc2 ⊗ tc2 ⊗ sb3 ⊗ tc3) 309 0 678 0 405 1392
Lin36m = O2,2,3,3(tc2 ⊗ tc2 ⊗ tc3 ⊗ sb3) 477 0 846 0 405 1728
Lin36n = O2,2,3,3(tc2 ⊗ tc2 ⊗ tc3 ⊗ tc3) 349 0 538 0 225 1112
Lin36o = O2,3,3,2(tc2 ⊗ tc3 ⊗ sb3 ⊗ tc2) 531 0 900 0 405 1836
Lin36p = O2,3,2,3(tc2 ⊗ tc3 ⊗ tc2 ⊗ sb3) 567 0 936 0 405 1908
Lin36q = O2,3,2,3(tc2 ⊗ tc3 ⊗ tc2 ⊗ tc3) 399 0 588 0 225 1212
Lin36r = O2,3,3,2(tc2 ⊗ tc3 ⊗ tc3 ⊗ tc2) 429 0 618 0 225 1272
Lin36s = O3,3,2,2(tc3 ⊗ sb3 ⊗ tc2 ⊗ tc2) 612 0 981 0 405 1998
Lin36t = O3,2,3,2(tc3 ⊗ tc2 ⊗ sb3 ⊗ tc2) 666 0 1035 0 405 2106
Lin36u = O3,2,2,3(tc3 ⊗ tc2 ⊗ tc2 ⊗ sb3) 702 0 1071 0 405 2178
Lin36v = O3,2,2,3(tc3 ⊗ tc2 ⊗ tc2 ⊗ tc3) 474 0 663 0 225 1362
Lin36w = O3,2,3,2(tc3 ⊗ tc2 ⊗ tc3 ⊗ tc2) 504 0 693 0 225 1422
Lin36x = O3,3,2,2(tc3 ⊗ tc3 ⊗ tc2 ⊗ tc2) 549 0 738 0 225 1512


