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RKOV PROCESSES OVER DENUMERABLE PRODUCTS OF SPACES,
pEscRIBING LARGE SYSTEMS OF AUTOMATA*

1. N yasershtein

problemy Peredachi Informatsii, Vol, 5, No. 8, pp. 64-72, 1969
A criterion is obtained for the uniqueness of the stationary probabilitiesof a Markov operator. This criterion
is useful for operators related to homogeneous automata games, Similar methods are applicable to certain

problems in statistical physics, biology, etc.

§1. Letasystemof a denumerable number of automata function in discrete time according to the following prob-
Jhilistic law: the state of the i-th automaton at time t + 1 depends stochastically on the states of some finite set of its
;ngighbors“ at time t, and for given states of all automata at time t their states at time t + 1 are independent. In other

words, we are considering a Markov process over the set X = IIXj, where X; Is the set of states of the i-th automaton,

Markov processes of this kind arise in the study of systems with local interactions, consisting of a "large number”
of identical elements, Similar problems canbe found in certain models of statistical physics (see e. g., [1]), inthe descrip-
don of neural networks, and so on. ’

We are basically interested in the uniqueness of the stationary probabilities (i.e., in a probability measure, or, in
another terminology, in the probability distributions), and in the convergence of any initial probabilities to the stationary
ones. We are also interested in the continuous dependence of the stationary probabilities (when they exist and are unique)
on the transition function,

$2. Let the denumerable space X be a product of a denumerable number of measurable (e.g., finite discrete)

spaces Xi: X = H X;, N be denumerable. We dencte by C(X) the space of all bounded functions over X which can
iEN

be uniformly approximated (with any degree of accuracy) by measurable functions, depending only on a finite number

of coordinates, Let P be transition function over X mapping the space C(X) into itself. Below we give a criterion (see

Theorem 2), which guarantees the uniform convergence PIf — const for any f € C(X). Such convergence immediately

implies the uniqueness of the stationary probabilities (i.e., of the probabilistic measure over X) for P, The criterion for

a more general situation will be discussed in §4.

We remark that in this problem the transition probabiliries PY(x, *) and PY(y,*) are usually mutually singular for
any t (this is shown by the trivial example in which the ransidon function P is a product of independent transition func-
tions over Xj), therefore the classical criterion of ergodicity is not applicable here.

Notation (to be used everywhere except in §4), The measurable subsets a, b, ¢ C X; thepointsx, y € X; 1, S
= N, where S is finite; i, k € N; p and q are probabilities over X; xy (corresponding to p;) is the projection of x (or of p)

over X] = H X-L'.
i€1

The measurable a C X7 are identified by their images in the canonical projection of X on X;. The measurable a
C Xg (8 is arbitrary and finite) are called elementary. Among the other subsets of the set X the elementary ones are dis-
tinguished by the fact that their indicators (in an older terminology, the characteristic functions) lie in C(X). Any func-
tion from C(X) is uniformly approximated by a finite linear combination of the indicators of elementary sets. Therefore
the condition PC(X) < C(X) imposed on the transition function P is equivalent to the following: the function P(-, ) €
t C(X) for any elementary a. Any probability p over X is determined by its values over the elementary sets, i.e., by
their "*finjte-dimensional” projections Pg.

Theorem 1, Let all Xj be finite, Then there is a stationary probability p for P, The uniqueness of the
—_—m g

stationary p is equivalent to the convergence 1/n 2 gPt — p for any probability q. (We consider over
t=1
the space of all probabilities over X the topology of the convergence over each elementary set,)

*The author's attention was drawn to this problem by Professor I, 1. Pyatetskii-Shapiro.



n
Proof . Let q be any probability over X and ¢(™ =—,1L 2 gP*. From the sequence of probabilities ¢(®) we can

select a subsequence converging to some probability p, and then pP = p. If the stationary p is unique, then q(P)— p for
any q, which is what we wanted to prove,
We identify in some fashion the denumerable set N with the set of natural numbers and denote by pk(p, )
‘ h—1
the smallest o such that if a € X and b, ¢ < Xy, gty = 11 X:, then Ipta N byace) = ata N )p(b)l = ap(dlace). We
i=1 -

denote by pj k(P) the number sup or(P(z, -}, P(y, -)), characterizing the "dependence of the k-th co-
xN\,l=”N\‘i
ordinate on the i-th.”

Theorem 2, Let A = (0 1(P))j keN and u 2 (At);,»— 0, then t - = for any k € N, where Al is the

i€EN

degree of the maurix A, Then |P!(z,a) — P!(y,a)| << 2 2 (A", r— 0 for any a © Xg. Con-
LES iEN

sequently, PYf — const for any function f € G(X) and var((PYx, -))g — ps) — 0 uniformly with respect to

x € X for any stationary probability p. In particular, the stationary probability (if itexists) is unique,

The proof is given in §5.

Corollary 1, Let 2 pi, k (P) << 0 for some 6 < 1, Then var((P(x, -))g — (P(y, *))s) = 6%[s| — 0 for
16N
S, where [S| is the power of S,
Note. Theorem 2 and Corollary 1 can obviously be generalized, assuming A = (pj, k(PtO))i, KEN-
Theorem 3. Let PO\) be some network (e.g., a sequence) of transition functions over X and PO\) - P (over
the set of transition functions we consider the topology of the uniform convergence in x € X over each elementary
set). Then

a) if Pt — p,* then Pb\) — p in the sense of a double limit, and consequently pO‘) —> p for any probabilities
p®), stationary for Py

b) if p®) — p, where pO‘)P(M = po‘), then pP = p;

¢) if all X are finite and the stationary probability p for' P is unique, then p(®) — p for any p®), stationary

with respect to Py,

Proof, a) Let & >0 and a be any elementary set. We find t; such that (PY(x, @) — p(@) = /2 whent =g, x € X.
Then we find Agsuchthat ngt)\)(x, a) = plo(x, @)l = &/2 when A > Ny, x € X, Then [ng\)(x, a) — p(a)) = e when X > X
X € X, whence ]Pb\)(x, a) — p(a) = & when (\, 1) > (Ao, to).

The proof of b) and ¢) is even simpler.

§3. In problems concerning homogeneous games of automata (see [2-4]) X is the finite set of states of the i-th
automaton, and normally the following conditions are satisfied:

1) for a < Xg the function P(*, a) depends only on the finite set I'(S) of coordinates ("local finiteness");
2) Pz, +) = H (P(z, -)); for any points x € X ("independence of transitions");
iEN
3) over N, X, and P some group operates jointly; over N transitively, for example 3’,an N — n dimensional mesh,

X; ={0,1} and P is invariant with respect to all parallel translations (homogeneity).

It follows from condition 1) that PC(X) < C(X). From condition 2) we have p; x(P) = sup sup(P(zx,a) —
TNNGTYNNL 2C g

— P(y, ). When 2) and 3) are satisfied, the condition of Theorem 2 is equivalent to 2 04, 2 (P) << 1. In the following
tEN

examples we shall assume that condition 2) is satisfied, and X; ={0,1} (in addition we shall assume that 1) is satisfied

and, except for example 1, also condition 3)), Under these assumptions from Theorems 1~3 we obtain

*We are considering the probability p as a transition function which is independent of x.
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pt = P, where p is the unique stationary probability for P, which is a continuous function of P, If

Z A < B <1, then |pY(x,a) — p(a)| = [s|6! for any a < X;.

&N
example 1, Let N be the set of natural numbers, I'(i) = {i + 1}, P(x,0y) = o + (B — o )Xkrys (0 =< @B = 1). Then
__,___B——— k h+f

ccording to Corollary 2, pt~ p, where p is the unique stationary probability, if H [Bi — ai] = O for any k, i.e.,
3
==k
ge product 11| B — aj| converges to zero. It is easy to verify that the stationary probability is not unique if this condition

45 0T satisfied. We remark that a time-inhomogeneous Markov process has been examined for a set of two points.

Example 2. Let I'(i) consist of three elements for any i € N, and the set T'Y(i) not intersect with T'Y(k) when i = k
3

1 6
(9thraph(N' IMisatree; It denotes the degree of the graph). Let us assume P(x, Ox) = 5 -+ —z—sign <E - Z x1-> '
1€T(R)

. .6 = 1. It is obvious that the probability p, determined by the equations p{(10;) = (!/2)!8! (a Bernoulli scheme),
o= i€s

s stationary. According to Corollary 2 we have [PY(x, @) — p(a)| = |S|(3O), (acC Xg). A more detailed analysis of this
,mple example shows that [PX(x, @) = p(@)| = [8]((8/2)0)!, and inthe case 6 = (2/3) [PY(x, &) = p(a)| = |S|/(x + D2,
when 6 > 2/3 there are other stationary probabilities apart from p.

In the following examples condition 3,) is assumed to be satisfied, [6] =1, a € Xg, 15 =X\ 0; ={x € X|x; = 1}

Example 3. Let P(x,0) = 1/2 + 6(-1)xi+xi+1/2. It is easy to verify that the probability p of Example 2 (the
gernouilli scheme) isstationary. When 6 = 1, there is another stationary probability concentrated at the point x; = 0, Ac~-
cording to Corollary 2, pt — p when |8 < 1/2, We shall show that indeed |PY(x, a) = p(a)| = C{6|Cz*10g:3 — 0 when
el <1, where C; and C, are positive numbers depending on §. We define the function fS over X by the equations

.2 xi
js(z) = (-1 e easy to verify that Pfs == 018Ifsfs1 = fg, where S’ is the symmetric difference of the sets

$and S + 1. Iterating, we obtain Plfg == BIS‘“S'H"-'*"S(”VS(, . We notice that S| + [S'] +...+ [S(D] = C,tlog:3,

where C >0, and that the finite linear combinations of the functions fg are everywhere dense in C(X).

Example 4. (see [4]). Let P(x,1x) = 6 + (1 — O)xyxk+1(€ > 0). It is obvious that the probability p concentrated at
the point xj = 1 is stationary. According to the corollary, 2pt — p when 6 >1/2, A more accurate estimate shows that
this is true when © = 1/3. On the other hand, in [5] it is shown that for sufficiently small © there exists another stationary
probability. '

Example 5. LetP(x, 1k) =1/2 + (6/2)xk- 1Xkgxk+;. Then Corollary 2 gives ergodicity when |8} < 2/3. We show that
indeed for any |6| < 1 (uniformly with respect to x € X) P'f — const for any f € C(X); consequently there exists a unique
stationary probability, continuouslydependent according to Theorem 3 on the parameter 6. This follows from the follow-

ing fact which can be proved by induction on t: Pt(z, ] 1:) = E c@i171,8) H I, where }1 |C(t, T,S) | <
ies

TCTIS) i€T ~
1 |8 \ttis! T=0
g('—z—-}-—é—) — () when t — oo,

(The finite linear combinations of the indicators H z; of the sets ) 1; are everywhere dense in C(X), where
i€s iS5
S runs through all finite subsets N.) Here we used the equation p < n xi) = H DPg;, which is valid in view of prop-
€8 i€s
perty 2).

Example 6, Let P(x,1j) = 6 + (1 — 26)xj(1 — xi+1). Then, as in Example 5, it can be shown that Pt — const for
any f € C(X) if only |6] < 1. If @ =1 or 6 = =1, then there are many different stationary probabilities, This example is
interesting, because it enables us to evaluate the stationary probabilities of certain sets, e.g., p(0;) = 3/4 ~ 1/2(6),
p(0§ N 044,) = 1/2(1 — 6), p(05 N 1j4y) = 1/4.

We remark that in Examples 5 and 6 an analytical relationship is obtained between the stationary probabilities p
and the parameter 6 over the whole segment |6] < 1.

§4. In order to clarify the proof of Theorem 2, we discuss the idea behind it in a more abstract form.

Let there exist over some measurable space X a uniform structure T, i.e., a systemn of subsets & © X X X con-
taining the diagonal X C X X X and also satisfying some axioms (see [6]). Let P be the transition function over X which,
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transforms into itself the Banach space C(X) of all .uniformly continuous bounded measurable functions (with the norm
T osup [f(x)]).

Theorem A, Let over X = X x X exist such a transition function V that, (a) Vf((X ¥ @ -1, uniformly
with respect to (x,y} € X for any measurable neighborhood of the diagonal qET; (b) the projections of the
probabilities V((x, y), *) are equal to P(x, ) and P(y, -) for any point (x,y) € X. Then P'f — const for any
fecx).

Proof. It is obvious that (P'f)(x) — (PYf)(y) = (VIf)(x,y) = 0, where ]T(X,y) = f(x) — f(y), as required.

If the uniform topology over X is given by the measurable distance r, then condition (a) will be satisfied if Vir — ¢
uniformly over X, We now assume that the distance R is bounded. We determine the distance between the probabilities
over X using the formula r(p, g) = inf S r(%)v(dx), where inf is taken with respect to all probabilities v over X with

X
the projections p and q.

pT(P(x ). P(y,-))

. Then Ptf —> const
x=#y r(x !/)

Theorem B, Let |Plo|; <1 for some 1y, where |P|, ==

for any f € C(X).

Note, If the space X is finite, then Theorem B obviously follows from Theorem A, Technical difficulties arise in
the general case, when attemptlng to derive B from A; these are related to the requirement that the function V (., a) be
measurable for any measurable a. Therefore we give the direct proof of B.

Proof. Let f € C(X). For any & >0 thereexistsa$ > Osuchthat | f(x) = f(y)| =&+ @/8)u(x,y) for all x, y € X,
It is obvious that (Ptf) (z) — (Ptf) (y) = g (f(z)— f(y))v(dE), where ¥ = (x,y) and v is any probability over X

: x
with the projections Pto(x, <) and Plo(y, +), Since infS r(%)v(dX) is according to the condition, not greater than 8 for

X
such v. therefore we obtain (Plof (x) — (Plof)(y) =& + (8/8)(x, y). lterating, we obtain (Plolf)(x) — (Plolf)y) = e +
+(8t/8 )x(x, y). Consequently, lim sup | (P*f) (z) —(Ptf) (y) | < e. Since ¢ is arbitrary and positive, we obtain the
t—o0 X, y

assertion of Theorem B,

As an example, we derive from Theorem A (we could also use Theorem B) the following well-known statement:
let |P(x,a) — P(y,a)] =6 <1 for any x, y € X and a measurable a < X, then Ptf — const for any bounded measurable
function f over X. For this it is sufficient to consider over X a discrete topology, and to put in Theorem A V((x,y), ") =
= P(x,°) # P(y,"), where the operation * is defined as follows (this operation is also used in §5 in proving Lemma 1).

The operation «. Let p and q be two probabilities over some measurable space Y. We determine the probability
p # q over Y X Y with the projections p and q such that (p « q)(@) = 1 — var(p — q)/2 for any measurable @ containing
1
a diagonal (where —z—var(p —q)= sup (p(a)— q(a))). Letp—q=(p = @) — (p = )~ be a Jordan expansion, We  §
determine the measure p - q over Y X Y by the formula (p - q)(a) =p—(p— q)+)(a), where a = {y € Y[(y y) € af. We
P—a+tX(p—9)”
C

put pxq = pog -+ where C = (p — q) )=@(p -9 (Y)= (1/2)(var(p»— q)) (if C =0, then

prq=peq)
§5. Proof of Theorem 2. For simplicity we assume that all measurable spaces X are finite and discrete (this as-
sumption is only used in the proof of Lemma 1).

Definition. We say that the probabilities p and q over X satisfy the estimate ay if over X = X X X there is a prob‘
ability v with the prOJeCthDS p q and such that v(Ak) = ak for an k 6 N, where & = {xj = y]} cXxX. %

Lemma 1. Let pi(p,q) = oy for all k € N, then the probablhtles p and q sansfy the estimate ock

Proof, If p== H pkandlq = U gr,then we can put v —H Ur, where vg = py = qk (see $4 concerning the opef”

REN _ hEN REN
ation #), In the general case we denote by p*lL 1), ac Xp the conditional probability of Doob (see [7]) for the |
probability p. (For @ € Xp the measurable function p¥[1, n-1](q) over X[1, n-1] is defined over the set of the complete

p-measure by the equations pru. noti(a) p(dzgy, n—yy) == p(aNb), where b = Xiy, n—yj. For almost all x (in the

0
sense p) pX[1s071] 45 5 probability over Xp).
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n

The probability v will be defined if we construct a set of probabilities v[; pj over Xi, n} == IT Xi X X; such that
i=1
p,ojecnon V[1,n+] OVer X[y, n] coincides with vr; pj.

We put vy = py » qg. Let V[1,n] be already constructed We put vX[l n-1] px[l,n] « q¥[1, n], where X = (x, y) We
p wrmme the probability v[;, n+] over the sets a N b where ac Xn+1, and b X[l n] by the formula v[l nﬂ](a n b) =

tht

T I @ vy (i, ).
)
Lemma 2. Let the probabilities p, q satisfy the estimate ay and f € C(X). Then S f(z)p(dz)—
} X
S f (:z:)q(dx Z arpu(f), where pr(f)=sap [f(x)—F(y) |
REN N7V v
Proof Let f depend only on a finite set T of coordinates (i.e., p;(f) = 0 wheni ¢ T). We put f(x,y) = f(x) = F(y),

H A; N (X AN A;). Then the sets &(S), S © T form a finite partitioning of the space X, and Q J(x) %

jes 1€TN\S %
X(pfm(dx)-—:S?f)v(df): S {T@van < Zre@) s |7@)< 2 o) D exh) =
' 54 SCT a(S) lavy x€a(S) ScT AES

-2 o (f)v(Kk)<2 arpe(/) = 2 arpr(f).

+eT LEN
Let us now cons1der the general case. We fix the point y € X and determine the function fg over X by the equations
fo(®) 7 f(x'), where x§ = xg, and Ty g = yN\S It is obvious that py(fg) = pk(f) and fg = f when S > N. By going to

the limit when § = N in the equation S Is (@) (p—q)(dx) < Z a, Pr (fs) (already proved), we obtain the assertion
: X REN
of the lemma.
Coroilarl of Lemma 2. If xy\i = yn\i, then let the probabilities P(x, *), P(y, *) satisfy the esti-
mate Aj k. Then p(Pf) = Ap(f) for any f € C(X), where p(f) is a column vector (p(f))keN, and the in-
equality is taken component by component.

Theorem 2'. Under the conditions of the previous corollary let 2 (At);,r— 0 when t > = for any
€N
k € N, where Al is the degree of the matrix A, Then the assertion of Theorem 2 is satisfied.
Proof. Iterating the inequality p(Pf) = Ap(f), we obtain p(Atf) = A%(f), whence Z or (P <<
REN

2 21(A*) i, xPr(f). Applying the last inequality to the case when fis an indicator of an elementary set a (then
KN IEN
plf = PY(+, @)), we obtain the assertion of the theorem.

Theorem 2 (for finite X;) obviously follows from Lemma 1 and Theorem 2'. In the general case, Lemma 2 can
be directly proved under the conditions of Lemma 1.

Finally we remark that, by somewhat weakening Theorem 2 by replacing the conditionb, ¢ C X[y, k-] by the
condition b, ¢ < Xy« in the definition py(p,q), we can obtain that the conditions of Theorem 2 will not depend on

the choice of a numbering of the sets N, as happens for the conditions of Theorem 2.
§6. We shall now briefly consider the relationship of our work to [1]. In [1] the following problem is considered,

Let a measurable space X == H X; be the product of a denumerable number of finite discrete spaces, and for any
i€EN
k € N and a C Xy, over the measurable space Xy~ p be given the function p=(a) € C (X~ r). The question is whether
the probability p over X for which the functions p*(a) are conditional probabilities, i.e., s PENNK (@)p(dzy~ r) =
b

=p(aN b) for any k € N, ac X, of a measurable b < Xy » is unique. Ainong the results of [1] are the following.

Theorem (Dobrushin), We put p; ,= sup  sup{(p N\k(a)—- pyN\K(a)) (pi,i = 0foralli € N),

A=Y X e
Let 2 31 k=< O for all k € N for a certain € < 1, Then the probability p over X with given conditional

16N
probabilities p*(a), is unique.
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It is obvious that the uniqueness of the stationary probabilities for the transition function P over X is equivalent to
" the uniqueness of the probability, invariant with respect to time shifts, over the space of trajectories X X Z (Z is the
group of integers) with given conditional probabilities. However the direct application of Dobrushin's theorem to this
situation gives a weaker estimate than Theorem 2,

Conversely, from given conditional probabilities it is possible (by several methods) to construct a transition func-
tion P over X, such that pP = p for any probability p, with given conditional probabilities, We construct such an operator
P and prove Dobrushin's theorem (the proof will be very similar to that in [1]). Following [1], we denote by P; the tran-

LICAN

sition function over X defined by the formula(pP;}(a ) b) = S (a) p{drys) for any e < X, b < Xn/i.

We want to prove the uniqueness of a probability p such that pPi =pforalli €N,
(-]
We identify in some way the set N with the set of natural numbers and put P = H P;. This operator can be mean-
i=1
ingfully considered over the space of probabllmes over X, since (pPi) - r,n] = Pr1,nl when i >n. Over C(X) the operator P
acts according to the formula Pf = lim ( H D; ) where the limit exists, since P;C(X) < C(X) and Pif = f when

n—>»oo

i > n for functions f depending only on the flrst n coordinates,

It is eas to verlfy that if zy~4 = YN, then the probabilities )u(x, *) and Py(y, *) satisfy the estimate A(DL, where
A( ) =land A =Pk, nfor the casek =n, andinthe remaining casesA =0, Applying the corollary from Lemma2 we obtain

o (H pi) /< (H A®)p(f), whence p(Pf)< (H A(i))p(f),'where the limit 4 = || 4® —=Tlim [] A® exists,
i=1 =1

i=1 i=1 =00 =)
since in the matrix A(l) all the columns except the i-th are the same as in a unit matrix.

It is immediately verified that Z din<< 2 0i,» << 0, whence, just as in the proof of Theorem 2, we obtain
i REN REN
PY(+, a) = const for any elementary a. Consequently a probability p, such that pP = p, is unique, which is what we wanted
to prove,
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