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We consider space- and time-uniform d-dimensional random processes with

linear local interaction, which we call harnesses and which may be used as

discrete mathematical models of random interfaces. Their components are real

random variablcs a;, whcrc .\'EZ" and /=0,1,2, .... At cvcry timc stcp two

cvcnts occur: lirst, every component turns into a linear combination of its N

neighbors, and second, a symmetric random Li.d. "noise" v is added to every

component. For any aEZ,,+ define Llua~ as follows. If a=(O, ..., 0), Llua~=a~.

Then by induction, LlH,.a;=Llua;+,.-Ll"a:, where e; is the d-dimensional
vector, whose ith compone'nt is one 'and other'components are zeros. Denote lal

the SUl~ of components of a. Call a real random variable ¢ symmetric if it is
distributed as -¢. For any symmetric 'random variable ¢ power decay or

P-decay is defined as the supremum of those I' for which the rth absolute

moment of ¢ is finite. Convergence a.s., in probability and in law when /-+ CI) is

examined in terms of P-decay(v): If d= I, a=O or d=2, a=(O,O), Llua,;

diverges. In all the other cases: I(P-decay(v)«d+2)/(d+lal), LI"a; diverges;

if P-decay(v) > (d + 2)/(d + lal), LI"a: converges and P-decay(Iim Llua~) =

P-decay(v). For any symmetric random variable ¢ expollential decay or E-decay

is defined as the supremum of those I' for which' the expectation of exp( Ixl') is

finite. Let E-decay( v) > O. Whenever LI ua~ converges (that is, if d > 2 or Ial > 0):

If d>2, E-decay(lim a:) =min(E-decay(v), (d+2)/2); if lal=l, E-decay

(Jim Llua~) = min(E-decaY(I'), d + 2); if lal ;;. 2, E-decay(lim Llua',) = E-decay( 1').
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1. BACKGROUND, DEFINITIONS, AND FORMULATIONS

Toom

Some of the most important models of mathematical physics are not
restricted to one area of physics; instead they provide mathematical

apparatus which can be used in dilTerent areas. We suggest that harnesses

considered here share this property. Harnesses (defined below) are a
generalization of "one-sided harnesses" introduced by Hammersley.I(') His
motivation was to study and explain long-range correlation between sub
grains of metals. Without this correlation no crystallic structure would bc

possible. The Edwards-Wilkinson equation(4) is a continuous analog of
harnesses, although its primary physical counterpart was quite dilTerent:
it was surface fluctuations in a settled granular material. Thus we conclude
that harnesses deserve to be studied in general.

Components of our processes are real random variables, or LV. for
short, which are indexed by d-dimensional vectors with integer components,
denoted SEZ". Choose a natural number N?:-d+ I and N different

d-dimensional vectors VI'"'' V N with integer components, whose differences
generate Z ". Components S + v I , •.•, S + v N are those which influence the
component S at every step of the discrete time; we call them neighbors or
s. Also choose intensities of these influences, that is, N positive numbcrs
IV (, .•. , IV N, whose sum equals 1. We define a harness as a joint distribution
of LV. a~, where S E Z" and t = 0, 1,2, ..., which is induced by the distribu
tion of i.i.d. random variables v:., everyone of which is distributed as a
given nonconstant symmetric r.v. v, which we call noise, with the map,
defined in the following inductive way:

N

," 1-1 + Ia,= L... 1V,.a,,+I', v,
,=1

for all t = 1, 2, 3, ... (I)

Here a~ are components of the initial condition, which we assume to be
zeros. Thus a harness is specified by a number N, by VIo"" VN and
IV I,..., IV N, which satisfy the mentioned conditions, and by a symmetric
r.v. v. All the values which depend only on these parameters will be called
constants.

Time and space in our processes are discrete, as in Chapter 9 of (II)
and papers cited there. However, our models may be compared with those
with continuous space and time, which are widely discussed in the physical
literature (see e.g. refs. I, 7, 9, 13, 14, and 17). The random noise)! is
symmetric, but otherwise arbitrary in this paper. We show that the tail of
the distribution of noise influences the behavior of the system. Silllil;!r

phenomen~ have been observed in the physical literature: "the influcnce of
the noise distribution comes as a surprise, since such microscopic details arc



Tails in Harnesses 349

traditionally expected to be irrelevant for the large scale, long time proper

ties."(91 "For the present growth problem I shall show that microscopic
details can indeed influence large scale behavior in a substantial way, thus
violating the naive universality concept."( 17)

Derivatives of some physical quantities are also important physical
quantities. In our case space and time are discrete, so we need to consider

discrete analogs of derivatives: iterated ditlcrenccs. We denote them ,1"a:
for all a E Z'~, where Z + = {O, 1, 2, ...}, and deline them in the following
way. If all components of a are zeros, Ll"a: = a:. After that deline by induc
tion for all a, i, s, t

(2)

where e; is the d-dimensional vector, whose ith component equals one and
all the other components are zeros. Note that this delinition is consistent.

Even when a" diverge when t -+ 00, their differences Ll"a: may well converge,
as shown by our Theorem 1, and we believe that it is their convergence which
makes it possible to use our models to describe such compact physical
phenomena as interfaces. Indeed, when physicists speak about an "interface"
they certainly mean something that can be localized and does not dissipate.

It seems clear that the lirst differences (those with Ial = 1) are physi
cally relevant. If a~represent the orientation of subgrains in metals, as in
ref. 6, absolute values of their first differences may influence the metal's
strength: while first differences are small enough, the metal remains strong,
even if a: diverge. If a: represent the height of a sandpile, as in ref. 4, their
lirst di/1crences are components of the gradient. We may expect the
sandpile to be stable while the norm of the gradient remains small enough
everywhere, even if the height diverges.2 We do not discuss the physical
relevance of higher differences (those with lal > 1), but hope to show in the
future that some of them are also relevant.

Given a LV.~, we denote F(x)=FAx)=F(xl~)=Prob(~<x) its dis
tribution function and F(x) = I-F(x). For any r>O denote M/"(O the rth
absolute moment of ~, that is, the expectation of I~I/". If r = 0, we define
Mo(~)= 1. We use two characteristics of how fast a symmetric random dis
tribution decays at infinity: P-decay and E-decay. Given a symmetric r.v. ~,
call its power decay, or P-decay for short, the supremum of those ,. for
which the rth absolute moment of ~ is finite. P-decay can equal any non

negative number or infinity. For example, P-decay (~) equals ,.> 0 if
dF;:(x}/dx = const/( I + Ixl/"+ I). P-decay is used in Theorem 1, which gives

.'See a discussion or avalanches in ref. 13. See also a discussion or the dislinction between

hounded and unbounded slopes in reI: 14. See also reI'. 16. where d= I and the convergence

and limit distribution or L1 ,a~ are important.

----------_._-~----
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criteria of convergence for harnesses, and in Theorem 2, which gives criteria
of convergence for some random series.

Theorem 1. For any harness:

(a) If d= 1,0:=0 or d=2, 0"=(0,0), a:. diverges when [-400.3

(b) In all the other cases, that is, if d> 2 or 10"1 > 0:

• If P-decay( v) < (d + 2)/(d + 10"1), A"a:. diverges when f -4 00.

• If P-decay(v»(d+2)/(d+ I0"i), L1"a:convergeswhen [-400 and
P-decay(limr~ <X' L1 aa~) = P-decay(v).4

Here and in similar cases convergence and divergence are a.s., in probability
and in law. 10"1 denotes the sum of components of 0". Theorem 1 follows from
Theorem 2, which we are going to formulate.

Given a sequence PI' pz , ... of nonnegative numbers which tends to
zero, call Deg(Pk) or the degree of this sequence the supremum of those ,.
for which the series L.f'~I P~ diverges. Note that degree of a sequence does
not change when we permute its terms and delete zero terms. Using this.
we may assume without any substantial loss of generality that P k?: P k + I > 0
for all k. Under this assumption

Deg(Pk)=lim sup (-logPkk)=l/lim inf (-logkPk) (3)
k-+oo k-+oo

In this and similar cases we assume that 1/0 = 00 and 1100 = o.

Theorem 2. Given a nonconstant symmctric LV. ¢ and a scqucncc
PI' pz , ... of positive numbers which tends to 0, consider the random serics

(4)

where I;,k are independent r.v. distributed as 1;,.

(a) If Deg(pd>2 or Deg(Pk)> P-decay(I;,), the series (4) diverges.

(b) If Deg(Pk)<2 and Deg(Pk) <P-decay(I;,), the series (4) COI1

verges and P-decay(B) = P-decay(I;,).

J Both statements of (a) are well known and have been proved, e.g., in ref. 6. We include them

for completeness and to show how easily they follow from our approach. About growth of

variance of a; see ref. 6. About growth of variance of L1"a~ see Note I below.
4 Based on physical considerations. J. Krug predicted both statements of (b) for the case

1.,.1 = 0 (private communication).
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(c) If Deg(Pk) = 2 <P-decay(~), the series (4) converges if and only
if the series L:%"= I PZ converges. If the series (4) converges in this case, then
also P-decay(B) = P-decay(~).

There are two intermediate cases: P-decay(~) > Deg(Pk) = 2 and P-decay
(e) = Deg(p k) ~ 2. The former is and the latter is not covered by Theorem 2.

Examples 3 and 4 show that both convergence and divergence are possible
in these cases.

Now we go to Theorems 3 and 4. Given a symmetric r.v. ~, let us call
its exponential decay or E-decay the supremum of those r for which the
expectation of exp( Ixl r) is finite. It is easy to prove that

E-decay(~) = lim inf logx( -In Prob( e > x» (5)

E-decay can equal any nonnegative number or infinity. For example,
E-decay(~) equals r> 0 if dFcC'()jdx = const . exp( -Ixl r). Theorem 3 shows
that E-decay of the limit dis'tribution of components of a harness and of
their first differences may depend on the dimension of the harness.

Theorem 3. Assume that E-decay( v) >O. Exclude the divergent
cases d = 1, a = 0 and d = 2, a = (0, 0). In all the other cases A o-a~converges
a.s., in probability and in law when t -+ 00 and:

• If d>2, E-decay(lim,~oo a~)=min(E-decay(v), (d+2)j2).

• If lal = 1, E-decay(lim,~a:' An-a;) =min(E-decay(v), d+ 2).

• If lal ? 2, E-dccay(1im, ..,. Ana:.) = E-dccay( v).

Theorem 3 is a direct corollary of the following Theorem 4 and Lemma 1.5

Theorem 4. Consider the random series

(6)

where ¢k are independent r.v., each distributed as a given nOllconstant sym
metric LV. ~, such that E-decay(¢) > O. Also assume that the sequence
PI' P2,'" tends to 0 and Deg(h) = D < 2. Then the series (6) converges and

E-decay( e) = {D ~ 1E-decay(O

D

if D > 1 and E-decay(¢) >D _ 1

otherwise
(7)

j In the special case d = a = I an analog or Theorem 3 was proved in ref 16.
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It is easy to prove that E-decay of a sum of several independent symmetric

r.v. equals the minimum of their E-decays (see formula (25) below). For
mula (7) shows that for series this does not need to be true: E-decay of the
sum of a series may be less than E-decay of every summand. In informal
terms, formula (7) describes two different mechanisms of formation of a
large value of the sum (6): it may be caused either by a large value of one
summand (the second line), or by the accumulation of small values of
many summands (the first line). There are analogous observations in the
physical literature. For example, ref. 9 concentrates on "the largest noise
fluctuations" motivating this by the observations that "the interface advan
ces in occasional large thrusts which then rapidly spread in the lateral
direction." This corresponds to the second line of (7). How does interface
behave if the first line takes place? It would be interesting to illustrate the
difference between the two modes of behavior by computer simulation.

2. PROOF OF THEOREM 1

Let us show how Theorem I follows from Theorem 2. Since our pro

cesses are space-uniform, distributions of a~do not depend on s, so we may
concentrate on the case s = O. Since the initial conditions are zeros, a:. arc
linear combinations of some v~:

[-I
a~= L LPn(s)·v~-n

11=0 s

(8)

where p)s) denote the coefficients. Hence the iterated differences ,1 "a~ arc
linear combinations of some v:

[-- I

,1"a;)= L L,1"Pn(s),v:-"
II =0 S

(9)

where the coefficients ,1"PII(s) are iterated differences of Pn(s). Now we can
use the time-uniformity of our systems to assume that the process starts at
- t and rewrite (9) as

[ I

,1"a:;= L L,1"Pn(s),v\ n
11=0 s

where v.;n are i.i.d. random variables, each distributed as v. Going to the
limit t ~ 00 in this formula, we see that the limit behavior of ,1 "a: depends
on the convergence of the following random series:

11=0 S
Iim ,1 "a: = L L ,1 "Pn(s) . 1'.;"

I-OC
( 10)
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Lemma 1. The sum of ILIa PI/(s)j" over all n = 0, 1,2, ... and S E Zd

converges if and only if r> (d + 2)j(d + 10"1).

Proof. Lemma 1 is a direct corollary of the following formula (11).

For every r > 0

when n --. 00 (II)

To prove (1 I), let us introduce a d-dimensional random variable w which
equals VI , ... , V" with probabilities IVI ,..., IV". Notice that our coefficients
pjs), which were defined above, equal the following probabilities: pjs) =
Prob(w, + '" +Wl/ = s), where WI , ... , W" are i.i.d. variables, distributed as
w. This representation helps to obtain the following asymptotic expansion

of LI aP,,(s), which holds for all 0" E Z (~ and In E Z + (here In is the number
of terms in the expansion and the last term is the residue term):

where

(12)

s -11/1

Xl/(s) = Jz' lim sup IR,,(s)l =0

/l is the mean of w, Q(x) is a positive-definite quadratic form, every Pk(X)

is a polynomial, and Po(x) is not identically equal to zero. Arguments of
Q(x) and Pk(x) are components of x; coefficients of Q(x) and PAx) are
constants. Equation (12) can be proved by induction based on the Cramer
Edgeworth asymptotic expansion for convolutions of identical lattice distri
butions, which is published in a fOfm appropriate fOf us as Corollary 22.3
(p. 237) in Chapter 5 of ref. 2. Lemma 1 is proved. I

Now to prove Theorem 1.

Case d = I, 0"= O. In this case (d + 2 )/( d + 10"1)= 3. From Theorem 2

and Lemma I, a~ certainly diverges.

Case d=2, 0"=(0,0). In this case (d+2)/(d+10"1)=2. This is a
boundary case, which is handled by statement (c) of Theorem 2. From
Lemma I the sum of squares of p'\~ diverges, whence the series (4) also
diverges.
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In all the other cases (d + 2 )/( d + 10"1)< 2. So, according to Theorem 2,

the series (10) converges if Deg(IL/" pJs)1) < P-decay(v) and diverges if

Deg(IL/"plI(s)i»P-decay(v). Thus statement (b) of Theorem 1 follows
from Lemma 1.

3. PROOF OF THEOREM 2

Given two functions f and g, let f -< g mean that f = O(g) and let
f x g mean that f -< g and g -<;: It is easy to prove that

P-decay( ,) = Iim inf (-log, Prob(' > x))
X-a:)

and that P-decay( ,) equals the supremum of those r for which

(13)

Prob(' > x) -< x-r when x -400 (14)

When proving the statements (a) and (b) of Theorem 2 we use Kolmogorov's
three-series theorem. In dealing with the series (4), all the summands of
which are independent multiples of one and the same symmetric LV. ¢, this
theorem can be simplified as follows: the series (4) converges if and only if
the following two series converge:

and

00I Prob(C~ l/pd
k~1

(15)

Proof of Statement (a). First assume that Deg(pd > 2. Then

Lr~I P~ diverges. Since the sequence Pk tends to zero and is nonincreasing,
we can choose k = ko such that the integral in (16) exceeds a positive
constant for all k;;;, ko. Therefore (16) diverges. I

Now assume that Deg(Pk) > P-decay(¢) and prove that the series (15)

diverges. Let us estimate the sum (15) by an integral as follows:

I. Prob(¢;;;'I/Pk);;;' f"K(x)dFc;(x)-1
k~1 0

( 17)

where K(x) is defined as the smallest natural k for which x~ I/p/;. Let liS

choose a such that Deg( P k) > a > P-decay( ¢). From (3), lim inrk ~J (-Iogk J1 k )

< I/a, whence l/Pk<kl/<I for k large enough. Hence x<l~K(x) for x large
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enough. Hence, since the integral of xG from 0 to OC! diverges, the integral
(17) also diverges.

Proof of Convergence in Statement {b}. Choose P < P-decay(~)

and R < I/Deg(p;) such that R> 1/2 and p. R> 1. After that, due to (14),

we can choose Xo such that

F(x) = Prob(~ > x) :<;:;;xl' forall x~x() (I8)

Also, from (3), we can choose ko such that Pk:<;:;;k-R for all k~ko'

Let us prove convergence of (15). From (18) for k large enough

Since R· P > I, the sum of these terms' converges. Hence (15) converges
also.

Now prove convergence of (16). Denote M = IIPk and y = x2 and
transform the integral in (16) using integration by parts:

ff x2 dF~(x) = 1'\1' (F(M) - F(.JY)) dy = (12 (F(.JY) -F(M)) dyo 0 0

M2 x2 M2

:<;:;; f F(.JY) dy = f "F(.JY) dy +L F(.JY) dy
o 0 x"

Hcre the first addcnd does not exceed x~, which is a constant. Let us
cstimatc thc sccond onc:

If P > 2, this integral does I;ot exceed a constant, because we can substitute
CfJ instead of M2 as the upper limit, and the integral still converges. The
case P = 2 can be avoided by choosing another P. So let P < 2. Then the
last integral equals

const . y 1 -1'121 A,f' :<;:;; const . p~:- 2. 0 f\

Thus (16) does not exceed

,~ 00 00

" 2(1 1'-2) ~ '" 2 " I'const· L- P k + P k ~ 1.., P k + L- P k
k=1 k=1 k=1
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Since Pk~k-R for k?:-ko, these series (several terms omitted) are
majorized by

00 00

L: k-2R + L: k-R P
k=ko k =ko

Both series converge due to our choice of P and R. Hence (16) con
verges. I

Proof of Divergence and Convergence in Statement (c). In one
direction. Assume that L P~ diverges. Since Pk -> 0, the integral

(19)

exceeds a positive constant for k > const. Therefore (16) diverges.

In the other direction. Assume that P-decay( () > 2 and L p~ COll

verges and prove that the series (15) and (16) converge. The series (16)
converges because the integral (19) does not exceed the integral of the same
function li'om zero to inlinity, which converges. Let us prove that (15) con
verges. Choose a such that 2 < a < P-decay( O. Then, due to (13),

a<lim inf (-logxProb«(>x))

whence there is Xo such that Prob«( > x) < x-a for all x> Xo. Therefore
for k large enough the terms of (15) do not exceed p;;. The sum L P,;

converges, because a> 2 and L p~ converges. I
Proof of Equality in Statements (b) and (c). It is easy to prove that

P-decay«( + II) = min(P-decay( (), P-decaY(ll))

for any independent symmetric LV. ( and '7- Hence

P-decay(O) = P-decay (PI (I + k~2 Pk(k) ~ P-decaY(PI (I) = P-decay«()

In the other direction: assume that P-decay( 0) < P-decay( () and come to a

contradiction. Since Deg(Pk) < P-decay«(), we can choose r such that

P-decay( O)} < r < P-decay( ()Deg(pd

Now consider two cases.
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Case r < 2. In this case

357

This follows from the formula (2.29) on p. 58 of ref. 15 in the case r ~ 1 and

from the van Bahr-Esseen inequality in the case 1 <,. < 2. (See, e.g., the
formula at the bottom of p. 33 in ref. 3.) The sum on the right side of (20)
converges because Deg(pd<r and EI¢lr is finite because r<P-decay(¢).
Therefore EIOII" is also finite, which contradicts our assumption.

Case r): 2. In this case it follows from Rosenthal's inequality (see
e.g. p. 59 of ref. 15) that

(( 'n) )1/1" (( '£') )'/2= k~'P~ ·EI¢I' + k~IP; ·E/¢/2

Here the first term is finite because Deg(Pk) < r < P-decay( ¢). The second
term is also finite because Deg( pk) ~ 2 < P-decay( ¢) and L: p; converges.
Therefore E lOll"is also finite, which contradicts our assumption. I
4. PROOF OF THEOREM 4.

Convcrgcnce follows from Thcorem 2, bccause P-decay( ¢) is infinite
whcncvcr E-decay( ¢) is positive. It remains to prove (7). Actually we shall
prove the following inequalities, where D = Deg(pd:

if D> 1

E-decay( 0) ~ E-decay( ¢)

D
E-decay( (I) ~ D _ 1

(21 )

(22)

E-decay(O»): E-decay(¢) if D ~ 1

(24)
D

E-decay( 0) ): D _ 1
if D> I and

or
D

E-decay(¢) ~-- (23)D-I

D

E-decay(¢) > --1D-

Proof of (21). It is easy to prove that

E-decay(¢ + '7) = min(E-decay(¢), E-decay('7» (25)
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for any independent symmetric r.v. ¢' and YJ. Hence

loom

Proof of (22). Since ¢' is symmetric and nonconstant, we can choose
positive constants C and e such that probe ¢'~ C) = e > O. Since D> I, we

can choosc a and h such that IIf) <(/< h < I. Then therc is a scqucnce

kl,k2''''~ 00 such that Pkj>ki a for all i. Let E" denote the foIlowing
event:

for all k E {I, ..., n}

Event Ek; given,

kj

L PI·¢'J·~C·ki·k-:-a=C.kl-a. 1 1
j=1

Denote xi=C·kl-ll• The probability of Ek is not less than ek;. The prob

ability that 2::}:k:+ I pli~ 0 is not less thaI~ 1/2. Therefore

Hence

) I kProb(O~xi ~2·e " where ki=(x)C)I(II-a)

In Prob(O ~ Xi) ~ In( 1/2) + In e· (x;/C) 1(1I-a)

Since a < b < I, the last expression is greater than - x :((I - h) for large
enough i. Thus we have presented a sequence x I' x2, ... ~ 00 such that

In Prob(e~x;) ~ _X:(II-h) for all i

Therefore E-decay(B) ~ I/(l-b). Since this is true for any b between liD
and I, (22) is proved.

Proof of (23). In the case E-decay(¢') ~ I it follows from Theorem

2.3.2 on p. 41 in ref. 10. Let E-decay(¢) > 1. Denote rjJ~(z) the moments
generation function, or MGF for short, of ¢:

Since E-decay( ¢') > I, this integral converges.
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lemma 2. Take any symmetric r.v. ~. Let E-decay(~) > 1. Thenfor

any Zo there is C such that In rjI I;(z) ~ C· Z2 for all nonnegative Z~ Zoo

Proof. Since E-decay(~) > 0, P-decay(~) = 00, whence all moments of
~ are finite, whence MGF has all derivatives at zero. Also note that MGF

is even and equals one at z=o. Hence rjll',(z)~I+const·z2. Hence
Lemma 2 follows. I

Given a symmetric r.v. ~, let us call its order the following limit:

Ord(~) = lim sup logz In rjI 1;(z)
z_ co

Since E-decay(~) > I, Theorem 2.2.2 on p. 25 of ref. 12 ensures that the
characteristic function of ~ is an entire function. What we call order is the

same as what ref. 12 calls order and what we call E-decay is the same as
what is denoted K in ref. 12. This allows us to use the formula (2.4.3) on
p. 37 of ref. 12 to conclude that

I I---+---=1
Ord(~) E-decay(~)

(26)

Due to (26), it is sufficient to prove that Ord( B) ~ Ord( ~). Take some

a>Ord(~) and prove that Ord(B)~a. There is Zo such that Inrjll;(z)~za

for all z ~ Zo. After that, due to Lemma 2, we can choose C such that

In rjI I;(z) ~ C· Z2 for all nonnegative z ~ Zo. Now consider two cases.

Case I. E-decay(~) ~ 2. Remember that the MGF of a convolution
of several distributions equals the product of their MGFs. Hence

'X; OC)

rjllI(Z) = n rjI(zIPk'~d= n rjll;(Pk'z)
k~ I k~ I

where () is defined in (6). Using this and Lemma 2, we can write

In rjllI(Z) = I Inrjll;(Pk'z)
k= I
~ w ~~I (C·(Pk·z)2+(Pk·zr)=z2.C I pZ+za. I p% (27)

k=1 k~1 k~1

Since E-decay(~) ~ 2, (26) implies Ord(~) ~ 2, whence a> 2. So both series
(27) converge. Since z ---+ 00, we may neglect the first addend in (27) and

write In rjI II(z) -< Z". Hence Ord( B) ~ a. I
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Case 2. 2 < E-decay(~) :<.:;;00. Since E-decay(~) > 2, (26) implies

Ord(~) < 2. So we may choose a such that Ord(~) < a:<.:;; 2. Then Z2 :<.:;;za for

0:<.:;;Z :<.:;;I. Therefore In t/1~(z) -< z" for all z, whence

00 ryJ

In t/10(z) = I Int/1.;-(h·Z)-<Z", I p%
1,=1 1,=1

(28)

Since E-decay(~):<':;;D/(D-I), (26) implies Ord(O;;,Deg(Pk}' whence,,>
Deg(pd, whence the series (28) converges. Therefore In 1//0(:::) -< :::", whence
Ord( 0) :<.:;;a. I

Proof of (24). Due to (26), all we need to prove is Ord(B):<.:;;
Deg(h). Since Deg(h) < 2, it is sufficient to choose any b between them
and prove that Ord( 0) :<.:;;b. The assumption E-decay(~) >D/(D - 1) implies
Ord(~) < Deg(h). So we can choose some a between them. Thus Ord(~) <

a < Deg(h) < b < 2. Since Ord(z) < a, there is Zo such that In t/1.;(z):<,:;;za

for all z;;' zoo After that, due to Lemma 2, we can choose C such that

In t/1~(z) :<.:;;C· Z2 for 0 :<.:;;z :<.:;;Zo. Also remember that we may assume that the
sequence h is nonincreasing. So we can write

00 I'~ I 0:'

In t/10(z) = I Int/1.;-(h·Z)= I Int/1.;-(h·Z)+ I Int/1.;-(h·z)
k=l 1,=1 k=I'

v-I r:t:) v-I 'f_

-< I (h'Z)a+ I (h·Z)2=Z"· I p~+za. I pi (29)
k=1 k=,. k~1 1,=1'

where /1 is such that P" I;;':::O/=;;'p, .. Since Deg(p/,}<h, we can lind /io

such that Pk:<':;; k II" for k;;, ko. Since :::-+ 00, lJ -+ 00 also, so we may
assume that v>ko. Therefore zo/z:<.:;;p,.:<':;;v II", whence v:<.:;;(z/zo)". Using
this, we estimate the first sum in (29):

t· - I 1,0- 1 I' - I t' - II pZ= I p~+ I pZ:<.:;;const+ I k-al"-<vl-(al")-<zh-a
k = I k = I k = ko k = k"

whence the first summand in (29) does not exceed const . Zh. Now denote
w= [(Z/ZO)h] and split the second summand in (29) into two parts:

(Z: 11' '-f~

Z2. I pi = Z2. I P~ + Z2 . I p~
k = (1 k = I' k = II' + I

Here the first summand does not exceed



Tails in Harnesses

The second summand does not exceed

00

Z2. L k-2/b-<:Z2'WI-(2/b)-<:Zb
k=lI'+1

Thus In t/t (}(z) -<: Zb when z -. 00. Therefore Ord( 0) ~ b. I
5. EXAMPLES AND NOTES
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Example 1. Consider the v-dimensional one-sided harness as defined

in formula (3.3) of ref. 6 (using notations which are more convenient here):

1
a(r" 1'2"'" 1',,) =- (a(rl - I, 1'2'"'' 1',,) + '" + a(rl, 1'2'"'' 1',,- I»

v

where ~ is the random noise. The initial condition is

a(O, 1'2' 1'3'"'' 1'..) = '" = a(rt, 1'2"'" 1"'_1,0) = 0

and the role of time is played by the sum 1'1 + ... + rd' By an affine linear
transformation of the space-time continuum this model can be turned into
a special case of (I) with d = v - I, N = d + I, VI , ... , V,,+ I being vertices of a
simplex, and all WI , ... , It'" + 1 being equal to each other (and therefore equal
[0 1/(11+ I)). For example, we may take VI =e" ..., v"=e,,, V"+I =0, where
l', ,..., e" are the orts. The initial condition remains difTerent from ours, but

our random series approach shows that this difference is unimportant for
convergence.

Example 2. Consider the Edwards-Wilkinson equation in the form
of (4.1) on p. 135 of ref. 5

where /z is the height of a sandpile. The first term on the right side
represents the surface relaxation, v being the diffusion coefficient. The
second term 17(r, t) is the random noise. This equation is interesting also as
a linearized version of the KPZ equation. (7) If we discretize this equation,
oh/ot turns into /z(r, t + I) -/z(r, t), "ij2/z turns into a linear combination of
her + Vi' t), where I' + Vi are several neighbors of r, and the whole equation
turns into a special case of (I ).
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Example 3. Take ~ distributed as

dFAx) _ const
dx -1+!xlr+1

with r> 2. Take

Toom

(30)

I
Pk= fi or

I
Pk= fi.ln(k+e)

The series L p~ diverges in the former case and converges in the latter.
Therefore the series L: Pk~k diverges in the former case and converges in
the latter. This example shows that both divergence and convergence of (4)
are possible for all values of P-decay(~) > Deg(Pk) = 2.

Example 4. Take ~ defined by (30) with 0 < r < 2. Take

or Pk = p-I/r ·In -2/r(k + e)

In the former case both (15) and (16) diverge, in the latter case both
converge. This example shows that both divergence and convergence of
(4) are possible for all values of P-decay(~) and Deg(Pk) in the range
o < P-decay(~) = Deg(Pk) < 2.

Note 1. Following ref. 6, we might assume that v has a variance,
and ask how the variances of L1 "a: behave when t -+ 00. From (9)

( I

Var(L1"a;») = Var(v)· L L (L1"p,,(S))2
,,=0 s

and it remains to examine how this sum behaves when t -+ 00. From (11)

A series with these terms converges if and only if d + 2 10"1> 2, that is, in
all cases except those mentioned in Theorem 1. In more detail:

If d = I and a =0,

If d = 2 and 0" = (0, 0),

(-I (-I I
,,~o ~(p,,(S))2~,,~O .fi~Ji
(-I (-I 1

L L(p,,(S))2~ L -~Iogt
n=O S 11=0 n
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In all the other cases Var(limh <XlL1 "a:) is finite. Thus we repeat some of
the results of ref. 6 by other means.

Example 5. Take ~ distributed as

Take

dF~(x) = const. exp( -Ixlr),dx
where r>O

I
or h=fi.ln2(k+e)

The series (6) diverges in the former case and converges in the latter. Thus
both convergence and divergence of (6) are possible for every value of
E-decay(~) if Deg(p k) =2.

Note 2. In both Theorems 3 and 4 we excluded the case when

E-decay of v, resp. ~, is zero. However, all the assertions of our theorems

are true in this case also as soon as convergence takes place.

Note 3. Another case which we excluded from Theorem 4 is when

Deg(pd = 2, but the series (6) still converges, because the series L pZ

converges. In this case the formula (7) is also true. To check this, one can
review the arguments and see that whenever we use the condition Deg(pd <

2, all we actually need is convergence of L p~. Only when proving (24) did
we have to be careful. Instead of assuming Deg(pk)<b<2, we should
assume Deg(p,,) = 2 < b and when estimating the last addend, we should

refer to convergence of L PZ'
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