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Trajectories in random monads

A. D. Ramos 1 and A. Toom1

Abstract

Let us have a non-empty finite set S with n > 1 elements which we call points

and a map M : S → S. After V. I. Arnold, we call such pairs (S, M) monads, but

we consider random monads in which all the values of M(·) are random, independent

and uniformly distributed in S . We fix some ⊙ ∈ S and consider the infinite sequence

M t(⊙), t = 0, 1, 2, . . . . A point is called visited if it coincides with at least one term

of this sequence. A visited point is called recurrent if it appears in this sequence at

least twice; if a visited point appears in this sequence only once, it is called transient.

We denote by V is, Rec, Tra the numbers of visited, recurrent and transient points

respectively and study their distributions. The distributions of V is, Rec, Tra are

unimodal. The modes of Rec and Tra equal their minimal values, that is 1 and

0 respectively. The mode of V is is approximated by
√

n , plus-minus a constant.

The mathematical expectations: IE(V is) is approximated by 2
√

π n/8 plus-minus a

constant; IE(Rec) and IE(Tra) are approximated by
√

π n/8 plus-minus a constant.

For the standard deviations σ(V is) and σ(Rec) = σ(Tra) respectively we present

the approximations
√

4 − π

2
· n and

√

16 − 3π

24
· n ,

from which they also deviate at most by a constant. We prove that when n tends

to infinity, the correlations Corr(Rec, Tra) and Corr(Rec, V is) = Corr(Tra, V is)

converge to
8 − 3π

16 − 3π
and

√

12 − 3π

16 − 3π
.
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Main statements

Let us have a non-empty finite set S with n > 1 elements, which we call points,

and a map M : S → S. Such a pair (S, M) may be called a finite deterministic

dynamical system, but we call it a monad after V. I. Arnold. The word monad

had been used for many years in classical and modern studies when several years ago

Vladimir Arnold [3, 4, 5] proposed the quoted above definition of it. Arnold emphasized

simplicity of his definition and initialized a study of several concrete monads [6, 7, 8].

These studies have shown i.a. that however interesting and important may be concrete

monads, many of them are not simple. On the other hand, we suggest a really simple

background, against which it will be possible (as we expect) to recognize peculiarities

of concrete deterministic monads. We suggest such a background in the form of

random monads defined below. In this sense our approach is analogous to the well-

known chaos or mean-field approximation widely used to obtail rough approximations

of processes with local interaction.

Let us denote by #(·) the cardinality of any finite set. In particular, we denote

n = #(S) , that is S has n elements. Given a monad (S, M) we may iterate M

to obtain a sequence of maps M t for all t = 0, 1, 2, . . . , where M 0(s) = s for all

s ∈ S and M t = M(M t−1) for all natural t by definition. Given any initial ⊙ and

any M, we call by trajectory generated by ⊙ and M the infinite sequence

M 0(⊙), M 1(⊙), M 2(⊙), . . . (1)

Having ⊙ ∈ S fixed, for each M we denote

M = {M t(⊙), t = 0, 1, 2, . . .}. (2)

The set of possible values of #(M) is {1, 2, . . . , n} . Notice also that #(M) is the

minimal value of t such that

{Mk(⊙) : k ∈ [0, . . . , t − 1]} = M.

It is evident that the sequence (M t(⊙)) is periodic starting at a certain value of t and

therefore consists of the following two parts. A point is called visited if it coincides

with at least one term of the sequence (1) . A visited point is called recurrent if it
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appears in this sequence at least twice; if a visited point appears in this sequence only

once, it is called transient. We denote by V is, Rec, Tra the numbers of visited,

recurrent and transient points respectively. Notice that

#(M) = V is = Rec + Tra.

We assume that the values M(s) for all s ∈ S are independently and uniformly

distributed in S . Thus we have a distribution P defined as follows:

∀ w1, . . . , wn ∈ S : P
(

M(s1) = w1, . . . , M(sn) = wn

)

=

(

1

n

)n

.

Thus V is, Rec and Tra are integer random variables, whose possible values are

delimited by the inequalities

Rec ≥ 1, T ra ≥ 0, and V is = Rec + Tra ≤ n.

The main task of this article is to study the distributions of V is, Rec and Tra . As

usual, IE means mathematical expectation, Med means median, Var means variance,

σ means standard deviation, Cov means covariance and Corr means correlation.

Theorem 1.

(i)







P(Rec = ρ) > P(Rec = ρ + 1) for all ρ ∈ {1, . . . , n − 1};
P(Tra = τ) > P(Tra = τ + 1) for all τ ∈ {0, . . . , n − 2}.

Therefore for every natural n the probabilities of the events Rec = ρ and Tra = τ

strictly decrease as values of ρ and τ grow within the ranges of Rec and Tra .

Therefore these distributions are unimodal with modes 1 and 0 (their smallest possible

values) respectively.

(ii) As λ grows within the range of V is, the probability of V is = λ first strictly

grows, then perhaps stays the same at most once, then strictly decreases. Therefore

the distribution of V is is unimodal (having maximum at one or two neighbor values)

and denoting its mode by Mode(V is) , we have

√
n − 2 ≤ Mode(V is) ≤

√
n + 1. (3)
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Now let us speak about mathematical expectation. Let us denote for all natural n

φ(n) =
√

π n/8. (4)

Theorem 2.

(i) 2φ(n) − 2 < IE(V is) < 2φ(n) + 2;

(ii) φ(n) − 1 < IE(Rec) < φ(n) + 2;

(iii) φ(n) − 2 < IE(Tra) < φ(n) + 1.

Theorem 2 is illustrated by figure 1.
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Figure 1: It shows IE(Rec) and φ(n) for n = 1, . . . , 100. The values of IE(Rec) are represented
by squares, the values of φ(n) are represented by balls. This figure suggests that the difference
IE(Rec) − φ(n) is always positive. Our calculations suggest that this difference decreases as n
increases. If this is so, the greatest value of this difference is achieved when n = 1 and equals
1 −

√

π/8 ≈ 0.373 .

Since P(Rec = α) = P(Tra = α− 1) for all α and V is = Rec + Tra, graphs of

IE(V is) and IE(Tra) are essentially the same, so we do not include them.

Theorem 3.

(i)
√

ψ1 · n − 5 < σ(V is) <
√

ψ1 · n + 3,

(ii)
√

ψ2 · n − 2 < σ(Rec) = σ(Tra) <
√

ψ2 · n + 2,
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where

ψ1 =
4 − π

2
and ψ2 =

16 − 3π

24
.

Theorem 3 is illustrated by figures 2 and 3.
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Figure 2: This figure shows the values of σ(V is) represented by squares, values of
√

ψ1n rep-
resented by balls and the difference between them represented by triangles. This figure suggests
that the difference

√
ψ1n − σ(V is) is always positive. Our calculations suggest that this differ-

ence decreases as n increases. If this is so, its maximum is achieved at n = 1 and equals
√

(4 − π)/2 ≈ 0.655 .
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Figure 3: This figure shows the values of σ(Rec) represented by squares, values of
√

φ2n rep-
resented by balls and the difference between them represented by triangles. This figure suggests
that the difference

√
ψ2n − σ(V is) is always positive. Our calculations suggest that this differ-

ence decreases as n increases. If this is so, its maximum is achieved at n = 1 and equals
√

(16 − 3π)/24 ≈ 0.523 .
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Theorem 4.

(i) Corr(Rec, Tra) tends to
8 − 3π

16 − 3π
and

(ii) Corr(Rec, V is) = Corr(Tra, V is) tends to

√

12 − 3π

16 − 3π



















when n → ∞ .

About behavior of medians of V is , Rec and Tra , we have only proposition 7

and the following conjecture supported by figure 4.

Conjecture. There are positive constants C1, C2 and C such that for all n

∣

∣Med(V is) − C1

√
n
∣

∣ ≤ C and
∣

∣Med(Rec) − C2

√
n
∣

∣ ≤ C

where, according to our estimations, C1 ≈ 1.2 and C2 ≈ 0.5 .
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Figure 4: This figure shows values of median of V is for n = 1, . . . , 100 evaluated by the expression
at proposition 7, item (i) and the values of 1.2

√
n.

Thus we have stated all our main results as theorems; it remains to prove them. The

use of these results, as we see it, is that they describe the most “neutral” behavior of an

“average” monad. Thus we provide a background to compare with all those concrete

deterministic monads which researchers may choose to study in the present and future.

In fact we have exact expressions for all those quantities, which we estimate in our

theorems 2, 3 and 4. These expressions are given in propositions 3, 4, 5 and 6.
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Proofs

Proposition 1. For all integer numbers ρ ≥ 1, τ ≥ 0 and λ such that

λ = τ + ρ ≤ n

(i) P(V is = λ) =
λ · (n − 1)!

nλ · (n − λ)!
for λ = 1, . . . , n;

(ii) P(Rec = ρ, Tra = τ) =
(n − 1)!

nλ · (n − λ)!
for ρ = 1, . . . , n, τ = 0, . . . , n − 1;

(iii) P(Rec = ρ) =
n

∑

λ=ρ

(n − 1)!

nλ · (n − λ)!
for ρ = 1, . . . , n;

(iv) P(Tra = τ) =
n

∑

λ=τ+1

(n − 1)!

nλ · (n − λ)!
for τ = 0, . . . , n − 1;

(v) P(Rec = α) = P(Tra = α − 1) for α = 1, . . . , n.

(vi) Mode(Rec) = Mode(Tra) + 1;

(vii) IE(Rec) = IE(Tra) + 1;

(viii) IE(V is) = 2 IE(Rec) − 1 = 2 IE(Tra) + 1;

(ix) Var(Tra) = Var(Rec), σ(Tra) = σ(Rec);

(x) Cov(Rec, V is) = Cov(Tra, V is) = Var(Tra) + Cov(Rec, Tra).

Proof. For any condition C let us denote by {M C} the event ”C is satisfied”.

For every integer k ∈ [1, n − 1] we denote by Dk the event “all the terms of the

sequence M i(⊙) , where i runs from 0 to k , are different from each other”. Notice

that for every k ∈ [1, n − 1] the probability of Dk equals

P(Dk) =
k

∏

i=1

n − i

n
=

(n − 1)!

nk · (n − k − 1)!
. (5)
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Also notice that

{M V is = λ} = Dλ−1 \ Dλ and Dλ−1 ⊃ Dλ for all integer λ ∈ [1, n].

Therefore

P(V is = λ) = P(Dλ−1) − P(Dλ).

Hence, using (5) , we get item (i) .

Now let us prove item (ii) . Notice that

{M Rec = ρ, Tra = τ} = Dλ−1 ∩ {M Mλ+1(⊙) = M τ(⊙)} (6)

for all integer λ, ρ, τ such that

ρ ≥ 1, τ ≥ 0, λ = ρ + τ ≤ n.

Since the events intersected in the right side of (6) are independent from each other,

the probability of the intersection is a product of their probabilities. The probability

of the latter one is 1/n . Therefore

P(Tra = τ, Rec = ρ) = P(Dλ−1) ·
1

n
.

Substituting here (5) , we get item (ii) . The remaining items follow from this one.

Proposition 1 is proved.

Now let us prove theorem 1. Proof of item (i) follows from items (iii) and

(iv) of proposition 1. Let us prove item (ii). Due to item (i) of proposition 1,

P(V is = λ + 1)

P(V is = λ)
=

(λ + 1) · (n − λ)

λ · n . (7)

This expression is less than one iff λ2 + λ > n . Let us denote by λ0 the

minimal integer value of λ for which the expression (7) is less than one. Notice that

Mode(V is) equals either λ0 or λ0 − 1/2 . Thus

λ0 − 1/2 ≤ Mode(V is) ≤ λ0.
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On the other hand let us denote by λ1 that real value of λ at which the expression

(7) equals one, that is the real positive root of the equation λ2 + λ = n . It is evident

that

λ1 ≤ λ0 ≤ λ1 + 1

and
√

n − 1 ≤ λ1 ≤
√

n.

The estimation (3) follows from these inequalities. Theorem 1 is proved.

Throughout this article we assume that summing over an empty set results in zero.

Thus whenever b < a,
b

∑

k=a

anything = 0. (8)

Lemma 1. For all natural n

en

(

1

2
−

√

9

2 π n

)

<
n−3
∑

k=0

nk

k!
<

en

2
. (9)

Proof. First let us prove the right inequality in (9) . It may be rewritten as

e−n

n−3
∑

k=0

nk

k!
=

n−3
∑

k=0

P(X = k) < 1/2,

where the random variable X has Poisson distribution with parameter n , that is

P(X = k) =
e−n · nk

k!
for all k = 0, 1, 2, . . .

For this case it was shown in [2] that

n
∑

k=0

P(X = k) ≥ 1/2 and
n−1
∑

k=0

P(X = k) < 1/2.

Therefore
n−3
∑

k=0

P(X = k) <

n−1
∑

k=0

P(X = k) < 1/2.

Now let us prove the left inequality in (9) . Evidently,

e−n

n
∑

k=0

nk

k!
≥ 1

2
⇐⇒ e−n

n−3
∑

k=0

nk

k!
≥ 1

2
− e−n

n
∑

k=n−2

nk

k!
.
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Using (16) , we get

n
∑

k=n−2

nk

k!
=

3nn − nn−1

n!
≤ en · (3nn − nn−1)√

2πn · nn
≤ 3 · en

√
2πn

.

So

e−n

n
∑

k=n−2

nk

k!
≤ 3√

2πn
.

Therefore

e−n

n−3
∑

k=0

nk

k!
=

1

2
− e−n

n
∑

k=n−2

nk

k!
≥ 1

2
− 3√

2πn
.

Lemma 1 is proved.

We shall use the upper incomplete gamma function or Γ(z, a)

Γ(z, a) =

∫ ∞

a

tz−1e−tdt.

We use Γ(z, a) only for integer values of z ≥ 1 and a ≥ 0 . In this case all its

properties, which we need, can be found in [1]. In particular

Γ(z, a) = (z − 1)! · e−a ·
z−1
∑

k=0

ak

k!
. (10)

Based on (10) , it is easy to show for all integer j ≥ 0 and n ≥ 1 that

Γ(j + 1, n) = j · Γ(j, n) + e−n nj, (11)

Γ(j, n) =
Γ(j + 2, n) − e−n · nj · (n + j + 1)

(j + 1) · j (12)

and
j

∑

k=0

nk

k!
=

en · Γ(j + 1, n)

j!
. (13)

For all natural n we denote

Φ(n) =
n!

2 nn

n−1
∑

k=0

nk

k!
. (14)

Using Γ(z, a) , we may rewrite (14) as follows:

Φ(n) =
en · Γ(n, n)

2 nn−1
.
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Proposition 2.

φ(n) − 3/2 < Φ(n) − 1 +
1

2n
< φ(n), (15)

where φ(n) was defined in (4) and Φ(n) was defined in (14) .

We shall use the following form of Stirling’s approximation [9]: for all natural n

n! =
√

2πn
(n

e

)n

· eλn with 0 ≤ λn ≤ 1

12n
. (16)

Now let us prove the left inequality in (15) . For n = 1 and n = 2 we check it

numerically. Now let n ≥ 3 . Then, using the left inequality in (9) , we get

Φ(n) − 1 +
1

2n
=

n!

2nn

n−3
∑

k=0

nk

k!
≥

n!

2nn
· en ·

(

1

2
− 3√

2πn

)

≥

φ(n) − 3/2.

Now let us prove the right inequality in (15) . For n = 1 and n = 2 we check it

numerically. For n ≥ 3 we use the right inequality of (9) to obtain

Φ(n) − 1 +
1

2n
< φ(n) ⇐⇒

n−3
∑

k=0

nk

k!
<

en

2
.

Of course

Φ(n) − 1 +
1

2n
< φ(n) ⇐⇒

n−3
∑

k=0

nk

k!
<

2nn

n!
φ(n).

But
2nn

n!
φ(n) ≤ en

√
2πn

√

πn

2
=

en

2
.

Proposition 2 is proved.

Proposition 3.

(i) IE(V is) = 2Φ(n);

(ii) IE(Rec) = Φ(n) +
1

2
;

(iii) IE(Tra) = Φ(n) − 1

2
.
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Proof. Let us first prove that

IE(Rec) = Φ(n) +
1

2
. (17)

For n = 1 and n = 2 we check this by numerical computation. Now let n ≥ 3 .

From item (iii) of proposition 1

IE(Rec) =
n

∑

ρ=1

ρ ·
n

∑

λ=ρ

(n − 1)!

nλ · (n − λ)!
=

(n − 1)!
n

∑

λ=1

λ
∑

ρ=1

ρ

nλ(n − λ)!
=

(n − 1)!

2
·

n
∑

λ=1

λ2 + λ

nλ · (n − λ)!
. (18)

Substituting k = n − λ into (18) , we get

1

(n − 1)!
· IE(Rec) =

1

2nn

(

(n2 + n)
n−1
∑

k=0

nk

k!
− (2n + 1)

n−1
∑

k=0

k nk

k!
+

n−1
∑

k=0

k2 nk

k!

)

. (19)

To transform (19) further, let us note that

n−1
∑

k=0

k nk

k!
= n

n−1
∑

k=1

nk−1

(k − 1)!
= n

n−2
∑

k=0

nk

k!
(20)

and
n−1
∑

k=0

k2 nk

k!
= n2

n−3
∑

k=0

nk

k!
+ n

n−2
∑

k=0

nk

k!
. (21)

Thus (19) turns into
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1

(n − 1)!
· IE(Rec) =

1

2nn

(

(n2 + n)
n−1
∑

k=0

nk

k!
− 2n2

n−2
∑

k=0

nk

k!
+ n2

n−3
∑

k=0

nk

k!

)

=
1

2nn

(

n

n−3
∑

k=0

nk

k!
+ (n − n2)

nn−2

(n − 2)!
+ (n2 + n)

nn−1

(n − 1)!

)

=
1

2nn

(

n

n−1
∑

k=0

nk

k!
+

nn

(n − 1)!

)

Hence, using (13) , we get

1

(n − 1)!
· IE(Rec) =

1

2nn

(

n

(

en · Γ(n, n)

(n − 1)!

)

+
nn

(n − 1)!

)

.

Thus (17) is proved. Now, due to (17) and items (vii) and (viii) of proposition

1, proposition 3 is proved.

Lemma 2.

IE(Rec2) =
Φ(n)

3
+

4n + 1

6
.

Proof. For n ≤ 3 we prove this by calculation. Now let n ≥ 4 . Then

IE(Rec2) =
n

∑

ρ=1

ρ2 ·
n

∑

λ=ρ

(n − 1)!

nλ · (n − λ)!
=

(n − 1)!

6

n
∑

λ=1

2λ3 + 3λ2 + λ

nλ · (n − λ)!
. (22)

Substituting k = n − λ into (22) , we get

6 nn

(n − 1)!
· IE(Rec2) = (2n3 + 3n2 + n)

n−1
∑

k=0

nk

k!

−(6n2 + 6n + 1)
n−1
∑

k=0

k · nk

k!
+ (6n + 3)

n−1
∑

k=0

k2 · nk

k!
− 2

n−1
∑

k=0

k3 · nk

k!
.

Notice that
n−1
∑

k=0

k3nk

k!
= n

(

n−2
∑

k=0

nk

k!
+ 3n

n−3
∑

k=0

nk

k!
+ n2

n−4
∑

k=0

nk

k!

)

, (23)
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Using (20) , (21) and (23) , we get

6 nn

(n − 1)!
· IE(Rec2) = (2n3 + 3n2 + n)

n−1
∑

k=0

nk

k!
− (6n3 + 6n2 + n)

n−2
∑

k=0

nk

k!

+(6n + 3)

(

n2

n−3
∑

k=0

nk

k!
+ n

n−2
∑

k=0

nk

k!

)

− 2n

(

n−2
∑

k=0

nk

k!
+ 3n

n−3
∑

k=0

nk

k!
+ n2

n−4
∑

k=0

nk

k!

)

.

We may rewrite this as

6 nn

(n − 1)!
· IE(Rec2) = n

n−4
∑

k=0

nk

k!
+

2nn−2

(n − 1)!
· (2n3 + 2n2 − 2n + 1). (24)

Thus, using (13) , we get

n−4
∑

k=0

nk

k!
=

en · Γ(n, n)

(n − 1)!
−

n−1
∑

k=n−3

nk

k!
.

Finally, we use (24) . Lemma 2 is proved.

Proposition 4.

Var(Tra) = Var(Rec) = −(Φ(n))2 − 2Φ(n)

3
+

8n − 1

12
.

Proof of Proposition 4. From item (ix) of proposition 1, Var(Tra) =

Var(Rec). Using this with the well-known identity Var(Rec) = IE(Rec2) − IE(Rec)2

and using (11) and lemma 2, we complete our proof of proposition 4.

Lemma 3.

IE(Tra · Rec) = −Φ(n)

3
+

2n − 1

6
.

Proof. For n ≤ 4 we prove this by numerical computation. Now let n ≥ 5. Then

proposition 1 gives us

IE(Tra · Rec)

(n − 1)!
=

n−1
∑

τ=0

n−τ
∑

ρ=1

τ · ρ
(n − λ)! · nλ

=

n−1
∑

k=1

(

1

(n − (k + 1))! · nk+1
·

k
∑

l=1

l(k − l + 1)

)

.
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But

k
∑

l=1

l(k − l + 1) = (k + 1)
k

∑

l=1

l −
k

∑

l=1

l2 =

k(k + 1)2

2
− k(k + 1)(2k + 1)

6
=

k3 + 3k2 + 2k

6
.

Therefore
6 IE(Tra · Rec)

(n − 1)!
=

n−1
∑

k=1

k3 + 3k2 + 2k

(n − (k + 1))! · nk+1
.

Taking j = n − (k + 1), we get

6 IE(Tra · Rec)

(n − 1)!
=

n−2
∑

j=0

(n − j − 1)((n − j − 1)2 + 3(n − j − 1) + 2)

j! · nn−j
.

So

6nn IE(Tra · Rec)

(n − 1)!
=

(n3 − n)
n−2
∑

j=0

nj

j!
+ (−3n2 + 1)

n−2
∑

j=0

jnj

j!
+ 3n

n−2
∑

j=0

j2nj

j!
−

n−2
∑

j=0

j3nj

j!
.

From (20) , (21) and (23) , we get

6nn IE(Tra · Rec)

(n − 1)!
= −n

n−5
∑

j=0

nj

j!
+

nn−3

(n − 2)!
· (2n3 − 3n2 + 7n − 6). (25)

Using (12) , we get

Γ(n − 4, n) =
Γ(n − 2, n) − e−n nn−4 (2n − 3)

(n − 3)(n − 4)
.

Hence, using (13) , we have

n−5
∑

j=0

nj

j!
=

en · Γ(n − 4, n)

(n − 5)!
=

en · Γ(n − 2, n) − nn−4 (2n − 3)

(n − 3)!
.



File TRAJ/TRAJ-83.TEX on October 24, 2010 on [24] pages [16]

So, returning to (25)

6nn IE(Tra · Rec)

(n − 1)!
=

−n

(

en · Γ(n − 2, n) − nn−4 (2n − 3)

(n − 3)!

)

+
nn−3

(n − 2)!
(2n3 − 3n2 + 7n − 6) =

−n

(

en · Γ(n − 2, n)

(n − 3)!

)

− nn−1

(n − 2)!
(1 − 2n).

Thus, using (12) again, lemma 3 is proved.

Lemma 4.

Cov(Tra, Rec) = −(Φ(n))2 − Φ(n)

3
+

4n + 1

12
.

Proof. The well-known formula

Cov(Tra, Rec) = IE(Tra · Rec) − IE(Tra) · IE(Rec)

allows us to use proposition 3 and lemma 3. Lemma 4 is proved.

Proposition 5.

Var(V is) = −4(Φ(n))2 − 2Φ(n) + 2n.

Proof. From item (ix) of proposition 1, Var(Tra) = Var(Rec) . Therefore

Var(V is) = 2 (Var(Tra) + Cov(Tra, Rec)) .

Hence, using proposition 4 and lemma 4. Proposition 5 is proved.

Proof of theorem 2. From items (vii) and (viii) of proposition 1 we have

IE(Tra) = IE(Rec) − 1 and IE(V is) = 2 IE(Rec) − 1.

Let us denote k = Φ(n) and use the function

f(k) = IE(Rec) = k +
1

2
.
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Of course f(k) is a linear function of k and it increases as k increases. But from

proposition 2

φ(n) − 1 < Φ(n) < φ(n) + 1 =⇒ f (φ(n) − 1) < f (Φ(n)) < f (φ(n) + 1) .

Therefore,

f (φ(n) − 1) < IE(Rec) < f (φ(n) + 1) .

Thus

f (φ(n) − 1) − 1 < IE(Rec) − 1 < f (φ(n) + 1) − 1

and

2f (φ(n) − 1) − 1 < 2IE(Rec) − 1 < 2f (φ(n) + 1) − 1.

Theorem 2 is proved.

Lemma 5. Let us denote

f(k) = −k2 − 2k

3
+

8n − 1

12
, (26)

g(k) = −4k2 − 2k + 2n. (27)

Then

(i) f
(

φ(n)
)

− 2φ(n) − 5

3
< Var(Rec) = Var(Tra) < f

(

φ(n)
)

+ 2φ(n) − 1

3
,

(ii) g
(

φ(n)
)

− 8φ(n) − 6 < Var(V is) < g
(

φ(n)
)

+ 8φ(n) − 2.

Proof. First let us prove item (i). From item (ix) of proposition 1 we know that

V ar(Tra) = V ar(Rec). Then, denoting k = Φ(n) and f(k) = Var(Tra) , we have

f(k) = Var(Tra) = Var(Rec) = −k2 − 2k

3
+

8n − 1

12
.

This expression is a quadratic function of k with a negative second derivative. So it

is positive when k is between the roots

α1 =
−2 −

√
24n + 1

6
and α2 =

−2 +
√

24n + 1

6
.
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Notice also that f(k) decreases for k > (α1 + α2)/2 = −1/3. Using proposition 2

for n > 0 , we get

−1

3
< φ(n) − 1 < Φ(n) < φ(n) + 1.

Thus

f (φ(n) + 1) < f (Φ(n)) < f (φ(n) − 1) .

It is easy to evaluate

f (φ(n) + 1) = f(φ(n)) −
(

2φ(n) + 5
3

)

f (φ(n) − 1) = f(φ(n)) −
(

2φ(n) − 1
3

)

.

Thus item (i) is proved. The proof of item (ii) is analogous. Lemma 5 is proved.

Proof of Theorem 3. First let us prove the right side of (i). Using lemma 5,

we have

V ar(V is) <
4 − π

2
· n + 6

√

π

8
·
√

n + 1

<
4 − π

2
· n + 6

√

4 − π

2
·
√

n + 9

=

(

√

4 − π

2
· n + 3

)2

because

6

√

π

8
< 6

√

4 − π

2
and 1 < 9.

Therefore

σ(V is) =
√

Var(V is) <

∣

∣

∣

∣

∣

√

4 − π

2
· n + 3

∣

∣

∣

∣

∣

=

√

4 − π

2
· n + 3.

Hence follows the right side of item (i) of theorem 3 for all n .
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Now to prove the right side of (ii). Using lemma 5 again, we have

V ar(Rec) = V ar(Tra) <
16 − 3π

24
· n +

4

3

√

π

8
·
√

n +
4

3

<
16 − 3π

24
· n + 4

√

16 − 3π

24
·
√

n + 4

=

(

√

16 − 3π

24
· n + 2

)2

because
4

3

√

π

8
< 4

√

16 − 3π

24
and

4

3
< 4.

Therefore

σ(Rec) = σ(Tra) =
√

Var(Rec) <

∣

∣

∣

∣

∣

√

16 − 3π

24
· n + 2

∣

∣

∣

∣

∣

=

√

16 − 3π

24
· n + 2.

Hence follows the right side of item (ii) of theorem 3 for all n .

Now to prove the left side of (i) . Using lemma 5 again, we get

V ar(V is) >
4 − π

2
· n − 10

√

π

8
·
√

n − 7

>
4 − π

2
· n − 10

√

4 − π

2
·
√

n + 25

=

(

√

4 − π

2
· n − 5

)2

for n ≥ 50

because

−10

√

π

8
·
√

n − 7 > −10

√

4 − π

2
·
√

n + 25 for n ≥ 50.

Therefore

σ(V is) =
√

V ar(V is) >

∣

∣

∣

∣

∣

√

4 − π

2
· n − 5

∣

∣

∣

∣

∣

=

√

4 − π

2
· n − 5

for n ≥ 60 because
√

4 − π

2
· n − 5 > 0 for n ≥ 60.
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Hence follows the left side of item (i) of theorem 3 for all n because we have checked

it numerically for n < 60 (See figure 2).

Now to prove the left side of (ii) . Using lemma 5 again, we get

V ar(Rec) = V ar(Tra) >
16 − 3π

24
· n − 8

3

√

π

8
·
√

n − 2

>
16 − 3π

24
· n − 4

√

16 − 3π

24
·
√

n + 4

=

(

√

16 − 3π

24
· n − 2

)2

because

−8

3

√

π

8
·
√

n − 2 > −4

√

16 − 3π

24
·
√

n + 4 for n ≥ 225.

Therefore

σ(Rec) = σ(Tra) =
√

V ar(Rec) >

∣

∣

∣

∣

∣

√

16 − 3π

24
· n − 2

∣

∣

∣

∣

∣

=

√

16 − 3π

24
· n − 2

for n ≥ 15 because
√

16 − 3π

24
· n − 2 > 0 for n ≥ 15.

Hence follows the left side of item (ii) of theorem 3 for all n because for n < 225

we have checked it numerically (see figure 3). Theorem 3 is proved.

Proposition 6.

(i) Corr(Rec, Tra) =
V ar(V is)

2V ar(Tra)
− 1;

(ii) Corr(Rec, V is) = Corr(Tra, V is) =
σ(V is)

2σ(Rec)
.

Proof. It is easy to prove that

V ar(V is) = 2(V ar(Tra) + Cov(Tra, Rec)). (28)
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It is well-known that

Corr(Rec, Tra) =
Cov(Rec, Tra)

σ(Rec) · σ(Tra)
.

Hence, using (28) and after that item (ix) of proposition 1, we get

Corr(Rec, Tra) =
V ar(V is)

2σ(Rec)σ(Tra)
− V ar(Tra)

σ(Rec)σ(Tra)
=

V ar(V is)

2V ar(Tra)
− 1.

Item (i) is proved. Now let us prove item (ii). From item (x) of proposition 1,

Cov(Tra, V is) = Cov(Rec, V is) = V ar(Rec) + Cov(Rec, Tra).

Then, using first this and after that (28), we get Corr(Tra, V is) = Corr(Rec, V is).

Therefore

Corr(Rec, V is) =
σ(Rec)

σ(V is)
+

Cov(Rec, Tra)

σ(Rec)σ(V is)

=
σ(Rec)

σ(V is)
+

1

σ(Rec)σ(V is)

(

V ar(V is)

2
− V ar(Tra)

)

Proposition 6 is proved.

Proof of Theorem 4. Let ψ1 and ψ2 be the same as in theorem 3. First we

shall prove item (i) . Using item (i) of proposition 6 and theorem 3, we get

(
√

ψ1n − 5)2

2(
√

ψ2n + 2)2
− 1 ≤ Corr(Rec, Tra) =

V ar(V is)

2V ar(Rec)
− 1 ≤ (

√
ψ1n + 3)2

2(
√

ψ2n − 2)2
− 1.

Going to the limit, we get

lim
n→∞

Corr(Rec, Tra) =
ψ1

2ψ2

− 1 =
8 − 3π

16 − 3π
.

Item (i) is proved. Now let us prove item (ii). Using item (ii) of proposition 6 and

Theorem 3, we get
√

ψ1n − 5

2(
√

ψ2n + 2)
≤ Corr(Rec, V is) = Corr(Tra, V is) =

σ(V is)

2σ(Rec)
≤

√
ψ1n + 3

2(
√

ψ2n − 2)
.

Going to the limit, we get

lim
n→∞

Corr(Rec, V is) = lim
n→∞

Corr(Tra, V is) =
1

2

√

ψ1

ψ2

=

√

12 − 3π

16 − 3π
.
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Theorem 4 is proved.

Proposition 7. Let us denote by Med(V is ), Med(Rec ) and Med(Tra ) the

medians of V is, Rec and Tra respectively. Then, of course, Med(Tra) = Med(Rec)-

1. In addition,

(i) Med(Vis) is the minimal integer which satisfies the condiction

nk+1(n − (k + 1))! ≥ 2n!.

(ii) Med(Rec) is the minimal integer which satisfies the condiction

(n − 1)!

(n − k)!

(

k · en · Γ(n − k + 1, n)

nn
− n1−k

)

≥ −1/2.

Proof. We start with item (i). First we shall prove that

P(V is ≤ k) = 1 − n!

nk+1(n − (k + 1))!
.

For n − λ = j

P(V is ≤ k) =
k

∑

λ=1

λ(n − 1)!

nλ(n − λ)!
=

(n − 1)!

nn



n

n−1
∑

j=n−k

1

n−jj!
−

n−1
∑

j=n−k

1

n−j(j − 1)!



 .

Now we take l = j − 1. Then

P(V is ≤ k) =
(n − 1)!

nn



n

n−1
∑

j=n−k

1

n−jj!
− n

n−2
∑

j=n−k−1

1

n−ll!





=
(n − 1)!

nn

(

n

n1−n(n − 1)!
− n

n−n+k+1(n − (k + 1))!

)

= 1 − (n − 1)!

nk(n − (k + 1))!
.

If k =Med (V is) , then

P(V is ≤ k) ≥ 1

2
⇔ − n!

nk+1(n − (k + 1))!
≥ −1

2
.

Now let us prove item (ii). We shall show that

P(Rec ≤ k) = 1 +
(n − 1)!

(n − k)!

(

k · en · Γ(n − k + 1, n)

nn
− n1−k

)

. (29)
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By item (iii) of proposition 1,

P(Rec ≤ k) =
k

∑

i=1

n
∑

λ=i

(n − 1)!

nλ(n − λ)!
=

(n − 1)!

nn

k
∑

i=1

n−i
∑

j=0

nj

j!

=
(n − 1)!

nn

(

k
n−k
∑

j=0

nj

j!
+

k−1
∑

j=1

nn−j

(n − j)!

)

=
(n − 1)!

nn

(

k

n−k
∑

j=0

nj

j!
+

n−1
∑

l=n−k+1

(n − l)nl

l!

)

=
(n − 1)!

nn



k
n−k
∑

j=0

nj

j!
+ n

n−1
∑

j=n−k+1

nj

j!
−

n−2
∑

j=n−k

nj+1

j!





=
(n − 1)!

nn

(

k
n−k
∑

j=0

nj

j!
+ n

(

nn−1

(n − 1)!
− nn−k

(n − k)!

)

)

Using (13) , we obtain (29). Therefore

P(Rec ≤ k) ≥ 1

2
⇔ 1 +

(n − 1)!

(n − k)!

(

k · en · Γ(n − k + 1, n)

nn
− n1−k

)

≥ 1

2

Proposition 7 is proved.
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[9] Stirling’s approximation, Wikipedia.


