UNSTABLE MULTICOMPONENT SYSTEDMS

A. L. Toom UDC 621.391.1:519.2

Systems are considered that consist of an infinite number of interconnected finite probabilistic
automata operating in discrete time. Systems are called ergodic if they "forget" their initial
state in the limit with respect to time, A sufficient condition for erogidicity is given. Two
examples are cited of families of systems that are ergodic for positive parameter values and
possess the opposite property for zero values,

§1, Introduction

We will consider Markov chains with a continual set of states, that describe the behavior of systems
consisting of an infinite number of automata (regarding this topic, see, e.g., [1-4], where references can be
found to some other studies). The main part of this study involves the examples in Sec. 3 of "unstable”
systems whose behavior is markedly altered when arbitrarily weak random noise of a certain kind is super-
imposed. The propositions in Sec.2 are of an ancillary nature, Proposition 1 helps to delineate the situation
in which the examples become interesting, Propositions 2 and 3 are needed for the proofs pertaining to the
examples. In this section we introduce the requisite concepts.
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Let X be an ensemble of mappings of countable set V onto finite set {0, 1,..., n}. Elements of X will
be called states and denoted by x = (xp), where xp€{0, 1,..., n}, h€V, States of the form "all Xp are equal to
k" will be denoted by k. The quantities x} will be called components of state x. Set X is rigged with a product
(point-by-point convergence) topology. Let M be the ensemble of normalized measures on X, more precisely
on the o-algebra generated by cylindrical sets in X, A measure concentrated at x € X will be denoted by the
same letter x. Mapping P :M — X that is continuous in the weak topology will be called an operator, The
result of P acting on u will be written as yP. We will consider only linear operators P, i.e., operators such
that (A +(1— AP = MuP +(1—2)vP for any measures y, V€M, and numbers A, 0 = » = 1, Linear and continuous
operators P can be specified nearly by indicating how they act on point measures x, Each operator P cor-
responds to an array of probabilities p(C, x) that represent the value of measure xP, where x€X, on cylin-
drical set C = X, For given C the quantity p(C, x) depends continuously on x.

An operator will be called deterministic if it carries all point measures into point measures. Deter-
ministic operators will be denoted by D. They can be regarded as acting on X,

Operator P will be called ergodic if the weak limit 'Iim uP exists and is the same for all y€M. Here

we consider only those situations in which this limit is o, 2 measure concentrated in the state "all xp are equal
ton,"”

Let g be a one-to-one mapping of V onto V. We denote by g the mappings of X onto X and of M onto M,
that it induces. The first of these is defined by the formula gxy, = Xgh. We call g an automorphism of P if G
commutes with P, We call P homogeneous if the group of automorphisms of P is transitive on V,

Operator P will be called local if for any finite W « V there exists a finite U(W) < V such that the
projection of measure uP onto Xy = {(xp), h€W} is expressed in terms of the projection of measure y onto
Xy(w). We also introduce the notation U*(W)=U(U*'(W))where U’ (W)=W.

We introduce a partial ordering on X, taking x < y if xp = yp for all h €V, Then we introduce an
ordering on M in accordance with [2}; specifically, we call measureable set C = X complete from above if
X€C and z<y imply y €C. We will say that y < v, where , v€M, if 4(C) = v(C) for any C that is complete
from above., We will say that P < @ if xP < x@ foranyx€X, Operator P:M — M will be called monotonic
if 4 < vimplies that uP < vP.

In particular, deterministic operator D is monotonic if x < y implies that xD < yD, If P is a monotonic
operator, then the condition
VAEV (lim 0P (z: z"=n)=1) ‘ (1)

feroc
is equivalent to the fact that P is ergodic, and has measure n as a limiting measure,

Letm = | m pll, where 0 = ¢« =n, 0 =b = nis a stochastic matrix of order (n + 1), We associate with
matrix m and arbitrary h€V an operator Sm,h:M— M that carries coordinate xy, from each state a to state b
with probabilities mgp, all the remaining coordirates being unaltered, We denote by S’"=HS'""' an operator

kev
that acts in this fashion on all coordinates independently. We denote by S the set of all Sy, defined by matrices
m that satisfy the pair of conditions

{ i b<a, then M.»=0,
if b=a<n, then Mm,<<i.

The first of these conditions guarantees that m,, =1, and therefore nSy, = n for any Sy €S In the proofs it
will be convenient to employ operators Sy, of a special form which we denote by Sg where € is a number,
0 =& =1, We denote by Sg and Sy, where the matrix m is as follows:

i 1, if a=b=n,

1—e, if a=0b<n,

Map = e, if a41=0,
0 otherwise,

Operators S, are monotonic for all € from 0 to 1. Obviously, for any S, €S there exists an £ > 0 such that

Se < Sm- From this and from (2] (Sec. 2) we have that if P is monotonic and n=nP, then the fact that PS¢

Is ergodic for all € > 0 implies that PSyy is ergodic for all S, €S. We will also require a representation of
Operators S whichutilizes auxiliary variables wy equalto 0 or 1. All the wp are mutually independent, «h =1
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with probability € and «p = 0 with probability 1— g, Then for any x €X the measure z}{ S., is defined as
hex
being induced by the measure on @ = {w}, « = (wy) under the mapping

_ {xh, if  hEK,
Y min{r, zntw.}, i  AEK

In considering expressions of the form 0(PS¢)!, we will assume that each use of Sg corresponds to its own
variables wyl, wy, ..., o}, that are mutually independent,

§2. Definitions and Propositions

We will consider superpositions of the form PS,,, and will attempt to determine the P for which operators
PSy, are ergodic for all S, €S. Proposition 1 is one elementary result of this kind. First let us consider
Definition 1; we denote by I (x) the ensemble of those h for which xp = k.

Definition 1. We will call x€X an island if I, (x) is finite (i.e., if the number of its nonzero components
is finite)., Operator D will be called conservative if there exists an island x such that In(xD )} is nonempty for
allt=0,1, 2,

Proposition 1, Assume that operator D is monotonic and conservative, Then n=nD and the operator
DSm is ergodic for all S, €8,

We will not prove Proposition 1, first, because it is easy, and second, because a more general proposi-

~tion (Proposition 3) will be proved below,

We introduce the space of trajectories X = xZ* whose elements are X = (x", x1 . xt\, ...), where all

xt€X, We denote by Pp.u the probability distribution on the space of trajectories that corresponds to a
Markov process with initial distribution 1 and transition operator P,

Definition 2. For any island y€X and any infinite sequence (hy) = (hy, hy, ..., he...), where all hi €V,

we write olP, y, (h))=Pr {&:an'=n, z.,/=n,...,2x'=n,...}. We also write ap=sup a(P, y, (k)), where the
¥ (hf)

supremum is taken over all islands y€X and all (hy).

Obviously, if deterministic operator D is conservative, then ap =1, while if D is nonconservative, we
have ap = 0. In the more general case, however, we cannot give an example of a homogeneous local P (V being
infinite) for which op is not 0 or 1. The situation is partially clarified by the following.

Proposition 2, Assume that operator Q is such that for any island x, measure xQ is concentrated on a
finite number of states, each of which is an island. Then aQ is equal to 0 or 1.

Here it is not required that Q be homogeneous, local, and monotonic, Our proof will be indirect: assume
that 0 < a@g < 1; we arrive at a contradiction, We take an island x and sequence (h¢) such that o(Q, %, (h)) > 0.
The condition implies that for any natural T, measure XQT is concentrated on a finite number of islands. Let

X

.I‘QT = Zﬂkyh’

k=1

where all the y, are measures concentrated on islands yj, all the mc > 0, Zm=1 . Then
k=1
K

«(Q, z, (h))=Pg.{Z: all the T =n, t6Z*} =¢Z Py {Z: 2"=yx, all the zs'=n, t€Z*}=

LEE

K
= E Py {Z:a"=y, all the T, =0, 0<I<T}a(Q, yu, (hr, brys,...) )=

K
<a, ZPQ,,{.‘E: =y, all the ' =n, 0<I<T} = aoPo-{Z: all the 2,/ = n, 0<t<T}.
k=0

But this is impossible since

lim Po . {Z: all the : 2", = n, 0<i<T}=a(Q, 2, (k).

T 00

Proposition 2 has thus been proved.
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The following proposition reveals the significance of the case ap = 1 for the a.spects of ergodicity under
consideration here,

Proposition 3, Assume that P is a homogeneous local monotonic operator that can be written in the form
P = P'Sg, and ap = 1. Then P is ergodic and has limiting measure n.

Proof, We introduce an arbitrary é > 0. It suffices to construct a number Ts suchthatfor T =T§ we have
0(PS.)"{z : zo=n}>=>1—06, where the zero subscript denotes an arbitrary element of V., First we take an island y
and sequence (ht) such that a(P, y, (h))>=1— (8/2). For each natural t we fix an automorphism g such that
gi(ht) = 0. Then we will obviously have Pp o(z"=n|z">g,_.(y))=1—(8/2), where 1 =7 = T, This inequality also
remains valid if we add any constraint on x!, ..., x 771 to the condition, in particular the constraint that T is
the first instant t at which xt > g7-t(y). This array of inequalities with this constraint on 7, varying from 1
to T, yields Pp o(z,"=n|H87: 1<1<T, 2*>g, . (y))=1—(6/2). Let us now bound from below the probability of the
condition in this formula. We use the representation of operator S¢ in terms of the variables w}tl We note that
for 7 =n the condition

on'=1 forall REU™(I,(gr—<(y))), i—nt1I<isT, )

ensures that x7 > g1-y). We consider 7 values that are multiples of n. Conditions (2) are mutually in-
dependent for such 7, and hence the probability that xT > gr_.(y) for at least one = T (more precisely,
even only for 7 that are multiples of n) is not less than 1 minus the following expression:

n—1
> I gp )|
(1 — gk=0 ITin) _ const”,

where the base of the exponent is less than 1, and therefore the entire expression tends to 0 as T — «, Taking
Ts to be such that for T = Tg this expression is less than 6/2, we obtain what was required.

§3. Examples

Paper [2] proved an assertion (with a constraint that can be readily circumvented) that is part of the
converse to Proposition 1, Let us formulate it in our terms. Assume that D is a homogeneous univariate
local monotonic operator D :X — X, where X = {0, 1}Z (the automata have two states 0 and 1) and 1D =1,
Then if D is nonconservative, the operators are nonergodic for sufficiently small € > 0, Paper {3] proved
a more general assertion (for some multivariate operators). We can assume that an analogous assertion
holds for all multivariate operators, and if this is the case it is valid for all D with a commutative transitive
group of automorphisms (but only under the condition that the automata have two states).

In this section we will set up two examples of homogeneous local monotonic D that show that, in general
form, the converse of Proposition 1 is not valid. In the first example the automata have free states 0, 1, and 2
and are connected in a univariate chain. In the second example the automata have two states, 0 and 1, but
are connected in such a way that the group of automorphisms of D that is transitive on V is noncommutative,

In both examples D possesses the following properties: a) it is nonconservative, b) operators DS, are ergodic
for all Sy €S and have limiting measure n,

The outline of the proof of ergodicity of DSy, is similar in both cases. We set up a monotonic operator
Q such that Q < DS¢ for specified € > 0, which converts any island into a measure concentrated on a finite
number of islands. Then we prove that @@ > 0. From this we have ag = 1, by Proposition 2, and hence apse =
1 out of consideration of monotonicity. Therefore, operators DS, are ergodic for all £ > 0, by Proposition 3,
But hence DS, are also ergodic for all Sy €S, since any Sy, is minorized by some Sg, € > 0.

Operator Q is equal to Q = DSE' in both examples, where Sty is given by the following equation:
zS. =z H Sen
REU (I4(x))
the Sg,nbeing defined in Sec. 1, while I(x) is the set of those h€V where xp = 0.

In other words, S.' acts on an arbitrary x€X like S in the neighborhood of nonzero components x and
like an identity operator outside this neighborhood,
Example 1.* As stated above, here we have X = {0, 1, 2}” = {x}, where x = (x), h€Z, x,€{0; 1; 2}.

\—-
*This example was suggested by [4].
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Each (xD)p (the h-th component of state xD) can be expressed in terms of Xp—j, Xp, Xk as follows:

O, if Thq = O, Tp = Thyy = 17
1, if Thy == Th = 21 They = 17
(zD), =0 2, if gyt 2n = zpey = 2, ®

1 .
the integer closest to  ~z-(ZTn-y + Tn 4 Tas1) otherwise,

We will show that D is nonconservative, It suffices to consider how D acts on islands of the form
...000222. .. 222000... . As a result of the second row on the right side of (3), the action of D causes the
2's in this island to change successively (right to left) to 1's, so that we obtain an island of the form ...
000111...111000... . Moreover, because of the first row in (3) the action of D causes the 1's in this island
to change successively (left to right) to 0's, so that any island is eventually transformed to the "all zero" state.

We will not prove that DSy, is ergodic, because the proof is analogous to that of the same property for
Example 2.

Example 2. Here set V consists of all pairs of the form (i, j), where i€ 2, j€{1,—1}, while X = {0, 1}V =
{x}, where x = (xh), h€V,x,, €{0, 1}. Operator D:X—X is specified by the condition (xD)(i,j) = (X(i,)) V X(i,-j)) N
X(i~j,j). In other words there will be a 1 at point (i, j) at the next instantif and only if at point (i—3j, i)there
was a 1 at the preceding instant and there was a 1 at least one of the points (i, j), (i, — ).

First we will prove that D is a nonconservative operator. It suffices to consider how D acts on islands
of the form

...000111...111000. ..
...000111...111000... .

We will assume that the i axis is directed to the right, while the j axis is directed upward, It is easy to see
that D causes the 1's in this island to change successively to 0's, beginning with the left end in the upper
series and with the right end in the lower one. As a result, the island changes over to the "all zero" state over
a time equal to the length of the 1's files,

Now we will show that operators DS,,, where Sy, €S, are ergodic. Operator Q was described at the
beginning of this section. We will show that a@ > 0. We assert that as y, (hp), suchthat o(Q, y, (hy) >0, we
can take ht = (0, 1) for all t and y = (y},), where

1, if —1<iy,
Ya.n= {0 otherwise .

We will prove this. We will formulate four conditions regarding the ensemble of variables wg, where
h€V, t€ Z¥, that control the action of S:E. Satisfaction of these four conditions is sufficient (but not necessary)
for all variables xt(o,1 , as functions of the ensemble (wh), to be equal to 1. Each of these conditions refers
to its own group of variables, and therefore the probability that all four conditions will be satisfied is equal to
the product of the four probabilities that they will be satisfied separately. The first conditionrefers tovariables
w’ii’i),where i >1. First we will describe it informally. We note that if xtu =1fora =1i=bh, then Xf{ii) =1
for'a +1 =i =b. In other words, the file of 1's on the upper line can be shortened only from the left under the
action of D; its right end stays as is. If we should have w E}Hﬂ) =1, then the file of 1's lengthens by 1 on the
right. We introduce the sequence of quantities k¢, t€ Z* functions of the ensemble Wi 1) where i > 1. The k¢ are
the coordinates i of the right ends of the files of 1's obtained in the upper line at instants t. The definition of
k¢ is inductive: k, =1, while for t > 0 kf = kgq + (U%kt_1+1’1).

It is clear that the sequence k; is the random-walk trajectory of a point that shifts to the right over one
time cycle with probability £ and remains as is with probability 1— &. As we know, the condition k¢ = 1/2¢t
for all t€ Z* will hold with positive probability, This is our first condition. The second condition refers to
variables “’Ei,ﬂ)a where i > 0, First we will describe it informally. Assume that xt(i =1 fora=1i=bh.
Then X%iil— y = xb(j41,~1) for « =i =b. In other words, if there is a 1's file on the upper line, under the action
of D the configuration on the lower line under this file shifts 1 to the left over each time step. If the operator
St'c also acts, the 0's in this configuration are replaced by 1's with probability €. Therefore there are fewer
and fewer 0's as we move to the left, The second condition ensures that no zero will appear at the point (0,—1).
Its exact formulation is as follows: for any t =1 at least one of the quantities w%l"l_ y)» where 0 =1 = et/(2 +¢),

is equal to 1.
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Here the limit €t/(2 +¢) of variation of I is chosen in such away thatall pairs (I, t—I) lie to the left of the
the line i = 1/2¢t, i.e., in the region in which, according to the first condition, the upper line is filled with 1's.
Once a 1 has arisen at point (I, —1, t—17), therefore, it shifts by 1 to the left over each time cycle.

We will show that the probability that the second condition holds is positive. Indeed, it is not less than

o

I I (1—(1—e) ¥+ This expression is greater than zero, since the series Z (1—&) =+ converges.

t=1 t=1

The first and second conditions together guarantee that our island is "inaccessible" from the right. The
third and fourth conditions have a similar function for the loft side. The third and fourth conditions can be
obtained from the first and second by making the substitution (i, j)— (—1,—1]J).

It is clear from the above that the probability that all four conditions are satisfied is positive, A fortiori,
the probability of the condition that stems from them, namely, "x<'0‘,)=1 for all :€Z+*," is also positive, QED.

The author wishes to thank S. A. Pirogov for his assitance in writing this paper.
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