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Processos Aleatórios
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INTRODUÇÃO

Na maior parte da pesquisa teórica de sistemas aleatórios com
part́ıculas interagentes, o conjunto dos śıtios, também chamado
de espaço, não muda no processo de interação. Elementos deste
espaço, também chamados de componentes, podem estar em estados
diferentes, por exemplo 0 e 1, freqüentemente interpretados como
ausência vs. presença de uma part́ıcula, e podem ir de um
estado para outro, o que pode ser interpretado como mudança, ou
nascimento, ou morte de uma part́ıcula. Mas, os śıtios não aparecem,
nem desaparecem no processo de funtionamento. Chamemos de
operadores e processos com comprimento fixo, os processos onde śıtios
não podem ser criados ou eliminados. Vários processos aleatórios
bem conhecidos são deste tipo. Por exemplo, processos de contato,
processos de exclusão, modelo votante, etc.

Porém, na natureza existem muitas seqüências longas, cujo
comprimento pode crescer ou decrescer durante o funcionamento.
Por exemplo, muitas estruturas biológicas em vários ńıveis, macro,
celular, molecular, são longas e finas, e por esta razão
podem ser aproximadas por modelos uni-dimensionais, onde os
componentes podem representar células ou microorganismos, os quais
podem se dividir, ou morrer, ou sofrer mutações, ou pegar
infeção uma de outra. Na informática e no desenvolvimento de
linguagens também encontramos seqüências longas de śımbolos, cujas
transformações mudam o comprimeto da seqüência. Então, nós
reconhecemos a necessidade de estudar operadores e processos com
comprimento variável.

Porém, até agora, somente um pequeno grupo de matemáticos,
em todo mundo, estudam estes novos processos. Este livro resume
vários anos de trabalho de matemáticos brasileiros sobre estes
assuntos. Concentramos nossa atenção numa classe de processos com
comprimento variável chamada de Processos de Substituição. Onde
a própria definição desta classe não é trivial. Após a sua definição,
estudamos as propriedades destes processos. Depois passamos para o
estudo teórico e computacional de exemplos, os quais têm um papel
importante em nossos estudos.
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Chapter 1

Theory

1.1 Informal Introduction.

The bulk of modern studies of locally interacting particle processes
is based on the assumption that the set of sites, called the space,
does not change in the process of interaction. Elements of this space,
called components, may be in different states, e.g. 0 and 1, often
interpreted as absence vs. presence of a particle, and may go from
one state to another, which may be interpreted as birth or death of
a particle, but the sites themselves do not appear or disappear in the
process of functioning. Operators and processes which do not create
or eliminate sites will be called constant-length ones.

However, in various areas of knowledge we deal with long
sequences of components, which are subject to some local random
transformations, which may change their lengths. The simplest
and the most well-known of such transformations are often called
”insertion” and ”deletion” and are widely discussed in informatics
and molecular biology (see e. g. [29, 30], where one can find more
references). Importance of these ideas in linguistics was emphasized
lately in [31]. In such cases we use the phrase variable-lenght processes
and our goal is to provide a rigorous definition of Substitution
Operators, which are a class of variable-length processes with infinite
space and study their properties.

[26, 27, 28, 18, 19, 21] have been published by our group; besides
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that we found only several works on similar processes (see e.g.
[3, 4, 12, 13, 14, 16]), which did much to emphasize connections of
such processes with modern physics; however these works seem to
contain no attempts to define variable-length processes with infinite
space. Our processes have discrete time and therefore can be defined
in terms of operators acting on probability measures, which we call
substitution operators or SO for short.

By #(S) we denote the cardinality of any finite set S. Throughout
this article A is a non-empty finite set called alphabet. Its elements
are called letters and finite sequences of letters are called words. The
number of letters in a word W is called its length and denoted by
|W |. Any letter may be considered as a word of length one. There
is the empty word, denoted by Λ, whose length is zero. The set
of words in a given alphabet A is called dictionary and denoted by
dic(A). We denote by Z the set of integer numbers and AZ the set of
bi-infinite (that is, infinite in both directions) sequences whose terms
are elements of A. We denote by M the set of translation-invariant
probability measures on AZ, that is on the σ-algebra generated by
cylinders.

A generic Substitution Operator or SO acts from M to M roughly
as follows. Given two words G and H (where G must satisfy a
certain condition of self-avoiding which will be presented below) and
a real number ρ ∈ [0, 1], a substitution operator, informally speaking,
substitutes every occurrence of the word G in any configuration by
the word H with a probability ρ (or leaves it unchanged with a
probability 1− ρ) independently from what happens elsewhere. This
rule can be used only if all the occurrences of G in any configuration
do not overlap, and this is why we need a special assumption about G.

Before going into formal details let us present a short synopsis
of the first half of our work. Our first task is to define SO. We do
it in several stages. In section 2 we define how measures may be
approximated by words. Then we introduce random words, which
also can approximate measures. In sections 3 and 4 we define how
SO act on words and random words. This allows us to introduce
extension, that is the coefficient, by which is multiplied the length
of a typical word when a SO is applied to it. We do it in section 5.
Extension, in its turn, allows us to define how SO act on measures.
However, we found it too complicated to define directly how an

2



“SO-3”
2011/6/1
page 3

i

i

i

i

i

i

i

i

arbitrary SO acts on measures. For this reason in section 6 we present
a short list of basic SO (including insertion and deletion mentioned
above) and define how they act on measures. Then in section 7
we represent an arbitrary SO as a composition of several basic SO
and use this representation to define how an arbitrary SO acts on
measures. Thus SO are completely defined. Based on this theoretical
preparation, we study some properties of SO. A major difficulty in
dealing with SO is that they are in general non-linear unlike the bulk
of random processes studied till now. However, we found another
property, which sometimes is as good as linearity: in section 8 we
introduce segment-preserving operators and prove that all our SO
have this property. In addition to this, in section 9 we prove that all
our SO are continuous, which allows us to prove that each of them
has at least one invariant measure. Using [27, 18], we prove that a
certain operator has at least two invariant measures, which
contributes to the study of one-dimensional non-ergodicity.

Now about the second half of our work. Sections 1-7 present
a proof of several results, the most important of which is a proof
of non-ergodicity of a special variable-length process with discrete
time, which we call Flip-Annihilation. Sections 9-14 are devoted
to Monte Crarlo and Chaos numerical approximations to the Flip-
Annihilation and another variable-length process with continuous
time called Annihilation-Flip-Mitosis processes.

1.2 Formal Introduction.

Let us denote by A the discrete topology on A. We
consider probability measures on the σ-algebra A

Z on the
product space AZ endowed with the topology - product
of discrete topologies on all the copies of A. Since A
is finite, it is compact in the discrete topology, and by
Tychonoff’s compact theorem, AZ also is compact.

As usual, shifts on Z generate shifts on AZ and shifts on A
Z. We

call a measure µ on AZ uniform if it is invariant under all shifts.
In this case for any word W = (a1, . . . , an), where a1, . . . , an is the
sequence of letters that forms the word W, the right side of

µ(W ) = µ(a1, . . . , an) = µ(si+1 = a1, . . . , si+n = an)

3
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is one and the same for all i ∈ Z, whence we may use the left side as
a shorter denotation.

We denote by M the set of uniform probability measures on AZ.
Since AZ is compact, M is also compact. Any uniform measure is
determined by its values on all the words and it is a probability, that
is normalized measure if its value on the empty word equals 1. So
we may define a measure in M by its values on words. In order for
values µ(W ) to form a uniform probability measure, it is necessary
and sufficient that: all the numbers µ(W ) must be non-negative, µ
on the empty word must equal one and for any letter a and any word
W we must have

µ(W ) =
∑

a∈A

µ(W,a) =
∑

a∈A

µ(a,W ),

where (W,a) and (a,W ) are concatenations of the word W and the
letter a in the two possible orders.

We assume that our alphabet contains no brackets or commas.
Given any finite sequence of words (W1, . . . ,Wk) (perhaps separated
by commas or put in brackets), we denote by concat (W1, . . . ,Wk) and
call their concatenation the word obtained by writing all these words
one after another in that order in which they are listed, all brackets
and commas eliminated. In particular, Wn means concatenation of
n words, everyone of which is a copy of W . If n = 0, the word Wn is
empty, W 0 = Λ.

Given two words W = (a1, . . . , am) and V = (b1, . . . , bn), where
|W | ≤ |V |, we call the integer numbers in the interval [0, n − m]
positions of W in V . We say that W enters V at a position k if

∀ i ∈ Z : 1 ≤ i ≤ m ⇒ ai = bi+k.

We call a word W self-overlapping if there is a word V such
that |V | < 2 · |W | and W enters V at two different positions. A
word is called self-avoiding if it is not self-overlapping. In particular,
the empty word, every word consisting of one letter and every word
consisting of two different letters are self-avoiding.

It is known that self-avoiding words are not very rare: in fact for
any alphabet with at least two letters the number of self-avoiding
words of length n divided by the number of all words of length n

4
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tends to a positive limit when n → ∞ and this limit tends to one
when the number of letters in the alphabet tends to infinity [8].

We denote by freq (W in V ) the frequency of W in V , that is
the number of positions at which W enters V . If W is the empty
word, it enters any word V at |V | + 1 positions. If |W | ≤ |V |, we
call the relative frequency of a word W in a word V and denote
by rel.freq (W in V ) the number of positions at which W enters
V divided by the total number of positions of W in V , that is the
fraction

rel.freq (W in V ) =
freq (W in V )

|V | − |W | + 1
. (1.1)

Notice that the relative frequency of the empty word in any word is
1. If |W | > |V |, the set of positions of W in V is empty and the
relative frequency of W in V is zero by definition.

We call a pseudo-measure any map µ : dic(A) → R. In particular,
any measure µ ∈ M is a pseudo-measure if it is defined by its values
on words.

Definition 1.2.1. For every word V ∈ dic(A) we define the
corresponding pseudo-measure, denoted by measV and defined by
the rule measV (W ) = rel.freq (W in V ) for every word W .

Definition 1.2.2. We say that a sequence (Vn) of words in dic(A)
converges to a measure µ ∈ M if for every word W ∈ dic(A) the
relative frequency of W in Vn tends to µ(W ) as n → ∞, that is, if
measVn(W ) tends to µ(W ) as n → ∞.

Remark 1.2.3. Notice that since the relative frequencies of all W in
a given V are zeros for all W longer than V , the convergence in the
definition 1.2.2 is possible only if the length of Vn tends to ∞ as
n → ∞.

Definition 1.2.4. Given a real number ε > 0 and a natural number
r, a word V is said to (ε, r)-approximate a measure µ ∈ M if for
every word W ∈ dic(A),

|W | ≤ r ⇒ |rel.freq (W in V ) − µ(W )| ≤ ε.

5
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Lemma 1.2.5. A sequence (Vn) of words converges to a measure µ
if and only if for any positive ε > 0 and any natural r there is n0

such that for every n ≥ n0 the word Vn (ε, r)-approximates µ.

Proof in one direction: Suppose that (Vn) converges to µ. We
want to prove that

∀ ε > 0 ∀ r ∈ N ∃ n0 ∀ n ≥ n0, ∀ W ∈ dic(A) :

|W | ≤ r ⇒ |rel.freq (W in Vn) − µ(W )| ≤ ε.

}
(1.2)

Let us choose W such that 0 < |W | ≤ r. Since (Vn) converges to
µ,

lim
n→∞

rel.freq (W in Vn) = µ(W ),

that is

∀ ε′ > 0 ∃ nW ∀ n ≥ nW : |rel.freq (W in Vn) − µ(W )| ≤ ε′.

Taking ε′ = ε and n0 equal to the maximum of nW over all those
non-empty W , whose length does not exceed r, we obtain (1.2).

In the other direction the proof is straightforward. Lemma 1.2.5
is proved.

Theorem 1.2.6. For any µ ∈ M, any ε > 0 and any natural r there
is a word which (ε, r)-approximates µ.

Proof: If #(A) = 1, the theorem is trivial. So let #(A) > 1. Let us
introduce parameters

s =

]
4r

ε

[
, N = (#(A))

s
and Q =

]
4N

ε

[
.

Hence
r

s
≤ ε

4
and

N

Q
≤ ε

4
.

Notice that there are N words in dic(A), whose length equals s, and
we denote them by U1, U2, . . . , UN .

Furthermore, for any position k of W in Ui, that is, for any
k ∈ [1, s − |W | + 1], we define

freq (W in Ui)k =

{
1 if W enters Ui at the position k,

0 otherwise.

6
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Then
s−|W |+1∑

k=1

freq (W in Ui)k = freq (W in Ui) (1.3)

and
N∑

i=1

(freq (W in Ui)k · µ(Ui)) = µ(W ).

Summing this over k yields

s−|W |+1∑

k=1

N∑

i=1

(freq (W in Ui)k · µ(Ui)) = (s − |W | + 1) · µ(W ).

Hence

N∑

i=1


µ(Ui) ·

s−|W |+1∑

k=1

freq (W in Ui)k


 = (s − |W | + 1) · µ(W ).

(1.4)
Replacing (1.3) by (1.4) gives

N∑

i=1

(freq (W in Ui) · µ(Ui)) = (s − |W | + 1) · µ(W ). (1.5)

Further, for every i = 1, . . . , N we denote

pi = [Q · µ(Ui)] ,

where Q was defined in the beginning of the proof. Hence

Q · µ(Ui) − 1 < pi ≤ Q · µ(Ui). (1.6)

For every i from 1 to N we take pi copies of Ui and define V as their
concatenation in any order, for instance

V = concat (Up1

1 , . . . , UpN

N ).

Let us check that the word V has the desired property, namely (ε, r)-
approximates the measure µ. Since µ(U1)+· · ·+µ(UN ) = 1, summing
(1.6) over i = 1, . . . , N gives

Q − N <

N∑

i=1

pi ≤ Q. (1.7)

7
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Let us estimate the relative frequency of W in V . First from below:
In the present case the numerator of that fraction is

freq (W in V ) ≥
N∑

i=1

freq (W in Ui) · pi

and the denominator is

|V | − |W | + 1 ≤ |V | = s ·
N∑

i=1

pi ≤ s · Q.

Hence, using equation (1.5), we obtain

rel.freq (W in V ) ≥ 1

s · Q ·
N∑

i=1

(freq (W in Ui) · pi) ≥

1

s · Q ·
N∑

i=1

(freq (W in Ui) · (Q · µ(Ui) − 1)) =

1

s
·

N∑

i=1

(freq (W in Ui) · µ(Ui)) −
1

s · Q ·
N∑

i=1

freq (W in Ui) ≥

s − |W | + 1

s
· µ(W ) − s · N

s · Q ≥
(
1 − r

s

)
· µ(W ) − N

Q
≥

(
1 − ε

4

)
· µ(W ) − ε

4
≥ µ(W ) − ε. (1.8)

Now let us estimate the relative frequency of W in V from above.
The numerator of the fraction (1.1) is not greater than

N∑

i=1

(freq (W in Ui) + |W |)·pi ≤
N∑

i=1

(freq (W in Ui) + |W |)·Q·µ(Ui)

and the denominator is not less than

|V | − |W | + 1 ≥ s ·
N∑

i=1

pi − r ≥ s · (Q − N) − r.

8
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Since #(A) ≥ 2, r ≥ 1 and we may assume that ε ≤ 1,

r

Q · N ≤ r · ε
4 · N2

≤ s · ε2

16 · N2
≤ s · ε2

16 · 4s
=

( s

4s

)
· ε2

16
≤ ε2

16
.

Therefore

s · Q
s · (Q − N) − r

=
1

1 − N

Q
− r

Q · N

≤ 1

1 − ε

4
− ε2

16

≤ 1 +
ε

2
.

Thus, using (1.6), (1.7) and (1.8), we get

rel.freq (W in V ) ≤
(
1 +

ε

2

)
· 1

s · Q ·
N∑

i=1

((freq (W in Ui) + |W |) · Q · µ(Ui)) ≤

(
1 +

ε

2

)
· 1

s
·
(

N∑

i=1

(freq (W in Ui) · µ(Ui)) + r ·
N∑

i=1

µ(Ui)

)
≤

(
1 +

ε

2

)
· 1

s
· (s · µ(W ) + r) ≤

(
1 +

ε

2

)
·
(
µ(W ) +

r

s

)
≤

(
1 +

ε

2

)
·
(
µ(W ) +

ε

4

)
≤ µ(W ) + ε.

Theorem 1.2.6 is proved.

Corollary 1.2.7. For any µ ∈ M there is a sequence of words which
converges to it.

Proof: Due to the previous theorem 1.2.6, for every natural n we
can find a word Vn which (1/n, n)-approximates µ. Note that if a
word (ε, r)-approximates a measure, then it (ε′, r′)-approximates
the same measure for any ε′ ≥ ε and r′ ≤ r. Therefore the sequence
(Vn) converges to µ. Corollary 1.2.7 is proved.

Remark 1.2.8. One of our referees noticed that Corollary 1.2.7 should
have been published somewhere, even in a more general form, but we
found no reference and present our own proof.

9
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We define a random word X in an alphabet A as a random
variable on dic(A) which is concentrated on a finite subset of dic(A).
A random word is determined by its components P (X = V ),
that is probabilities that X = V, whose sum is 1, the set
{V : P (X = V ) > 0} being finite. We denote by Ω the set of
random words in the alphabet A.

Definition 1.2.9. We define the mean length of any random word
X as

E|X| =
∑

V ∈dic(A)

P (X = V ) · |V |.

Definition 1.2.10. We define the mean frequency of a word W in a
random word X as

E[freq (W in X)] =
∑

V ∈dic(A)

P (X = V ) · freq (W in V ).

Definition 1.2.11. We define the mean relative frequency of a word
W in a random word X as

rel.freq E(W in X) =
E[freq (W in X)]

E|X| − |W | + 1
. (1.9)

For any random word X we define the corresponding pseudo-
measure measX by the rule

measX(W ) = rel.freq E(W in X) for every word W.

Definition 1.2.12. We say that a sequence (Xn) of random words
X1, X2, X3, · · · ∈ Ω converges to a measure µ ∈ M if for every word
W ∈ dic(A) the mean relative frequency of W in Xn tends to µ(W )
as n → ∞, that is if measXn(W ) tends to µ(W ) as n → ∞.

Definition 1.2.13. Given a positive number ε > 0 and a natural
number r, we say that a random word X (ε, r)-approximates a
measure µ ∈ M if for every non-empty word W ∈ dic(A),

|W | ≤ r ⇒ |rel.freq E(W in X) − µ(W )| ≤ ε.

Theorem 1.2.14. For any µ ∈ M, any ε > 0 and any natural r
there is a random word which (ε, r)-approximates µ.

10
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Proof: It could be obtained as a corollary of theorem 1.2.6 by
considering the random word as a distribution concentrated on a
single word. One could also adapt the proof of theorem 1.2.6 by
considering a random word X with P (X = Ui) = pi, with pi and Ui

being the same as in the proof of theorem 1.2.6. Theorem 1.2.14 is
proved.

Corollary 1.2.15. For any µ ∈ M there is a sequence of random
words which converges to it.

Proof: Analogous to the proof of corollary 1.2.7. Corollary 1.2.15 is
proved.

1.3 SO Act on Words

A generic Substitution Operator or SO for short is determined by
two words G and H, where G is self-avoiding, and a real number

ρ ∈ [0, 1]. We denote this operator by (G
ρ→ H). The informal

idea of this operator is that it substitutes every entrance of the word
G in a long word by the word H with a probability ρ or leaves it
unchanged with a probability 1 − ρ independently of states and fate
of all the other components. Following some articles in this area,
we write operators on the right side of objects (words, measures) on
which they act.

Our goal in this section is to define a general SO, which is denoted

by (G
ρ→ H), acting on words. If G and H are empty, the operator

(G
ρ→ H) changes nothing. Now let G or H be non-empty. Let us

define how (G
ρ→ H) acts on an arbirtary word V . Let us denote

N = freq (G in V ), i.e. N is the number of entrances of G in V .
Since G is self-avoiding, these entrances do not overlap. Further,
let i1, . . . , iN ∈ {0, 1} and let us denote by V (i1, . . . , iN ) the word
obtained from V after replacing each entrance of G by the word H
in those positions ij where ij = 1, the others left unchanged. We

may, therefore, define the SO (G
ρ→ H) as follows: the random word

obtained from the word V is concentrated on the words V (i1, . . . , iN ),

11
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where i1, . . . , iN ∈ {0, 1} with probabilities

P

(
V (G

ρ→ H) = V (i1, . . . , iN )
)

= ρk·(1−ρ)N−k, where k =
∑

j

ij .

Now let us extend this definition to random words. Let us define
the result of application of (G

ρ→ H) to a random word X. Let X
equal the words V1, . . . , Vn with positive probabilities P (X = Vj).

We define X(G
ρ→ H) as the random word which equals the words

Vj(i1, . . . , iN ) with probabilities

P(X = Vj) · ρ
∑

j ij · (1 − ρ)N−
∑

j ij .

Lemma 1.3.1. For any non-empty word V and ρ ∈ [0, 1] we can

express the mean length of the random word V (G
ρ→ H) in the

following simple way

E|V (G
ρ→ H)| = |V | + ρ · (|H| − |G|) · freq (G in V ).

Proof: Let us evaluate the mean length (definition 1.2.9) of the

random word V (G
ρ→ H). We begin by noting that

|V (G
ρ→ H)| = |V | + (|H| − |G|) · k,

where k ∼ Bin(N, ρ), where N = freq (G in V ). Therefore

E|V (G
ρ→ H)| = |V | + (|H| − |G|) · E(k),

which is equal to

E|V (G
ρ→ H)| = |V | + ρ · (|H| − |G|) · freq (G in V ).

Lemma 1.3.1 is proved.

Lemma 1.3.2. For any random word X and a number ρ ∈ [0, 1] we

can express the mean length of the random word X(G
ρ→ H) in the

following simple way

E|X(G
ρ→ H)| = E|X| + ρ · (|H| − |G|) · E[freq (G in X)].
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Proof. Suppose that the possible values of X are the words
V1, . . . , Vn. Then we note that

E|X(G
ρ→ H)| =

n∑

j=1

E|Vj(G
ρ→ H)|P (X = Vj).

Now we use lemma 1.3.1 to obtain

E|X(G
ρ→ H)|

=

n∑

j=1

[|Vj | + ρ · (|H| − |G|)freq (G in Vj)]P (X = Vj)

= E|X| + ρ · (|H| − |G|) E[freq (G in X)].

Lemma 1.3.2 is proved.

1.4 SO Act on Random Words

Remember our notations: A is an alphabet, Ω is the set of random
words on A, M is the set of uniform probability measures on dic(A).

Proposition 1.4.1. Let Xn be a sequence of random words. If Xn

converges to a pseudo-measure µ, then, µ is, in fact, a measure.

Proof: Let us choose a word W and suppose that the sequence
(Xn) converges, thus the limit limn→∞ rel.freq E(W in Xn) exists.
So let us define the following map having the set of all words as its
domain:

µ(W ) = lim
n→∞

rel.freq E(W in Xn).

We want to prove that µ is indeed a measure. In other words, we
want to prove for any word W that 0 ≤ µ(W ) ≤ 1 and also that

∑

a

µ(W,a) =
∑

a

µ(a,W ) = µ(W ).

It is easy to see that 0 ≤ rel.freq E(W in Xn) ≤ 1. Then

0 ≤ lim
n→∞

rel.freq E(W in Xn) ≤ 1.
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Therefore 0 ≤ µ(W ) ≤ 1. We still have to show that
∑

a

µ(W,a) =
∑

a

µ(a,W ) = µ(W ).

To do so, note initially that |(W,a)| = |(a,W )| = |W | + 1.
Let us take first the case when a is on the right side, that is we

show that
∑

a µ(W,a) = µ(W ). Let V be any word in dic(A). If
a 6= b, then (W,a) must enter V in a different position than that of
(W, b). Moreover, if W enters V in a position which is not the last
one, that is, if W does not enter V at the position |V | − |W |, there
must exist a letter, say c, at the right side of W , such that (W, c)
still enters V at the same position. Now we can make two remarks.
First, the number of entrances of W in V is always greater or equal
than the sum over all the letters a of the numbers of entrances of
(W,a) in V , for if (W,a) enters V , then W also enters V . Second, if
W enters V at a non-last position, then (W, c) enters V for some c,
as explained before. Therefore

0 ≤ freq (W in V ) −
∑

a

freq ((W,a) in V ) ≤ 1

for any word V . Then, multiplying the above expression by
P (Xn = V ), we get

0 ≤
P (Xn=V ) · freq (W in V ) − P (Xn=V ) ·

∑

a

freq ((W,a) in V )

≤ P (Xn = V ).

Thus, summing over all words V , and noting that the set
{V : XV > 0} is finite, yields

0 ≤ E[freq (W in Xn)] −
∑

a

E[freq ((W,a) in Xn)] ≤ 1.

Now, dividing by (E|Xn| − |W | + 1) gives

0 ≤ rel.freq E(W in Xn) −
∑

a

E[freq ((W,a) in Xn)]

E|Xn| − |W | + 1

≤ 1

E|Xn| − |W | + 1
,
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which yields

0 ≤ rel.freq E(W in Xn)

−
∑

a

rel.freq E((W,a) in Xn) × E|Xn| − |W |
E|Xn| − |W | + 1

≤ 1

E|Xn| − |W | + 1
,

since 1/(E|Xn| − |W | + 1) → 0 as n → ∞, because E|Xn| → ∞ as
n → ∞. By the same reason,

E|Xn| − |W |
E|Xn| − |W | + 1

tends to 1 as n → ∞. Therefore,

0 ≤ lim
n→∞

rel.freq E(W in Xn)−
∑

a

lim
n→∞

rel.freq E((W,a) in Xn) ≤ 0

that is
µ(W ) =

∑

a

µ(W,a).

The argument for a on the left side is analogous. Thus, the map µ(·)
is indeed a measure. Proposition 1.4.1 is proved.

Definition 1.4.2. We say that a map P : Ω → Ω is consistent if
the following condition holds: for any µ ∈ M and any sequence of
random words (Xn) → µ the limit limn→∞(XnP ) exists and is one
and the same for all sequences Xn → µ.

Definition 1.4.3. Given any consistent map P : Ω → Ω and any
µ ∈ M, we define µP , that is the result of application of P to µ,
as the measure (see Proposition 1.4.1, note also that it is unique
according to definition 1.4.2), to which (XnP ) converges for all
(Xn) → µ, and we call it limit of consistent operators.

Lemma 1.4.4. Let P1, P2 : Ω → Ω be consistent operators. Then
their composition is also consistent.
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Proof: Consider any sequence of random words (Xn) converging to
µ. Then, the sequence of random words Qn = XnP1 tends to µP1

(following definition 1.4.3), hence Qn P2 tends to µP1 P2. Lemma
1.4.4 is proved.

1.5 Extension

Definition 1.5.1. For any µ ∈ M and any P : Ω → Ω we define
extension of µ under P as the limit

Ext(µ|P ) = lim
n→∞

E|XnP |
E|Xn|

for any sequence of random words (Xn) → µ if this limit exists and
is one and the same for all sequences (Xn) which tend to µ.

Informally speaking, extension of a measure µ under operator
P is that coefficient by which P multiplies the length of a word
approximating µ.

Lemma 1.5.2. Suppose that P1, P2 : Ω → Ω have extensions for all
measures and P1 is consistent. Then their composition P1P2 also has
extension for all measures and

∀ µ : Ext(µ|P1P2) = Ext(µ|P1) × Ext(µP1|P2).

Proof. Since we are assuming that P1 is consistent, we have by
definition 1.4.3 that XnP1 → µP1 as n → ∞ for any sequence (Xn)
of random words converging to µ. Thus, since we are assuming that
P2 has extension for all measures, definition 1.5.1 implies that

Ext(µP1|P2) = lim
n→∞

E|VnP2|
E|Vn|

,

for any sequence of random words (Vn) converging to µP1. Thus,
since XnP1 → µP1, as seen in the beginning of the proof,

Ext(µP1|P2) = lim
n→∞

E|XnP1P2|
E|XnP1|

.
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Therefore

lim
n→∞

E|XnP1P2|
E|Xn|

= lim
n→∞

(
E|XnP1P2|
E|XnP1|

· E|XnP1|
E|Xn|

)
=

lim
n→∞

E|XnP1P2|
E|XnP1|

· lim
n→∞

E|XnP1|
E|Xn|

= Ext(µP1|P2) · Ext(µ|P1).

The above expression implies that the extension of µ resulting
from application of a composition P1P2 exists and equals

Ext(µ|P1P2) = Ext(µP1|P2) × Ext(µ|P1).

Lemma 1.5.2 is proved.

Now let us show that every measure in M has an extension under
every SO and provide an explicit expression for it.

Proposition 1.5.3. If (G
ρ→ H) is a SO acting on random words,

then the extension of any µ ∈ M under this operator exists and equals

Ext(µ|(G ρ→ H)) = 1 + ρ · (|H| − |G|) · µ(G).

Proof: We know from lemma 1.3.2 that

E|Xn(G
ρ→ H)| = E|Xn| + ρ · (|H| − |G|) · E[freq (G in Xn)].

Dividing the above expression by E|Xn| yields

E|Xn(G
ρ→ H)|

E|Xn|
=

1 + ρ(|H| − |G|) · rel.freq E(G in Xn)
E|Xn| − |G| + 1

E|Xn|
.

Therefore

lim
n→∞

E|Vn(G
ρ→ H)|

|Vn|
= 1 + ρ(|H| − |G|) · µ(G).

Proposition 1.5.3 is proved.
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1.6 Basic SO Act on Measures

Given a measure µ and a triple (G, ρ, H), a generic SO acting

on measures is also denoted by (G
ρ→ H), where G and H are

words, G is self-avoiding and ρ ∈ [0, 1]. Informally speaking, this
operator substitutes every entrance of the word G by the word H with
a probability ρ or leaves it unchanged with a probability 1 − ρ
independently of states and fate of the other components.

Now we want to define a general SO acting on measures. However,
it is too difficult to do it in a straightforward way. Instead, we shall
introduce several simple operators acting on random words, prove
their consistency and represent a general SO acting on random words
as a composition of those operators. Recall the definition of consistent
operators in definition 1.4.2. If both G and H are empty, our operator

(G
ρ→ H) leaves all measures unchanged by definition. Leaving this

trivial case aside, we assume that at least one of the words G and H
is non-empty.

Let us define several small classes of operators acting on random
words, which we call basic operators and prove that all of them are
consistent. In doing this we follow our previous setup of consistent
operators to define how they act on measures (see definition 1.4.3).

Basic operator 1: Conversion (g
ρ→ h) is the only linear operator

in our list. For any two different letters g, h ∈ A, we define conversion
from g to h as a map from Ω to Ω. The conversion operator changes
each occurrence of the letter g into the letter h with probability
ρ ∈ [0, 1] or does not change it with probability 1 − ρ independently
of the states of the other occurrences. In various sciences a similar
transformation is often called substitution.

Lemma 1.6.1. The basic operator conversion is consistent.

Proof: Let (Vn) be a sequence of words converging to µ. We know
that the extension of this operator equals 1, that is

Ext(µ |( g
ρ→ h)) = 1.

Therefore it is sufficient to verify that the following limit exists for
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all words W :

lim
n→∞

E[freq (W in Vn(g
ρ→ h))]

|Vn|
,

since, from the expression of the extension of this operator, we have
the identity

lim
n→∞

E[freq (W in Vn(g
ρ→ h))]

E|Vn(g
ρ→ h)| − |W | + 1

=

lim
n→∞

E[freq (W in Vn(g
ρ→ h))]

|Vn|
.

Indeed, denoting m = freq (g in Vn), it is easy to see that

freq (g in Vn(g
ρ→ h)) ∼ Bin(m, 1 − ρ),

whence

E[freq (g in Vn(g
ρ→ h))] = (1 − ρ) freq (g in Vn).

This yields

lim
n→∞

E[freq (g in Vn(g
ρ→ h))]

|Vn|
=

(1 − ρ) lim
n→∞

freq (g in Vn)

|Vn|
= (1 − ρ) · µ(g).

After similar calculations we obtain

lim
n→∞

E[freq (h in Vn(g
ρ→ h))]

|Vn|
.

It is easy to see that

freq (h in Vn(g
ρ→ h)) = freq (h in Vn) + K,

where K ∼ Bin(m, ρ) represents the number of copies of the letter g
that turned into h, and m = freq (g in Vn). Therefore

E[freq (h in Vn(g
ρ→ h))] = freq (h in Vn) + ρ · freq (g in Vn),
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whence

lim
n→∞

E[freq (h in Vn(g
ρ→ h))]

|Vn|

= lim
n→∞

freq (h in Vn)

|Vn|
+ ρ lim

n→∞

freq (g in Vn)

|Vn|

= µ(h) + ρ · µ(g).

For any letter e different from g and h

lim
n→∞

E[freq (e in Vn(g
ρ→ h))]

|Vn|
= lim

n→∞

freq (e in Vn)

|Vn|
= µ(e).

Thus we define how this operator acts on µ:

µ(g
ρ→ h)(g) = lim

n→∞

E[freq (g in Vn(g
ρ→ h))]

|Vn|
,

µ(g
ρ→ h)(h) = lim

n→∞

E[freq (h in Vn(g
ρ→ h))]

|Vn|

and

µ(g
ρ→ h)(e) = lim

n→∞

E[freq (e in Vn(g
ρ→ h))]

|Vn|
.

Then, if we let F (g|g) = 1− ρ, F (h|g) = ρ and F (h|h) = F (e|e) = 1,
we have

µ(g
ρ→ h)(g) = F (g|g)µ(g) = (1 − ρ) · µ(g),

µ(g
ρ→ h)(h) = F (h|h)µ(h) + F (h|g)µ(g) = µ(h) + ρ · µ(g),

µ(g
ρ→ h)(e) = F (e|e) µ(e) = µ(e).

More generally, given a word W = (a1, . . . , ak), we have by similar
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calculations:

lim
n→∞

E[freq (W in Vn(g
ρ→ h))]

|Vn|
=

∑

b1, . . . , bk ∈ A

(
k∏

i=1

F (ai|bi) × µ(b1, . . . , bk)

)
,

where

F (a|b) =





1 − ρ if b = g and a = g,

ρ if b = g and a = h,

0 if b = g and a is neither g nor h,

1 if b 6= g and a = b,

0 if b 6= g and a 6= b.

Lemma 1.6.1 is proved.

Now we can use consistency of this operator to define the
conversion operator acting on any measure µ applied to any word
W = (a1, . . . , ak):

µ(g
ρ→ h)(W ) =

∑

b1, . . . , bk ∈ A

(
k∏

i=1

F (ai|bi) × µ(b1, . . . , bk)

)
.

Basic operator 2: Insertion (Λ
ρ→ h) . Insertion of a letter

h 6∈ A into a random word in the alphabet A with a rate ρ ∈ [0, 1]
means that a letter h is inserted with probability ρ between every two
neighbor letters independently from other places. This term is used
in molecular biology and computer science with a similar meaning
[30].

We already know that the extension of any µ for this operator
equals

Ext(µ|(Λ ρ→ h)) = 1 + ρ.

Lemma 1.6.2. The basic operator insertion is consistent.

21



“SO-3”
2011/6/1
page 22

i

i

i

i

i

i

i

i

Proof: Let (Vn) be a sequence of words converging to some measure
µ. We need to prove the following equation for any word W :

limn→∞
E[freq (W in Vn(Λ

ρ
→h))]

E|Vn(Λ
ρ
→h)|−|W |+1

=

1

Ext(µ|(Λ ρ
→h))

× limn→∞
E[freq (W in Vn(Λ

ρ
→h))]

|Vn| . (1.10)

First let us prove that the limits in the left and right sides of (1.10)
exist.

Now, let a word W be in the alphabet A′ = A∪{h}. If W contains
two consecutive appearances of h, then

E[freq (W in Vn(Λ
ρ→ h))] = 0,

otherwise:

E[freq (W in Vn(Λ
ρ→ h))] =

∑

ij∈{0,1}

freq (W in Vn(i1, . . . , i|Vn|+1))

× ρ
∑

j ij × (1 − ρ)|Vn|+1−
∑

j ij , (1.11)

where Vn(i1, . . . , i|Vn|+1) is the word obtained from Vn after inserting
the letter h in those positions where ij = 1. Further, let M be the
number of pairs of consecutive letters in W , both of which are not h.

It is clear that if
∑

j ij < freq (h in W ) or if |Vn| + 1 − ∑
j ij < M ,

then freq (W in Vn(i1, . . . , i|Vn|+1)) = 0. Let also

R = {x ∈ N; freq (h in W ) ≤ x ≤ |Vn| + 1 − M},

W ′ being the word obtained from W by deleting all the entrances of
the letter h, and let fh(W ) = freq (h in W ). Note also that

∑

ij ∈ {0, 1}∑
j ij=fh(W )

freq (W in Vn(i1, . . . , i|Vn|+1)) (1.12)

= freq (W ′ in Vn),
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and, more generally, for 0 ≤ k ≤ |Vn| + 1 − M − fh(W ), we have

∑

ij ∈ {0, 1}∑

j

ij = fh(W ) + k

freq (W in Vn(i1, . . . , i|Vn|+1)) =

(|Vn| + 1 − M − fh(W )

k

)
· freq (W ′ in Vn). (1.13)

Now we can simplify the expression (1.11) to obtain

E[freq (W in Vn(Λ
ρ→ h))] = ρfh(W ) · (1 − ρ)M×

∑

ij∈{0,1}∑
j ij∈R

freq (W in Vn(i1, . . . , i|Vn|+1))

× ρ
∑

j ij−fh(W ) × (1 − ρ)|Vn|+1−
∑

j ij−M

= ρfh(W ) · (1 − ρ)M · freq (W ′ in Vn)×
|Vn|+1−M−fh(W )∑

k=0

(|Vn| + 1 − M − fh(W )

k

)
×

ρk × (1 − ρ)|Vn|+1−M−k−fh(W )

freq (W ′ in Vn) × ρ freq (h in W ) × (1 − ρ)M .

Hence it is easy to conclude that both limits in (1.10) exist. Now
the fact that these limits are equal comes from the definition and
existence of extension of this operator. Lemma 1.6.2 is proved.

Then we use consistency of this operator to define how operator

(Λ
ρ→ h) acts on any measure µ. We define the result of its application

to an arbitrary word W by:

µ(Λ
ρ→ h)(W ) =

1

Ext(µ|(Λ ρ→ h))
µ(W ′) ρfreq (h in W ) (1 − ρ)M

=
1

1 + ρ
· µ(W ′) ρfreq (h in W ) · (1 − ρ)M .
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Basic operator 3: Deletion (g
ρ→ Λ) . Deletion of a letter g ∈ A

with some probability ρ ∈ [0, 1) in a random word means that each
occurrence of g disappears with probability ρ or remains unchanged
with probability 1 − ρ independently from the other occurrences.
This term is also used in sciences with a similar meaning [30]. The
extension of any measure µ under this operator is

Ext(µ|(g ρ→ Λ)) = 1 − ρ · µ(g).

Lemma 1.6.3. The basic operator deletion is consistent.

Proof. Let (Vn) be a sequence of words converging to a measure µ.
We need to prove that for any word W

limn→∞
E[freq (W in Vn(g

ρ
→Λ))]

E|Vn(g
ρ
→Λ)|−|W |+1

=

1

Ext(µ|(g ρ
→Λ))

× limn→∞
E[freq (W in Vn(g

ρ
→Λ))]

|Vn| , (1.14)

but first we need to prove that both limits in (1.14) exist.
Let W = (a0, . . . , am) be any word with |W | = m, and
Nn = freq (g in Vn). Then from definition 1.2.10

E[freq (W in Vn(g
ρ→ Λ))] =

∑

k; j1, . . . , jk

freq (W in Vn(k; j1, . . . , jk)) · ρk · (1 − ρ)Nn−k,

where V (k; j1, . . . , jk) is the word obtained from V by deletion of k
letters g from positions j1, . . . , jk.

Let M = freq (g in W ) and note that

if M > Nn, then E[freq (W in Vn(g
ρ→ Λ))] = 0.

Fix some k in {0, . . . , Nn − M}, and note that the equations (1.12)
and (1.13), written in the context of the deletion operator, provide
the following equation:
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∑

j1, . . . , jk

freq (W in Vn(k; j1, . . . , jk))

=
∑

n1+···+nm+1≤k

(
Nn − M − (n1 + · · · + nm+1)

k − (n1 + · · · + nm+1)

)

× freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn).

Multiplying the above expression by ρk · (1 − ρ)Nn−k, summing
over k and inverting the order of summation on the right side of the
equation yields

Nn−M∑

k=0

∑

j1, . . . , jk

freq (W in Vn(k; j1, . . . , jk)) × ρk × (1 − ρ)Nn−k

=
∑

n1+···+nm+1≤Nn−M

Nn−M∑

k=n1+···+nm+1

freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn)

×
(

Nn − M − (n1 + · · · + nm+1)

(n1 + · · · + nm+1) − k

)
× ρk × (1 − ρ)Nn−k

=
∑

n1+···+nm+1≤Nn−M

Nn−M−(n1+···+nm+1)∑

j=0

freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn)

×
(

Nn − M − (n1 + · · · + nm+1)

j

)

×ρn1+···+nm+1+j × (1 − ρ)Nn−j−(n1+···+nm+1).

Then we can use the previous equation to obtain

E[freq (W in Vn(g
ρ→ Λ))] =
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(1 − ρ)M

Nn−M∑

k=0

∑

j1, . . . , jk

freq (W in Vn(k; j1, . . . , jk))

×ρk × (1 − ρ)Nn−k−M

=
∑

n1+···+nm+1≤Nn−M

freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn)

× ρn1+···+nm+nm+1 × (1 − ρ)M

×
Nn−M−(n1+···+nm+1)∑

j=0

(
Nn − M − (n1 + · · · + nm+1)

j

)

× ρj × (1 − ρ)Nn−M−j−(n1+···+nm+1)

=
∑

n1+···+nm+1≤Nn−M

freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn)

× ρn1+···+nm+nm+1 × (1 − ρ)M .

Therefore

E[freq (W in Vn(g
ρ→ Λ))]

|Vn|
=

∑

n1+···+nm+1≤Nn−M

freq ((gn1 , a1, g
n2 , . . . , gnm , am, gnm+1) in Vn)

|Vn|
×ρn1+···+nm+1 × (1 − ρ)M

∞∑

n1, . . . , nm+1 = 0

I{n1+···+nm+1≤Nn−M}×

freq ((gn1 , a1, g
n2 , . . . , am, gnm+1) in Vn)

|Vn|
,

×ρn1+···+nm+1 × (1 − ρ)M ,

where IA is the indicator function of the set A; in the last identity the
indicator function was used to avoid dependence of n in the index of
summation. Clearly,

I{n1+···+nm+1≤Nn}
n→∞−→ 1
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(i.e. it converges to the function, which is identically equal to 1).
Also

∣∣∣∣
freq ((gn1 , a1, g

n2 , . . . , gnm , am, gnm+1) in Vn)

|Vn|

× I{n1+···+nm+1≤Nn−M}

∣∣ ≤ 1.

Since
∞∑

n1, . . . , nm+1 = 0

ρn1+···+nm+1 · (1 − ρ)M < ∞ if ρ < 1,

we may conclude from the dominated convergence theorem that

lim
n→∞

E[freq (W in Vn(g
ρ→ Λ))]

|Vn|

lim
n→∞

∞∑

n1,...,nm+1=0

I{n1+···+nm+1≤Nn}

freq ((gn1 , a1, . . . , am, gnm+1) in Vn) · ρn1+···+nm+1 · (1 − ρ)M

|Vn|
∞∑

n1,...,nm+1=0

lim
n→∞

I{n1+···+nm+1≤Nn}

freq ((gn1 , a1, . . . , am, gnm+1) in Vn) · ρn1+···+nm+1 · (1 − ρ)M

|Vn|
∞∑

n1,...,nm+1=0

µ(gn1 , a1, . . . , am, gnm+1) · ρn1+···+nm+1 · (1 − ρ)M

Hence it is easy to conclude that both limits in (1.14) exist. In
addition, we notice that the equality in (1.14) follows from the defi-
nition of extension. Lemma 1.6.3 is proved.

Now let us use consistency of this operator to define how the

operator (g
ρ→ Λ) acts on an arbitrary measure µ:

µ(g
ρ→ Λ)(W ) =

1

Ext(µ|(g ρ→ Λ))
×
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∞∑

n1,...,nm+1=0

µ(gn1 , a1, . . . , am, gnm+1) × ρn1+···+nm+1 × (1 − ρ)M

=
1

1 − ρ · µ(g)
×

∞∑

n1,...,nm+1=0

µ(gn1 , a1, . . . , am, gnm+1) × ρn1+···+nm+1 × (1 − ρ)M

for all words W = (a1, . . . , am) and M = freq (g in W ).

Basic operator 4: Compression (G
1→ h). Given a non-

empty self-avoiding word G in an alphabet A and a letter h /∈ A,
compression from G to h is the following map from Ω(A) to Ω(A′),
where A′ = A ∪ {h} and Ω(A) is the set of random words on the
alphabet A: each occurrence of the word G is replaced by the letter
h with probability 1. The extension of any measure µ under this
operator is

Ext(µ|(G 1→ h)) = 1 − (|G| − 1) · µ(G).

Lemma 1.6.4. The basic operator compression is consistent.

Proof: Let (Vn) be a sequence of words converging to µ. We need to
prove that

limn→∞
freq (W in Vn(G

1→ h))

|Vn(G
ρ→ h)| − |W | + 1

=

1

Ext(µ|(G 1→ h))
lim

n→∞

freq (W in Vn(G
1→ h))

|Vn|
. (1.15)

Let us first prove that both limits in (1.15) exist. Let W be a word
in the alphabet A′. If there exist words U and V , with |U | < |G| and
|V | < |G|, satisfying freq (G in W ) < freq (G in concat (U,W, V )),
then freq (W in Vn) = 0. Otherwise, notice that

freq (W in Vn(G
1→ h)) =

freq (W ′ in Vn) − freq (W in G) · freq (G in Vn),
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where W ′ is the word obtained from W by replacing every letter h
by the word G. Then

lim
n→∞

freq (W in Vn(G
1→ h))

|Vn|
=

lim
n→∞

freq (W ′ in Vn) − freq (W in G) freq (G in Vn)

|Vn|

= µ(W ′) − freq (W in G) · µ(G).

Hence it is easy to see that both limits in (1.15) exist. Now the
equation (1.15) follows from the definition of extension. Lemma 1.6.4
is proved.

Now we use consistency of this operator to define how operator

(G
1→ h) acts on any measure µ:

µ(G
1→ h)(W ) =

µ(W ′) − freq (W in G) × µ(G)

Ext(µ|(G 1→ h))

=
µ(W ′) − freq (W in G) × µ(G)

1 − (|G| − 1) × µ(G)
.

Basic operator 5: Decompression (g
1→ H). Given a non-

empty self-avoiding word H in an alphabet A and a letter g 6∈ A,
decompression of g to H is the following map from Ω(A′) to Ω(A),
where A′ = A ∪ {g} and, again, Ω(A) is the set of random words on
the alphabet A: every occurrence of the letter g is replaced by the
word H with probability 1. The extension of any measure µ for this
operator is

Ext(µ|(g 1→ H)) = 1 + (|H| − 1) · µ(g).

Lemma 1.6.5. The basic operator decompression is consistent.

Proof: Let (Vn) be a sequence of words converging to the measure
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µ. We need to prove that for any word W

limn→∞
freq (W in Vn(g

1→ H))

|Vn(g
ρ→ H)| − |W | + 1

=

1

Ext(µ|(g 1→ H))
lim

n→∞

freq (W in Vn(g
1→ H))

|Vn|
. (1.16)

Let us first prove that the limit in the right side of (1.16) exists. First
let us consider the decompression of the letter g into the word (h1, h2)
with probability 1, where the letters h1 and h2 are different and do
not belong to the alphabet A. The extension for this operator equals
1 + µ(g). Now let us compute the following limit

lim
n→∞

freq (W in Vn(g
1→ (h1, h2)))

|Vn|
.

Let W be a word in the alphabet A ∪ {h1, h2}. We define a new
word W ′ as the concatenation W ′ = concat (U,W, V ), where

U =

{
h1 if the first letter of W is h2,

Λ otherwise,

V =

{
h2 if the last letter of W is h1,

Λ otherwise.

After that we turn each entrance of the word (h1, h2) in W ′ into
the letter g and denote the resulting word by W ′′. (We may do it
since the word (h1, h2) is self-avoiding.) Now, if W ′′ contains any

entrance of h1 or h2 it means that freq (W in Vn(g
1→ (h1, h2))) = 0,

and therefore the above limit equals zero. Otherwise,

freq (W in Vn(g
1→ (h1, h2))) = freq (W ′′ in Vn),
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and thus,

lim
n→∞

freq (W in Vn(g
1→ (h1, h2)))

|Vn|
=

lim
n→∞

freq (W ′′ in Vn)

|Vn|
= µ(W ′′).

Therefore, if W ′′ contains any entrance of h1 or h2, we define

µ(g
1→ (h1, h2)) = 0; otherwise we define

µ(g
1→ (h1, h2))(W ) =

µW ′′

Ext(µ|(g 1→ (h1, h2)))
=

µ(W ′′)

1 + µ(g)
.

Now, we will define the decompression of a letter g into the word
(h1, . . . , hk) with probability 1, where the letters h1, . . . , hk are all
different from each other and do not belong to the alphabet A. Let us

then define how the operator (g
1→ (h1, . . . , hk)) acts on the measure

µ by induction in k. The case k = 2 was treated above. Now, let us
take k > 2 and a letter s not belonging to A. Then for any word W
in the alphabet A ∪ {h1, . . . , hk}

freq (W in Vn(g
1→ (h1, . . . , hk))) =

freq (W in (Vn(g
1→ (h1, s)))(s

1→ (h2, . . . , hk))),

and then we can prove by induction that the following limits exist
and the following equality holds:

lim
n→∞

freq (W in Vn(g
1→ (h1, . . . , hk)))

|Vn|
=

lim
n→∞

freq (W in Vn(g
1→ (h1, s))(s

1→ (h2, . . . , hk)))

|Vn|
.

Now it is easy to see that the limits in the equation (1.16) exist.
We will now use consistency of this operator to define how it acts

on an arbitrary measure. Let Vn → µ when n → ∞ and assume that
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h1, . . . , hk and s do not belong to A. Then

Ext(µ|(g 1→ (h1, s))(s
1→ (h2, . . . , hk)))

= lim
n→∞

|Vn(g
1→ (h1, s)(s

1→ (h2, . . . , hk))))

|Vn|

= lim
n→∞

|Vn(g
1→ (h1, s))| + (|H| − 2)freq (s in Vn(g

1→ (h1, s)))

|Vn|

= lim
n→∞

|Vn(g
1→ (h1, s))| + (|H| − 2)freq (g in Vn)

|Vn|

= lim
n→∞

|Vn| + (|H| − 1)freq (g in Vn)

|Vn|

= Ext(µ|(g 1→ (h1, . . . , hk))).

After that, we define how the operator (g
1→ (h1, . . . , hk)) acts on an

arbitrary measure µ in the following inductive way:

µ(g
1→ (h1, . . . , hk)) = µ(g

1→ (h1, s))(s
1→ (h2, . . . , hk)),

we can check this claim by noting that:

µ(g
1→ (h1, s))(s

1→ (h2, . . . , hk))(W )

= lim
n→∞

freq (W in Vn(g
1→ (h1, s))(s

1→ (h2, . . . , hk)))

Ext(µ|(g 1→ (h1, s))(s
1→ (h2, . . . , hk)))

= lim
n→∞

freq (W in Vn(g
1→ (h1, . . . , hk))

Ext(µ|(g 1→ (h1, . . . , hk)))

= µ(g
1→ (h1, . . . , hk))(W ).

This is a composition of the decompression from g to (h1, s) and the
decompression from s into (h2, . . . , hk).
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Finally, we can define the decompression operator acting on
a measure µ. It transforms a letter g into an arbitrary word
H = (s1, . . . , sk) with no restrictions on letters s1, . . . , sk. First,
we use the decompression from g to a word (h1, . . . , hk), where all
the letters h1, . . . , hk are different from each other and do not belong
to the alphabet A. Further, we perform k conversions, each with
probability 1, from hi to si for all i = 1, . . . , k. Lemma 1.6.5 is proved.

1.7 Compositions of Basic SO

The main goal of this section is to give a general definition of SO

(G
ρ→ H) acting on measures. We shall do it by representing an

arbitrary SO as a composition of several basic operators, which we
have defined in the previous section.

Theorem 1.7.1. Let (G
ρ→ H), where G is self-avoiding, be a SO

acting on words. Let also (G
ρ→ Λ) and (Λ

ρ→ H) be SO acting
on words, where Λ is the empty word, s, g, h are different letters not

belonging to A, and ρ ∈ [0, 1] (and ρ < 1 for the operator (G
ρ→ Λ)).

Then, for any words V and W :

E[freq (W in V (G
ρ→ H))] =

E[freq (W in V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G))],

E[freq (W in V (G
ρ→ Λ))] =

E[freq (W in V (G
1→ g)(g

ρ→ Λ)(g
1→ G))],

E[freq (W in V (Λ
ρ→ H))] =

E[freq (W in V (Λ
ρ→ h)(h

1→ H))].

Also

E|V (G
ρ→ H)| = E|V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)|, (1.23)

33



“SO-3”
2011/6/1
page 34

i

i

i

i

i

i

i

i

E|V (G
ρ→ Λ)| = E|V (G

1→ g)(g
ρ→ Λ)(g

1→ G)|, (1.24)

and finally,

E|V (Λ
ρ→ H)| = E|V (Λ

ρ→ h)(h
1→ H)|. (1.25)

Proof of theorem 1.7.1: Observe that for any word V , the
distributions of the random words

V (G
ρ→ H) and V (G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G)

are one and the same. Therefore the mean frequency and the mean
length are the same for both random words. The same argument
holds for the other cases. Theorem 1.7.1 is proved.

Now let us state several corollaries, which will allow us to define
SO on measures.

Corollary 1.7.2. Let the SO

(G
ρ→ H), (G

ρ→ Λ), (Λ
ρ→ H)

act on words. Here G is a self-avoiding word, s, g, h 6∈ A, and

ρ ∈ [0, 1] (and ρ < 1 for the operator (G
ρ→ Λ)). Then, for any

words V, W

rel.freq E(W in V (G
ρ→ H)) = (1.26)

rel.freq E(W in V (G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G)),

rel.freq E(W in V (G
ρ→ Λ)) = (1.27)

rel.freq E(W in V (G
1→ g)(g

ρ→ Λ)(g
1→ G))

and

rel.freq E(W in V (Λ
ρ→ H)) = (1.28)

rel.freq E(W in V (Λ
ρ→ h)(h

1→ H)). (1.29)

Therefore, if (Vn) is a sequence of words, then

Vn(G
ρ→ H) converges ⇐⇒ (1.30)

Vn(G
1→ h)(h

ρ→ s)(s
1→ H)(h

1→ G) converges, (1.31)
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Vn(G
ρ→ Λ) converges ⇐⇒ Vn(G

1→ g)(g
ρ→ Λ)(g

1→ G) converges
(1.32)

and

Vn(Λ
ρ→ H) converges ⇐⇒ Vn(Λ

ρ→ h)(h
1→ H) converges.

(1.33)

Proof: straightforward. Corollary 1.7.2 is proved.

To imitate an arbitrary operator (G
ρ→ H), where G, H are

words in an alphabet A and G is self-avoiding we first compress (with
probability 1) each entrance of the word G into a letter h, which is
introduced especially for this purpose and does not belong to A. Then
with probability ρ we turn each letter h into a letter s 6= h which also
does not belong to A. After that we decompress (with probability 1)
the letter s into a word H and decompress the letter h into a word
G. We proceeded analogously to imitate the other operators.

Corollary 1.7.3. For any words G, H, where G is self-avoiding,

and any ρ ∈ [0, 1] (where ρ < 1 if H = Λ), the operator (G
ρ→ H)

acting on words is consistent.

Proof: The identities (1.26), (1.27) and (1.29) yield that the SO is the
composition of basic operators described in the last section, and each
basic operator is consistent. Thus, by lemma 1.4.4, their composition

is also consistent. Thus (G
ρ→ H) is consistent. Corollary 1.7.3 is

proved.

In view of the above corollary, we have the following definition:

Definition 1.7.4. We define µ(G
ρ→ H), that is the result of

application of the operator (G
ρ→ H) to a measure µ ∈ M (following

definition 1.4.3) by

µ(G
ρ→ H) = lim

n→∞
Vn(G

ρ→ H)),

where Vn is a sequence converging to µ.

Corollary 1.7.5. Consider the operator (G
ρ→ H) acting on

measures, where G is self-avoiding and ρ ∈ [0, 1] (ρ < 1 if H = Λ).
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Then the following identities hold for any s, g, h 6∈ A:

µ(G
ρ→ H) = µ(G

1→ h)(h
ρ→ s)(s

1→ H)(h
1→ G),

µ(G
ρ→ Λ) = µ(G

1→ g)(g
ρ→ Λ)(g

1→ G),

µ(Λ
ρ→ H) = µ(Λ

ρ→ h)(h
1→ H).

Proof: It is a straightforward consequence of corollary 1.7.2.
Corollary 1.7.5 is proved.

1.8 Segment-Preserving Operators

For any two measures µ, ν we denote by convex (µ, ν) their convex
hull , that is

convex (µ, ν) = {kµ + (1 − k)ν | 0 ≤ k ≤ 1}. (1.34)

Lemma 1.8.1. Let (Vn) and (Wn) be sequences of words converging
to measures µ and ν respectively. Let the following limit exist

lim
n→∞

|Vn|
|Vn| + |Wn|

= L.

Then the sequence concat (Vn, Wn) converges to the measure
L · µ + (1 − L) · ν when n → ∞.

Proof: We clearly have |concat (Vn, Wn)| = |Vn| + |Wn| and also

freq (W in Vn) + freq (W in Wn)

≤ freq (W in concat (Vn,Wn))

≤ freq (W in Vn) + freq (W in Wn) + 1.
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Hence,

freq (W in Vn)

|Vn| + |Wn|
+

freq (W in Wn)

|Vn| + |Wn|

≤ rel.freq (W in concat (Vn, Wn))

≤
(

freq (W in Vn)

|Vn| + |Wn|
+

freq (W in Wn)

|Vn| + |Wn|
+

|W |
|Vn| + |Wn|

)

× |Vn| + |Wn|
|Vn| + |Wn| − |W | + 1

.

Therefore
|Vn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Vn)+

|Wn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Wn)

≤ rel.freq (W in concat (Vn,Wn))

≤
( |Vn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Vn)+

|Wn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Wn) · |W |

|Vn| + |Wn|

)

× |Vn| + |Wn|
|Vn| + |Wn| − |W | + 1

.

But

|Vn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Vn) +

|Wn| − |W | + 1

|Vn| + |Wn|
· rel.freq (W in Wn)

→ L · µ(W ) + (1 − L) · ν(W ) as n → ∞
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and
|W |

|Vn| + |Wn|
→ 0 as n → ∞.

Also
|Vn| + |Wn|

|Vn| + |Wn| − |W | + 1
→ 1 as n → ∞.

Thus the left and right sides of the above inequality tend to
L · µ(W ) + (1 − L) · ν(W ). Then

lim
n→∞

rel.freq (W in concat (Vn,Wn)) = L · µ + (1 − L) · ν.

That is, the sequence of words concat (Vn, Wn) converges to the
measure Lµ + (1 − L)ν. Lemma 1.8.1 is proved.

Lemma 1.8.2. Let (Vn) be a sequence of words such that (Vn) → µ
and (kn) a sequence of natural (therefore positive) numbers. Then
V kn

n → µ as n → ∞.

Proof follows immediately from the inequalities:

kn·freq (W in Vn) ≤ freq (W in V kn
n ) ≤ kn·freq (W in Vn)+kn·|W |

and from the fact that |V kn
n | = kn|Vn|. Lemma 1.8.2 is proved.

Theorem 1.8.3. For any L ∈ [0, 1] and any measures µ and ν there
is a sequence of words (Vn) converging to µ and another sequence of
words (Wn) converging to ν, such that concat (Vn, Wn) converges to
L · µ + (1 − L) · ν.

Proof: Take any sequences of words (Vn) and (Wn) such that
(Vn) → µ and (Wn) → ν as n → ∞. Then we construct a sequence

of pairs (Ṽn, W̃n), such that Ṽn → µ, W̃n → ν and |Ṽn| = |W̃n|.
Indeed, let us consider

Ṽn = V tn
n , where tn = |Wn| and W̃n = Wun

n , and un = |Vn|.

Then we get |Ṽn| = |Vn| · |Wn| = |W̃n|.
Now we need to obtain a new sequence of pairs (V̂n, Ŵn), such

that V̂n → µ, Ŵn → ν and

concat (V̂n, Ŵn) → L · µ + (1 − L) · ν.
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To do so, let r ≥ 0 be given as r = 1/L − 1, and r = +∞ if L = 0.
Further, consider rn > 0 a sequence of positive rational numbers such
that rn → r. Let us write rn in a more convenient way: rn = pn/qn,
where pn, qn > 0 are natural numbers. Then we take

V̂n = Ṽ qn
n and Ŵn = W̃ pn

n .

Noting that |V̂n| = qn · |Ṽn|, we conclude that |Ŵn| = pn · |W̃n| and

|Ṽn| = |W̃n|. Thus Ṽn = V tn+qn
n , W̃n = Wun+pn

n and therefore, by

lemma 1.8.2, V̂n → µ and Ŵn → ν. We also get that

|V̂n|
|V̂n| + |Ŵn|

=
1

1 + pn/qn

→ 1

1 + r
= L,

and by lemma 1.8.1, we have that

concat (V̂n, Ŵn) → 1

1 + r
· µ +

r

1 + r
· ν = L · µ + (1 − L) · ν.

Theorem 1.8.3 is proved.

The following definition gives us a useful property, which all SO
have. This property is trivially satisfied for linear operators, but is
not true in general.

Definition 1.8.4. An operator P : MA → MB, where A and B are
alphabets, is called segment-preserving if

∀µ, ν ∈ MA λ ∈ convex (µ, ν) ⇒ λP ∈ convex (µP, νP ),

where convex (µ, ν) was defined in (1.34).

Theorem 1.8.5. Every SO (G
ρ→ H) is segment-preserving and

(L · µ + (1 − L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1 − L̃) · ν(G
ρ→ H)

for any measures µ, ν, where

L̃ =
L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))
. (1.35)

39



“SO-3”
2011/6/1
page 40

i

i

i

i

i

i

i

i

Proof: The proof will be done by first obtaining a similar result for
words, then going to the limit and finally proving it for measures.
The key tool is theorem 1.8.3. Let L ∈ (0, 1). Due to theorem 1.8.3
we can take two sequences of words (Vn) and (Wn) converging to µ
and ν, respectively, such that

concat (Vn,Wn) → L · µ + (1 − L) · ν, as n → ∞.

We want to show that the SO (G
ρ→ H) satisfies this:

(L · µ + (1 − L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1 − L̃) · ν(G
ρ→ H).

Let us choose any word W . Then

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))] ≤

E[freq (W in concat (Vn,Wn)(G
ρ→ H))] ≤

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))] + 1.

Note that

1

E|concat (Vn, Wn)(G
ρ→ H)|

n→∞−→ 0.

Therefore, to prove the convergence of the sequence of the words

concat (Vn, Wn)(G
ρ→ H), it is sufficient to look at the limit values

of

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))]

E|concat (Vn, Wn)(G
ρ→ H)|

.

Notice further that

E|concat (Vn, Wn)(G
ρ→ H)| =

|Vn| + |Wn| + ρ(|H| − |G|) · freq (G in concat (Vn, Wn))

and furthermore that

freq (G in Vn) + freq (G in Wn)

≤ freq (G in concat (Vn,Wn))

≤ freq (G in Vn) + freq (G in Wn) + 1.
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Due to the analogies between several parts of our argument, we will
examine in detail only some cases and omit the others since they are
analogous to those studied below. We want to sandwich the middle
part of (1.36) between two values, say an and bn, which we shall
choose in an appropriate way:

an ≤

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))]

E|concat (Vn,Wn)(G
ρ→ H)|

≤ bn.

First let us care about the right inequality in (1.36). To choose
appropriate values of bn we use the following inequalities:

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))]

E|concat (Vn, Wn)(G
ρ→ H)|

=
E[freq (W in Vn(G

ρ→ H))] + E[freq (W in Wn(G
ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|) freq (G in concat (Vn,Wn))

≤ E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|) · (freq (G in Vn) + freq (G in Wn))
.

These inequalities suggest one to choose

bn = (1.36)

E[freq (W in Vn(G
ρ→ H))] + E[freq (W in Wn(G

ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|) · (freq (G in Vn) + freq (G in Wn))
.

It is evident that with these bn the right inequality (1.36) holds.
Analogously we can choose an to satisfy the left inequality in (1.36).

Now let us check the limiting behavior of bn. We begin by checking
the limiting behavior of the following quantity:

E[freq (W in Vn(G
ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|) · (freq (G in Vn) + freq (G in Wn))
.
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The limit behavior of the other part included in bn is obtained by
simply replacing each entry of Vn by Wn, and each entry of Wn by
Vn in the above expression. Therefore for the second case we will just
give the resulting expression. Thus, we begin with:

E[freq (W in Vn(G
ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|)(freq (G in Vn) + freq (G in Wn))

=
|Vn|

|Vn| + |Wn| + ρ(|H| − |G|)(freq (G in Vn) + freq (G in Wn))

×Sn × Mn

=
|Vn| + |Wn|

|Vn| + |Wn| + ρ(|H| − |G|)(freq (G in Vn) + freq (G in Wn))

×Ln × Sn × Mn,

where

Ln =
|Vn|

(|Vn| + |Wn|)
→ L,

Sn =
E|Vn(G

ρ→ H)|
|Vn|

→ Ext(µ|G ρ→ H)

Mn =
E[freq (W in Vn(G

ρ→ H))]

E|Vn(G
ρ→ H)|

→ µ(G
ρ→ H)(W ).

Starting here for the next three pages our text is abbreviated to fit
into the format of this book. You can find the full text in [22]. Going
on, we have

|Vn| + |Wn| × Ln × Sn × Mn

|Vn| + |Wn| + ρ(|H| − |G|)(freq (G in Vn) + freq (G in Wn))
,

which tends to

L · Ext(µ|(G ρ→ H)) · µ(G
ρ→ H)(W )

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))
.

42



“SO-3”
2011/6/1
page 43

i

i

i

i

i

i

i

i

as n → ∞. By means of the analogous calculations, one can obtain:

E[freq (W in Wn(G
ρ→ H))]

|Vn| + |Wn| + ρ(|H| − |G|)(freq (G in Vn) + freq (G in Wn))

n→∞−→ (1 − L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))

· ν(G
ρ→ H)(W ).

Thus we have obtained the limiting behavior of bn in the
equation (1.36):

bn
n→∞−→

L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))

×µ(G
ρ→ H)(W )

+
(1 − L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))

×ν(G
ρ→ H)(W ).

Analogously, it is possible to find a sequence (an) satisfying equation
(1.36) such that it has the same limit as (bn) . We conclude that

concat (Vn,Wn)(G
ρ→ H)

n→∞−→

L · Ext(µ|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))
× µ(G

ρ→ H)

+
(1 − L) · Ext(ν|(G ρ→ H))

L · Ext(µ|(G ρ→ H)) + (1 − L) · Ext(ν|(G ρ→ H))
× ν(G

ρ→ H).
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Thus, applying theorem 1.8.3, since

concat (Vn, Wn) → L · µ + (1 − L) · ν,

we obtain

(L · µ + (1−L) · ν)(G
ρ→ H) = L̃ · µ(G

ρ→ H) + (1− L̃) · ν(G
ρ→ H)

for all L ∈ (0, 1), where L̃ was defined in (1.35). Theorem 1.8.5 is
proved.

1.9 All SO Are Continuous

For any M′ ⊂ M we say that an operator P : M′ → M′ is continuous
if whenever a sequence µn ∈ M′ tends to λ ∈ M′ (in the weak
topology, i.e., convergence separately on every word), the sequence
µnP tends to λP (the well-known sequential continuity).

Definition 1.9.1. A measure µ is called invariant for an operator
P if µP = µ.

The article [28] indicated the following corollary of the well-known
fixed point theorems:

Theorem 1.9.2. For any non-empty compact convex M′ ⊂ M any
continuous operator P : M′ → M′ has an invariant measure.

We now state a general result about continuity of consistent
operators.

Theorem 1.9.3. Let P : Ω → Ω be a consistent operator. Given any
non-empty compact convex M′ ⊂ M, let P : M′ → M′ be the limit
operator defined on measures (see definition 1.4.3). Then P (defined
on measures) is continuous.

Proof: Let µ be a measure in M′ and let (µn) be a sequence of
measures in M′ converging to µ. Then µn(W ) → µ(W ) as n → ∞
for every word W .

Let (Vnk
) be a sequence of words converging to µn as k → ∞. We

claim that the sequence (Vkk
) converges to µ as k → ∞. Let ε > 0

be any positive number. We can choose k such that

|measVkk (W ) − µk(W )| < ε/2 and |µk(W ) − µ(W )| < ε/2.
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Then

|measVkk (W )−µ(W )| ≤ |measVkk (W )−µk(W )|+|µk(W )−µ(W )| ≤ ε.

Hence (Vkk
) converges to µ as k → ∞.

Now, since P is consistent (see definition 1.4.2), we have
Vnk

P → µnP as k → ∞ and Vkk
P → µP as k → ∞. Therefore

for any fixed ε > 0 and large enough k we have

|µkP (W )−measVkk
P (W )| < ε/2 and |µP (W )−measVkk

P (W )| < ε/2.

Therefore

|µkP (W ) − µP (W )| ≤

|µkP (W ) − measVkk
P (W )| + |µP (W ) − measVkk

P (W )|

≤ ε.

Theorem 1.9.3 is proved.

Now we note that M is convex and compact and apply theorem
1.9.2 to conclude the following:

Corollary 1.9.4. Let P : M′ → M′ be the limit of consistent
operators (see definition 1.4.3), where M′ is a closed and convex
subset of M. Then P has at least one invariant measure.

Proof: Since M′ is closed and M is compact, M′ also is compact.
Further, by theorem 1.9.3, the operator P is continuous, threfore by
theorem 1.9.2 P has an invariant measure. Corollary 1.9.4 is proved.

The next corollary applies these results to SO:

Corollary 1.9.5. Every SO (G
ρ→ H) (where ρ < 1 if H = Λ) is

continuous and has an invariant measure.

Proof: Take any (G
ρ→ H). By corollary 1.7.3, it is consistent.

Therefore by theorem 1.9.3, it is continuous. Then, by corollary 1.9.4,

(G
ρ→ H) has an invariant measure. Corollary 1.9.5 is proved.

Remark 1.9.6. We note that in [28], the proof of continuity of the
SO is different from ours, since it proves that the basic operators
are quasi-local and therefore continuous, and further, that any
composition of continuous operators is continuous.
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1.10 A Large Class of Operators

We now introduce a large class of stochastic processes which contains
as particular cases, for instance, the process defined in [27]. For all
these processes we prove existence of at least one invariant measure.

Definition 1.10.1. Let µ ∈ M and let (G
ρ→ H) (where ρ < 1 if

H = Λ) be a SO. We define the discrete substitution process (µn)
starting at µ, by

µn(W ) = µ(G
ρ→ H)n(W ) for every word W.

Definition 1.10.2. Let ν ∈ M, and P1, . . . , Pj be a finite sequence
of SO. Then we define the generalized discrete substitution process
(νn), where ν0 = ν, as follows:

νn(W ) = ν(P1P2 · · ·Pj)
n(W ) for every word W.

It is easy to see that the process defined in [27] is a special case
of our generalized discrete substitution process, and further, that
the substitution process itself is a special case of the generalized
substitution process.

We will now apply the results of the last section to these processes.
In fact, we will apply them to an even more general class of processes,
which we will call the consistent processes and define them as follows:

Definition 1.10.3. Let P : M′ → M′ be the limit of consistent
operators (see definition 1.4.3 for the definition of limit of consistent
operators), and let µ be a measure in M′. Then we say that (µn) is
a consistent process starting at µ if

µn(W ) = µPn(W ) for all words W.

Since every SO is consistent (see corollary 1.7.3), and a
composition of several consistent operators is also consistent, any
generalized discrete substitution process is also consistent.

Theorem 1.10.4. Let P : M′ → M′ be the limit of consistent
operators (see definition 1.4.3), where M′ is a convex and closed
subset of M. Then P has an invariant measure.
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Proof: a straightforward application of corollary 1.9.4. Theorem
1.10.4 is proved.

Remark 1.10.5. Since any generalized discrete substitution process
is a special case of consistent processes, every generalized discrete
substitution process has at least one invariant measure.

Theorem 1.10.6. Let us consider a generalized discrete substitution
process νn = ν0 P n, where P = P1P2 · · ·Pj as in definition
1.10.2. Let S ⊂ A

Z be some subset of the σ-algebra A
Z. Then, if

νn(c) ≤ δ (respectively νn(c) ≥ ε) for all c ∈ S, then P has an
invariant measure µ such that µ(c) ≤ δ (respectively µ(c) ≥ ε) for
every c ∈ S, where δ, ε > 0 are some positive constants.

Proof: Let M′ denote the closure in M of the convex hull of the
measures ν0, ν1, . . . . Therefore M′ is a non-empty convex closed sub-
set of M. Since M is compact, M′ is also compact. We now apply
corollary 1.9.5 to note that P is continuous. Further, the continuity
together with theorem 1.8.5 yields that if τ ∈ M′, then τP also
belongs to M′. Therefore, by theorem 1.9.2 the operator P has an
invariant measure µ in M′. Since for every n and every c ∈ S,
νn(c) ≤ δ (respectively νn(c) ≥ ε), a simple calculation shows that
for every τ ∈ M′ and every c ∈ S we have τ(c) ≤ δ (respectively
τ(c) ≥ ε). Therefore the invariant measure µ satisfies µ(c) ≤ δ
(respectively µ(c) ≥ ε) for every c ∈ S. Theorem 1.10.6 is proved.

1.11 Application to the FA Case

We now consider the process studied in [27], which is a special case
of the generalized substitution process defined in section 1.10. In this
case our alphabet is A = {⊕,⊖}, whose elements are called plus and
minus. We consider two specific operators: flip denoted by Flipβ

and annihilation denoted by Annα. Flipβ is a special case of the
basic operator which we called conversion (see section 1.6). More

precisely, Flipβ is (⊖ β→ ⊕) , which turns every minus into plus with
probability β independently from the fate of other components. Annα

is ((⊕,⊖)
α→ Λ) , which makes every entrance of the self-avoiding

word (⊕,⊖) disappear with probability α < 1 independently from
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fates of the other components. We therefore consider the sequence of
measures

µn = δ⊖(FlipβAnnα)n, (1.37)

where δ0 is the measure concentrated in the configuration, all of whose
components are zeros. [27, 18] have proved the following:

Theorem 1.11.1. For all β ∈ [0, 1] and α ∈ (0, 1) the relative
frequency of pluses in the measure µn does not exceed 250 · β/α2

for all n.

Now, based on these results, we can prove more:

Theorem 1.11.2. For all β ∈ [0, 1] and α ∈ (0, 1) the operator
FlipβAnnα has an invariant measure, whose relative frequency of
pluses does not exceed 250 · β/α2.

Proof: We may use theorem 1.10.6 with S = {⊕} and δ = 250 ·
β/α2 since by theorem 1.11.1

µn(⊕) < 250 · β/α2 for all n.

Therefore, by theorem 1.10.6 the operator FlipβAnnα has an invariant
measure ν such that

ν(⊕) ≤ 250 · β/α2.

Theorem 1.11.2 is proved.

Corollary 1.11.3. For β < α2/250, the process (1.37) has at least
two different invariant measures.

Proof: On one hand the measure δ⊕ concentrated in “all pluses”
is invariant for the operator Flipβ Annα. On the other hand, by
theorem 1.11.2 above, this operator has an invariant measure, in
which the relative frequency of pluses does not exceed 250 · β/α2.
Thus, with appropriate α and β this operator has at least two
different invariant measures. Corollary 1.11.3 is proved.
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1.12 Exercices

Exercise 1.12.1. Explain why the main results proved here would
also be valid if in the equation (1.1), the normalizing factor were
| V | instead of | V | − | W | +1.

Exercise 1.12.2. Let A be an alphabet. Given a letter a ∈ A, denote
by δa the measure concentrated in the configuration, all components
of which are a. Propose a sequence of words approximating δa.

Exercise 1.12.3. Fill the details in the proofs of Theorem 1.2.14
and Corollary 1.2.15.

Exercise 1.12.4. We say that a sequence of random words (Xn) is
Cauchy if for any word W and any ε > 0 there is a k such that

∀ m, n > k : |rel.freq E(W in Xm) − rel.freq E(W in Xm)| < ε.

Show that a sequence of random words is Cauchy if and only if it
converges to some measure.

Exercise 1.12.5. Let a and b be letters. Describe the measure

δa(a

1

2→ b) explicitly. Let δ2 = δa(a

1

2→ b). Obtain δ2(a

1

2→ b) explicitly.
Generalize to obtain δn explicitly.

Exercise 1.12.6. Let us call a process ergodic if, starting from any
initial condition, it tends to one and the same invariant measure.
In corollary 1.11.3 we presented a process with at least two different
invariant measures, whence certainly non-ergodic. Let A = {a, b},
and let h 6∈ A. Use the operator

((a, b)
ρ→ h) : MA → MA′ ,

where A′ = A ∪ {h}, and 0 < ρ < 1 to construct a non-ergodic
substitution process.
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Chapter 2

Examples.

2.1 FA Revisited

Here we study in more detail the Flip-Annihilation process, which
was mentioned in the previous section. We shall prove that it
shows some form of non-ergodicity, similar to contact processes, but
more unexpected. This process deserves attention because for some
positive values of parameters it is non-ergodic and has at least two
different invariant measuares.

As before, we have a finite set A called alphabet, whose elemens
are called letters and the configuration space is AZ . Throughout this
and next section A has only two elements plus and minus denoted by
⊕ and ⊖.

As in the previous sections, the time of our process is discrete
and our process is a sequence of normalized uniform measures µ, µP ,
µP 2, . . . , where µ is initial condition and P is transition operator.
Informally speaking, this operator acts as follows. At every time step
two transformations occur.

The first one, which we call flip and denote by Flipβ , turns every
minus into plus with probability β independently from what happens
at other places.

Evidently, flip is a special case of conversion studied in the
previous sections and generally well-known. It is constant-length and
linear.

50



“SO-3”
2011/6/1
page 51

i

i

i

i

i

i

i

i

The second operator can be informally described as follows: Under
its action, whenever a plus is a left neighbor of a minus, both
disappear with probability α independently from what happens at
other places. It does not fit into that short list of basic operators,
which were introduced in the previous sections, but it can be easily
represented as a composition of some of them. This operator seems
to be “impartial”.

Now we shall declare our main results for α < 1. Let us denote by
δ⊖ and δ⊕ the degenerate measures concentrated in the configurations
“all minuses” and “all pluses” respectively. For all natural t we
denote

µt = δ⊖ (Flipβ Annα) t. (2.1)

Theorem 2.1.1. For all natural t the frequency of pluses in the
measure µt does not exceed 250 · β/α2.

Theorem 2.1.1 was proved in [27] and improved in [18]. We must
admit that we are not satisfied with this estimation. We would be
much happier to have const ·β/α instead of it, because in this case we
could hope to go to the limit in which α and β tended to zero with
a constant proportion and thus define a process with a continuous
time. Regretfully, we have to be content with what we have.

Since δ⊕ is invariant for Flipβ Annα with any α and β, theorem
2.1.1 implies that the operator Flipβ Annα cannot be ergodic whenever
β < α2/250 because in this case µt cannot tend to δ⊕.

Theorem 2.1.2. If 2β > α, the measures µt tend to δ⊕ when
t → ∞.

Taken together, theorems 2.1.1 and 2.1.2 show that the sequence
of measures µt has at least two different modes of behavior. In one
mode (β > α/2) these measures tend to δ⊕ when t → ∞ and in the
other mode (β < α2/250) they do not tend to δ⊕.

Theorem 2.1.3. Take any µ ∈ M{⊖,⊕} and suppose that β > 0 and
(1 − β) · µ(⊖) ≤ 1/2. Then the measures µ (Flipβ Annα) t tend to δ⊕
when t → ∞.

Let us denote by s(α, β) the supremum of density of ⊕ in measure
µt for all natural t.
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Theorem 2.1.4. For every α ∈ (0, 1), s(α, β) is not continuous as
a function of β.

These theorems show similarity and difference between our
process and the well-known contact processes (see e.g. [9, 10]). Since
our time is discrete, it is easier to compare our process with the well-
known Stavskaya process, a discrete-time version of contact processes.
(See [23] or example 1.2 on pp.8-10 of [2] or [24] or section 6.2 on p.
139 in [25].) Using our notations, Stavskaya process is a sequence of
measures δ⊖ (Flipβ Stav ) t, where the deterministic constant-length
operator

Stav : {⊖,⊕}Z → {⊖,⊕}Z

is defined by the rule

∀ x ∈ {⊖,⊕}Z, k ∈ Z : (x Stav )k =

{
⊕ if xk = xk+1 = ⊕,

⊖ otherwise.

The operator Stav favors minuses against pluses, because it turns
any plus into a minus whenever its right neighbor is minus, but
never turns minuses into pluses. The operator Flipβ , on the contrary,
turns minuses into pluses with a rate β. So it is natural that their
composition behaves in different ways for large vs. small β, namely,
when β is large, minuses die out and when β is small, they do not.
Contact processes behave in a similar way. In our case behavior is
more unexpected: Flipβ favors pluses for any β > 0, annihilation
is “impartial”, but still minuses survive for β/α2 small enough. Of
course, “impartiality” of annihilation should be taken with a tongue
in the cheek. In fact, it favors that state, which already prevails - see
our lemma 2.3.1.

Theorem 2.1.3 shows another way in which our process is
different from Stavskaya process, which does not tend to δ⊕ from
initial measures in which minuses and pluses are mixed at random in
any proportion, provided initial density of minuses is positive and β is
small enough. What about our function s(α, β), for some situations
(contact processes, percolation) its analogs have been proved to be
continuous. Theorem 2.1.4 shows that our process is different. In
this respect (lack of continuity) its behavior may be classified as a
first order phase transition.
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2.2 Another Definition of FA

Now we need to define our operators formally. We shall represent
them using independent auxiliary variables. Let us define Flipβ ,

denoting by xi ∈ {⊖,⊕} for all i ∈ Z the coordinates of {⊖,⊕}Z.
Also, we use mutually independent variables F i for all i ∈ Z, each
taking two values called move and stay, distributed according to a
product-measure π, defined as follows:

F i =

{
move with probability β,

stay with probability 1 − β.

Finally, we have a third set of variables yi ∈ {⊖,⊕} for all
i ∈ Z, on which the measure µFlipβ is induced by the product of
the measures µ and π with the map

yi =

{
⊖ if xi = ⊖ and F i = stay,

⊕ in all the other cases.
(2.2)

Clearly, operator Flipβ can be applied to any µ ∈ M{⊖,⊕} and
produces a measure in M{⊖,⊕}, preserving the set of uniform normed
measures.

The Annihilation operator Annα : M{⊖,⊕} → M{⊖,⊕}. It is
because of this operator we have to restrict our attention only
to translation-invariant measures. We shall define Annα as a
composition of two operators: Annα = Duel α Clean (first Duel α,
then Clean ). You may imagine that when Duel α is applied, a duel
occurs between every pair of ⊕ and ⊖ occupying i-th and (i + 1)-th
sites respectively (in this order only). If the command fire! is given,
which occurs for every such pair independently with a probability α,
the duellists kill each other. Otherwise the command stop! is given
and nothing happens. When Clean is applied, the dead bodies are
disposed of and the live sites close ranks.

Now let us define operator Duel α, a linear constant-length
operator transforming any measure on {⊖,⊕}Z into a measure on
{⊖,⊕,⊙}Z, where ⊙ is a third state introduced especially for this oc-
casion and called dead. States different from dead, that is minus and
plus, are called live. Let us call xi ∈ {⊖,⊕}, i ∈ Z the coordinates
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of the space {⊖,⊕}Z, where the original measure µ is defined. Also,
we use mutually independent variables A i for all i ∈ Z, each taking
two values called fire and stop, distributed according to a product-
measure π, defined as follows:

A i =

{
fire with probability α,

stop with probability 1 − α
(2.3)

for any i ∈ Z independently of all the other components and of the
measure µ. We denote by yi ∈ {⊖,⊕,⊙} the coordinates of the space,
where the measure µ Duel α is induced by the product of µ and π,
with the following map:

yi =





⊙ if xi = ⊕, xi+1 = ⊖ and A i+1 = fire,

⊙ if xi−1 = ⊕, xi = ⊖ and A i = fire,

xi in all the other cases.

Also notice that µ(⊕,⊖) ≤ 1/2 for any µ ∈ M{⊖,⊕}, because
µ(⊕,⊖) = µ(⊖,⊕) and their sum does not exceed 1. Hence, since
α < 1 and from the definition of Duel α

µDuel α(⊙) = 2α · µ(⊕,⊖) < 1. (2.4)

Now let us define a variable-length operator

Clean : M{⊖,⊕,⊙} → M{⊖,⊕}.

For any µ ∈ M{⊖,⊕,⊙} we directly express the values of µ Clean on all
words in the alphabet {⊖,⊕} in terms of the values of µ on all words
in the alphabet {⊖,⊕,⊙}. By definition we set µ Clean on the empty
word to be 1. For any non-empty word W = (a0, . . . , ak) ∈ dict(⊖,⊕)
we define µ Clean (W ) as follows:

µ Clean (a0, . . . , ak) =
1

1 − µ(⊙)
× (2.5)

∞∑

n1,...,nk=0

µ(a0 ⊙n1 a1 ⊙n2 a2 . . . ⊙nk−1 ak−1 ⊙nk ak),
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where ⊙n means the word consisting of n letters, everyone of which
is ⊙ (in fact, the empty word if n = 0). So

a0 ⊙n1 a1 ⊙n2 a2 . . . ⊙nk−1 ak−1 ⊙nk ak

means the word, which starts with letter a0, then go n1 letters ⊙
(in fact, none if n1 = 0), then goes letter a1, then n2 letters ⊙,
then letter a2, and so on till nk−1 letters ⊙, then letter ak−1, then
nk letters ⊙, and finally letter ak and the summing is done over all
n1, . . . , nk from zero to infinity. Notice that the formula (2.5) is non-
linear, whence the well-developed theory of linear operators cannot
be applied here, which adds much to the difficulty of dealing with
variable-length processes. Notice also that in the case k = 1 the
formula (2.5) turns into

µClean (⊖) =
µ(⊖)

1 − µ(⊙)
, µClean (⊕) =

µ(⊕)

1 − µ(⊙)
. (2.6)

2.3 Proof of Theorems 2.1.2, 2.1.3, 2.1.4

Lemma 2.3.1. For any µ ∈ M{⊖,⊕},

if µ(⊖) ≤ 1/2, then µAnnα (⊖) ≤ µ(⊖).

Proof. From the definition of Duel α

µ Duel α(⊖) = µ(⊖) − α · µ(⊕,⊖).

Hence, from (2.4) and from the definition of Clean

µAnnα(⊖) =
µ(⊖) − α · µ(⊕,⊖)

1 − 2α · µ(⊕,⊖)
,

where the denominator is positive since α < 1. Now, assuming that
µ(⊖) ≤ 1/2,

µ(⊖) − µAnnα(⊖) = µ(⊖) − µ(⊕) − α · µ(⊕,⊖)

1 − 2α · µ(⊕,⊖)
=

α · µ(⊕,⊖)(1 − 2µ(⊖))

1 − 2α · µ(⊕,⊖)
≥ 0.
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Lemma 2.3.1 is proved.

Proof of theorem 2.1.3. Since µFlipβ(⊖) = (1 − β) · µ(⊖) and
(1 − β) · µ(⊖) ≤ 1/2, the frequency of minuses in µFlipβ does not
exceed 1/2. Then, from lemma 2.3.1, the frequency of minuses in
µFlipβ Annα also does not exceed 1/2. Arguing in this way, we can
prove by induction that the frequency of minuses in µ (Flipβ Annα) t

does not exceed (1 − β)t−1/2 for all t ≥ 1, and therefore tends to
zero when t → ∞, whence the measure tends to δ⊕. Theorem 2.1.3
is proved.

Proof of theorem 2.1.2.. Here the case β = 0 is impossible and
the case β = 1 is trivial, so let 0 < β < 1. If there is t such that
(1 − β) · µt(⊖) ≤ 1/2, theorem 2.1.2 follows from theorem 2.1.3. It
remains to examine the case when (1− β) · µt(⊖) > 1/2 for all t. We
shall prove that this case is impossible. Notice that

µt+1(⊖) =
(1 − β) · µt(⊖) − α · p

1 − 2α · p , (2.7)

where we have denoted p = µt Flipβ (⊕,⊖). It is easy to prove that
the expression (2.7) is a growing function of p under our conditions.
Since µ(⊕,⊖) ≤ 1/2, whence α · µ(⊕,⊖) ≤ α/2, this implies that

µt+1(⊖) ≤ (1 − β) · x − α/2

1 − α
,

where x = µt(⊖). Therefore

µt+1(⊖) − µt(⊖) ≤ − (β − α)x + α/2

1 − α
.

Here the right side is a linear function of x, which equals −α/(2−2α)
at x = 1/(2 − 2β) and −(β − α/2)/(1 − α) at x = 1. Both of these
values are negative, so

µt+1(⊖) − µt(⊖) ≤ m,

where m is a negative constant, whence µt(⊖) tends to −∞ when
t → ∞, which is impossible, because a probability cannot be negative.
Theorem 2.1.2 is proved.

Proof of theorem 2.1.4 assuming that theorem 2.1.1 is al-

ready proved. Notice that s(α, β) cannot take values in (1/2, 1),
because if it does, then there is t such that µt(⊕) > 1/2. But
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then, due to theorem 2.1.3, µt(⊕) tends to 1 when t → ∞, whence
s(α, β) = 1. Thus, for any α ∈ (0, 1) the value of s(α, β): (a) equals
1 if β > α/2 due to theorem 2.1.2, (b) tends to 0 when β → 0 due
to theorem 2.1.1 and (c) cannot take values in (1/2, 1) due to the-
orem 2.1.3; so it cannot be continuous. Theorem 2.1.4 is reduced to
theorem 2.1.1.

Now we start to prove theorem 2.1.1. Henceforth, we assume that
β < α2/250 because otherwise theorem 2.1.1 is obvious. Our proof
of theorem 2.1.1 it is based on two well-known ideas: Peierls’ contour
method and duality of planar graphs. We present this proof only
partially. Some parts of it are presented as exercises and you can
find a complete argument in [27, 18].

2.4 Another Representation of FA

It is not necessary to clean out the dead particles out at every
time step. We may leave them where they are, but in this case we
have to sacrifice locality, namely we must organize interaction of live
particles as if the dead particles were removed. Following this idea,
we introduce a process ν, which differs from our original process in
the following respect. Starting now, we denote by x ∈ Z the space
coordinate. We shall also use a natural parameter y, which equals
zero at the beginning and increases by one after every application
of Flipβ or Annα. Thus y increases by two when t in the formula
(2.1) increases by one. Accordingly, we denote by F (x, t) and A (x, t)
and call basic variables those variables Fi and Ai, which participate
in the (t + 1)-th application of Flipβ Annα. Thus our basic space is

Ω =
(
{move, stay} × {fire, stop}

)Z·Z+

with coordinates

(
F (x, t)), A (x, t)

)
, where x ∈ Z, t ∈ Z+ (2.8)
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and with a product measure π, according to which for all x, t

F (x, t) =

{
move with probability β,

stay with probability 1 − β,
(2.9)

A(x, t) =

{
fire with probability α,

stop with probability 1 − α.
(2.10)

Let us denote V = {(x, y), x ∈ Z, y ∈ Z+}. The sets of pairs
(x, y) ∈ V with a given y are called y-levels or just levels. Every pair
(x, y) ∈ V has a state denoted by state(x, y), which equals ⊖, ⊕ or
⊙ and all their states are functions of ω ∈ Ω defined in the following
inductive way.

Base of induction: state(x, 0) = ⊖ for all x ∈ Z.

Induction step when y is even, say y = 2t, where t ∈ Z+

(imitating the action of Flipβ). For all x ∈ Z:

state
(

x, 2t + 1
)

=

{
⊕ if state(x, 2t) = ⊖ and F (x, t) = move,

state(x, 2t) in all the other cases.

Induction step when y is odd, say y = 2t +1, where t ∈ Z+

(imitating the action of Annα, but without locality). For all x ∈ Z:
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state(x, 2t + 2) =





⊙ if state(x, 2t + 1) = ⊖ and

A (x, t) = fire and there is x′ < x

such that state(x′, 2t + 1) = ⊕
and ∀ x′′ ∈ Z : x′ < x′′ < x ⇒

⇒ state(x′′, 2t + 1) = ⊙ ;

⊙ if state(x, 2t + 1) = ⊕
and there is x′ > x such that

state(x′, 2t + 1) = ⊖
and A (x′, t) = fire

and ∀ x′′ ∈ Z : x < x′′ < x′ ⇒
⇒ state(x′′, 2t + 1) = ⊙ ;

state(x, 2t + 1) in all the other cases.

Informally speaking, in this process the particles never disappear
and keep the same integer indices, which they had at the beginning.
If a particle annihilates, it goes to the dead state ⊙ and remains in
this state forever. Live particles interact as if dead components did
not exist. Thus we have an inductionally defined map from Ω to
{⊖,⊕,⊙}V . We denote by ν the measure on {⊖,⊕,⊙}V induced by
the distribution π of the basic variables (2.9) and (2.10) with this
map and νy the distribution of states on the y-th level. The process
ν is useful for us because

ν 2t Clean = µt for all t. (2.11)

We fix an arbitrary natural number T . Our overall goal is to estimate
µT (⊕) uniformly in T . Due to exercise 2.8.3, µT (⊖) is positive, so
the fraction µT (⊕)/µT (⊖) makes sense and it is sufficient to estimate
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this fraction. Using exercise 2.8.7, we get

µT (⊕) ≤ µT (⊕)

µT (⊖)
=

∞∑

k=1

µT (⊖,⊕k)

µT (⊖)
. (2.12)

To reduce our task further, we concentrate our attention on Ω0,
the set of those ω ∈ Ω, for which state(0, 2T ) = ⊖. For any
ω ∈ Ω0 we denote by xmax(ω) the smallest positive x such that
state(x, 2T ) = ⊖. Due to item b) of exercise 2.8.3, xmax(ω) exists a.s.
Let us call by flowers all those pairs (x, 2T ), where 0 < x < xmax(ω),
for which state(x, 2T ) = ⊕. We denote by φ(ω) the number of
flowers. Since xmax(ω) exists a.s., φ(ω) is finite a.s. For any
k = 1, 2, 3, . . . we denote by Ωk the set of those ω ∈ Ω0 for which
φ(ω) ≥ k. Notice that Ω0 ⊇ Ω1 ⊇ Ω2 ⊇ . . . Let us prove for all k
that

π(Ωk)

π(Ω0)
=

µT (⊖,⊕k)

µT (⊖)
. (2.13)

Notice that π(Ω0) = ν 2T (⊖). But from (2.11) and (2.6)

µT (⊖) = ν 2T Clean (⊖) =
ν 2T (⊖)

1 − ν 2T (⊙)
,

whence

π(Ω0) = ν 2T (⊖) = µT (⊖)
(

1 − ν 2T (⊙)
)

. (2.14)

On the other hand, Ωk is the set of those ω ∈ Ω0, for which the
configuration at the level 2T contains one of the words

⊖ ⊙n1 ⊕⊙n2 . . . ⊕ ⊙nk−1 ⊕⊙nk ⊕
starting at the 0-th component. Therefore

π(Ωk) =

∞∑

n1,...,nk=0

ν 2T (⊖ ⊙n1 ⊕ . . . ,⊙nk⊕).

But from (2.11) and (2.5)

µT (⊖,⊕k) = ν 2T Clean (⊖,⊕k) =

1

1 − ν 2T (⊙)

∞∑

n1,...,nk=0

ν 2T (⊖ ⊙n1 ⊕ . . . ,⊙nk⊕).
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Thus

π(Ωk) = µT (⊖,⊕k) ·
(

1 − ν 2T (⊙)
)

.

Dividing this by (2.14) , we get (2.13) . Now we can sum (2.13) over
k and use (2.12) to obtain

µT (⊕)

µT (⊖)
=

∞∑

k=1

µT (⊖,⊕k)

µT (⊖)
=

∞∑

k=1

π(Ωk)

π(Ω0)
. (2.15)

2.5 A Graphical Representation

Now we go to a graphical representation of the process ν. In the
following text we shall ignore some events, whose probability is zero.
So, reading it, you should mentally insert “almost”, “almost all” or
“almost sure” whenever necessary. For any ω ∈ Ω we define a graph
G. Along with describing the graph G, we shall describe how to draw
it in a plane, representing vertices by points and edges by curves (in
fact, straight segments). The set of vertices of G is

VG = {(x, y) ∈ V, state(x, y) 6= ⊙}

and every vertex (x, y) is placed at the point (x, y) of the plane, where
x and y are the usual orthogonal coordinates, the axis x is horizontal
and the axis y is vertical. Graph G has two kinds of edges, which we
call vertical and horizontal. Let us describe them.

Vertical edges: Any two vertices (x, y1), (x, y2) of G, where
y2 − y1 = 1, are connected with a vertical edge. Direction of this
edge from (x, y1) to (x, y2) is called north, the other direction is called
south. We call (x, y1) the south neighbor of (x, y2) and (x, y2) the
north neighbor of (x, y1).

Horizontal edges: Any two vertices (x1, y), (x2, y) of G, where
x1 < x2, are connected with a horizontal edge if

∀x ∈ Z : x1 < x < x2 ⇒ state(x, y) = ⊙.

Direction of this edge from (x1, y) to (x2, y) is called east, the opposite
direction is called west. We call (x1, y) the west neighbor of (x2, y)
and (x2, y) the east neighbor of (x1, y). Thus G, which has only those
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edges, which are specified above, is defined. Its edges are represented
by straight segments connecting the points representing ends of the
edge.

A vertex of G, whose level y is even, always has exactly one west
neighbor, exactly one east neighbor and exactly one north neighbor.
Also it has exactly one south neighbor, except the case y = 0, when
it has no south neighbor. A vertex of G, whose level is odd, always
has exactly one west neighbor, exactly one east neighbor and exactly
one south neighbor. Also it has at most one north neighbor. Due
to the definition of G, every vertex of it is in a state ⊕ or ⊖; in the
former case we call it a ⊕-vertex, in the latter a ⊖-vertex.

It is evident that different edges G do not intersect except common
ends. We shall call the picture of G its representation in the plane
just described. This picture cuts the plane into parts, which we call
faces. We assume that all the faces are closed. We call two faces
neighbors if they have a common edge. Our picture of G has exactly
one unbounded face, namely the bottom half of the plane. All the
other faces of G are bounded and we call them boxes. Every box
has the form of a rectangle, sanwiched between two parallel lines at
levels y1 and y1 + 1, where y1 is natural, so it may be denoted

{(x, y) ∈ R
2 : x1 ≤ x ≤ x2, y1 ≤ y ≤ y1 + 1}. (2.16)

For every natural y1 the boxes sandwiched between the parallel lines
at the levels y1 and y1 + 1 form a bi-infinite sequence in which every
two next terms have a common side and which we call a horizontal
corridor at sub-(y1 + 1) level. Any box has at least four vertices
placed at its corners and has no more vertices on its west, east and
north walls, so it has exactly one west neighbor, one east neighbor
and one north neighbor. If y1 is even, the box (2.16) has no more
vertices at its south wall, whence it has exactly one south neighbor.
if y1 is odd, this box (2.16) has 2k + 1 south neighbors, where k
is the number of annihilations, which occured at the (y1 + 1)/2-th
application of the operator Annα between sites x1 and x2.

Like in [24], we use the well-known duality of pictures of graphs.
Let us describe a graph, which we denote by G, and its picture, which
will be dual of the picture of G. We place that vertex of G, which is
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dual of the box (2.16) , at the point
(

x1 + x2

2
, y1 + 1 − ε

)
, (2.17)

where ε > 0 is chosen for different boxes fifferently, but should be
small enough in every case; how small, we shall explain. We shall
say that the vertex (2.17) has a sub-(y1 + 1) level. We say that it
has a sub-even level if y1 + 1 is even and has a sub-odd level if y1 + 1
is odd. There is just one subtlety: that vertex of G, which is dual of
the only unbounded face of the picture of G, is placed “infinitely far”
in the negative direction of the axis y and the edges leading to it are
rays with the same direction. All the other edges of G are straight
segments connecting the points representing their ends. Thus the
graph G and its picture are defined. It is easy to see that for any box
the corresponding ε can be chosen so small that the usual conditions
of dual pictures be fulfilled.

We shall call horizontal those edges of G, which are dual of vertical
edges of G and vertical those edges of G, which are dual of horizontal
edges of G. Notice that horizontal edges of G are approximatedly
horizontal because values of ε for all vertices of G are approximatedly
equal to zero. For any natural y the vertices of G, which are at
sub-(y + 1) level, and horizontal edges, connecting them, form a bi-
infinite path, which we call a horizontal path at sub-(y + 1) level and
which is dual of the sub-(y + 1) corridor. Any bounded face of G
is sandwiched between horizontal paths at the levels sub-y and sub-
(y + 1). Unbounded faces of G are dual of vertices of G at the level
zero. They are unbounded half-strips, which fill all the halfplane
below the horizontal path at the sub-1 level. A face of G is called
a west (respectively east, north or south) neighbor of another face of
G if their corresponding vertices of G are in the same relation.

According to what we said about vertices of G at even levels, any
face of G at an even level has exactly one west neighbor, exactly one
east neighbor and exactly one north neighbor. Also it has exactly
one south neighbor, except the case y = 0, when it has no south
neighbor. Whenever y > 0, we call these faces of G rectangles. In
fact, all of them approximatedly are rectangles. According to what
we said about vertices of G at odd levels, any face of G at an odd level
has at most one north neighbor. If it has one, we call it a trapezium,
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otherwise we call it a triangle. Indeed, these faces approximatedly
are trapeziums and triangles.

Let us take any ω ∈ Ω1 and call a path in G north-west if its every
step goes north or west. Let us call a vertex of G a root if there is
a north-west path from this vertex to some flower, all the vertices of
this path having a state ⊕. In particular, all the flowers are roots.
Vertices of G, which are not roots, are called non-roots. The set of
roots is finite a.s. for the same reason why the set of flowers is finite
a.s., namely because T is fixed and therefore xmax(ω) exists a.s. Our
estimation is based on building a “contour” around all the roots.

Let us call a set S of vertices of a graph connected in this graph if
for any two elements of this set there is a path in this graph connecting
them, in which all the vertices belong to S.

Let us call dual-roots those faces of G, which are dual of roots,
and denote by U the union of dual-roots. Since every dual-root is
bounded, U is also bounded and closed since we assume all faces to
be closed. Hence from lemma 2.5.1, U is homeomorphic to a closed
disk (provided the set of roots is finite). Then the boundary of U is a
closed curve, which includes the east side of the rectangle dual of the
vertex (0, 2T ). So this closed curve includes V0, the north end of this
side, and we may assume that it starts and ends at V0 and surrounds
U in the counter-clockwise direction. This curve can be represented
as a path in G, which we denote by tour(ω) because it is determined
by ω. Figure 2.1 illustrates our constructions.

Let us use figure 2.1 to explain the funcioning of our process. The
transformation from y to y + 1 is done by Flipβ if y is even and by
Annα if y is odd. The figure includes six instances of minuses turning
into pluses due to the action of Flipβ (for the values 1, 2, 3, 4, 6, 7
of x) and two instances of annihilation due to the action of Annα:
the plus at (7, 1) annihilates with the minus at (8, 1) and the plus at
(4, 3) annihilates with the minus at (5, 3). The leftmost and rightmost
columns are filled with zeros since these zeros never were disturbed
by our operators. For the leftmost column it displays the fact that
our configuration belongs to Ω0. The rightmost column with this
property exists a.s. There are four flowers between these columns,
namely (1, 4), (2, 4), (3, 4), (6, 4), marked with the letter F. The
path tour(ω) surrounding the union of dual-roots is shown with thick
vectors. The vertex V0 is in its left upper corner. The vertices inside
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Figure 2.1: A possible (that is, having a positive probability) fragment
of our process ν.
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this path (all marked with pluses) are roots. Dual-roots, that is faces
inside tour(ω), are separated from each other by dotted lines. To
clarify the action of annihilation, boundaries of two triangles outside
tour(ω) (dual of (8, 1) and (5, 3)) are shown by dotted lines also.
Types of steps of tour(ω) are shown near each step. These types
form the code of tour(ω), which is

11′211′244′211′244′31′11′2234′44′5555.

This code includes all the types except 2’ and 2” and all possible
combinations of any two of these types. (We especially chose a con-
figuration with this property.) The code of bag(ω) is the same without
fives and short (code(bag(ω))) is 121242124312234.

Lemma 2.5.1. For any ω ∈ Ω1: a) The set of roots is non-empty,
finite and connected in G. b) The set of non-roots is infinite and
connected in G.

Proof is easy.

Now let us classify all the possible forms of tour(ω). To this end
we need to classify all the steps which tour(ω) may include, that
is some steps in G. We shall start by classifying some steps in the
original graph G. Let us call types elements of the set

{1, 1′, 2, 2′, 2′′, 3, 4, 4′, 5}. (2.18)

We shall attribute types to those and only those steps in G, which
start at ⊕-vertices. All the cases, which may occur, are listed in
table 1.
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Associated Associated

Step in G starting at a ⊕-vertex Type event variable

step west at an even level 1 trivial none

step west at an odd level 1’ trivial none

step from (x, 2t + 1) F (x, t)

to (x, 2t) if F (x, t) = move 2 = move F (x, t)

step from (x, 2t + 1) F (x, t)

to (x, 2t) if F (x, t) = stay 2’ = stay F (x, t)

step south from an

even to an odd level 2” trivial none

step from (x, 2t + 1) to its east A(x, t)

neighbor if A(x, t) = fire 3 = fire A(x, t)

step from (x, 2t + 1) to its east A(x, t)

neighbor if A(x, t) = stop 4 = stop A(x, t)

step east at an even level 4’ trivial none

step north 5 trivial none

Table 1

Steps, having the word “trivial” in the third column, are called
trivial, other steps are called non-trivial. To every step in G, which
has a type, we attribute an associated event. For every trivial step the
associated event is Ω and is also called trivial. Non-trivial events are
represented in the table 1 by their conditions. For every non-trivial
step we also define an associated basic variable, which is shown in the
last column. Also every step in G, which has a type, has a chance.
For typographical reasons chances are shown in the next table, but
you can easily infer them right now because chance always equals the
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probability of the associated event. We shall use the same 1-to-1
correspondence between steps in G and steps in G as was defined in
[24] and in more detail in [5]. Here it is:

If an edge e of G is dual of an edge e of G, then for each

direction of e the dual direction of e is the direction from

right to left when we go along e in the given direction.



 (2.19)

Type, event and chance, attributed to a step in G, are attributed to
its dual step in G also. Since a step in G has a type if and only if it
starts from a ⊕-vertex, a step in G has a type if and only if it has a
⊕-face on its left side.

step in G, a ⊕-face on its left side Type Chance Shift

step south across an even level 1 1 ( 0, −1)

step south across an odd level 1’ 1 ( 0, −1)

“move” step east at a sub-odd level 2 β ( 1, 0)

“stay” step east at a sub-odd level 2’ 1 − β ( 1, 0)

step east at a sub-even level 2” 1 ( 1, 0)

“fire” step north across an odd level 3 α (−1, 1)

“stop” step north across an odd level 4 1 − α ( 0, 1)

step north across an even level 4’ 1 ( 0, 1)

step west 5 1 (−1, 0)

Table 2

You may imagine tables 1 and 2 as one table, which is cut into
two parts for typographical reasons. The last column of table 2 shows
shifts defined for all types. Shift is a two-dimensional vector, whose
components are called Hshift and Vshift (abbreviations for horizontal
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shift and vertical shift). The first column of table 2 is formally
redundant because it follows from what was said in the first column
of table 1; however, it helps to understand why shifts are defined in
this way. Chances shown in the third column equal probabilities of
events shown in the previous table.

Lemma 2.5.2. For any ω ∈ Ω1: a) all the steps of the path tour(ω)
have types and b) the path tour(ω) is a concatenation of two paths,
which we denote by bag(ω) and lid(ω), with the following properties:
all the steps of bag(ω) have types different from 5; lid(ω) has φ(ω)
steps, all of which have type 5.

Let us examine bag(ω). We start by two observations:

a) If bag(ω) includes a step type 2, then this step has

a ⊖-face on its right (that is, south) side.

b) If bag(ω) includes a step type 3, 4 or 4’, then this

step has a ⊖-face on its right (that is, east) side.





(2.20)

Indeed, in both cases, if there were a ⊕-face there, it would be a
dual-root, but the contour surrounding U cannot separate dual-roots
from each other.

Any sequence of types is called a code. By shift of a code we mean
the sum of shifts of its terms and by chance of a code we mean the
product of chances of its terms. If all the steps of a path p have
types, we denote code(p) and call the code of p the sequence of types
of steps of p. By shift and chance of such a path we mean shift and
chance of its code. ¿From lemma 2.5.2, bag(ω) has a code and we
need to study it. Let us call a path in G well-placed if it starts at
V0, all its steps have types and all the basic variables associated with
its steps are independent from each other and from Ω0. Given some
ω ∈ Ω0 and a code C, we say that ω realizes C if the graph G contains
a well-placed path p, such that the code of p equals C.

Lemma 2.5.3. Every ω ∈ Ω1 realizes the code of bag(ω).

For any code C we denote by real(C) the set of those ω ∈ Ω0,
which realize C. It is easy to prove for any code C by induction in
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the length of codes that

π(real(C))

π(Ω0)
≤ chance(C). (2.21)

Hence, due to lemma 2.5.3, for any k

π(Ωk)

π(Ω0)
≤

∑
π(real(code(bag(ω))))

π(Ω0)
≤

∑
chance(bag(ω)), (2.22)

where both sums are taken over all different code(bag(ω)) for
ω ∈ Ωk. To estimate the last sum, for every natural k we define
a set of codes, which we denote LCk and whose elements we call
k-legal codes. A code C = (c1, . . . , cn) belongs to LCk if it satisfies
the following conditions:





LC-a) c1 = 1 and cn = 4′.

LC-b) All the terms of C belong to the list

1, 1′, 2, 3, 4, 4′.

LC-c) All the pairs (ci, ci+1) belong to the list

11′, 1′1, 1′2, 21, 22, 23, 24, 31′, 34′, 44′, 4′2, 4′3, 4′4.

LC-d) Hshift(C) ≥ k and Vshift(C) = 0.
(2.23)

Since LC1 ⊇ LC2 ⊇ LC3 ⊇ . . ., we denote LC = LC1 and call
elements of LC just legal codes. Of course, the definition of legal
codes is chosen to fit codes of bag(ω) as the following shows.

Lemma 2.5.4. For all ω ∈ Ωk the code of bag(ω) belongs to LCk.

It follows from lemma 2.5.4 and (2.22) that for all natural k

π(Ωk)

π(Ω0)
≤

∑

C ∈LCk

chance(C). (2.24)

2.6 Proof of Theorem 2.1.1 for α < 1

To finish our argument, we need to make a numerical estimation, but
it will be too cumbersome to do with so many types. To reduce their
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number to four, we call main types the elements of the set {1, 2, 3, 4}.
Every main type is a type, so all the quantities defined for types are
valid for main types. In particular, every main type has a shift and a
chance listed in table 2 and shown again in table 3. Also every main
type has a rate, which is shown in the same table:

main type shift chance rate

1 ( 0, −1) 1 1

2 ( 1, 0) β 2β

3 (−1, 1) α α

4 ( 0, 1) 1 − α 1 − α

Table 3

A main code is a finite sequence, all the terms of which are main
types. Its rate is the product of rates of its terms. For any code C
we denote by short (C) the main code obtained from C by deleting
all its non-main terms. We shall simplify our task by dealing with
short (code(bag(ω))) instead of code(bag(ω)). For every natural k we
define the set LMCk, whose elements are called k-legal main codes.
By definition, a k-legal main code is a main code C = (c1, . . . , cn),
which satisfies the following conditions:





LMC-a) c1 = 1

LMC-b) For every i = 1, . . . , n − 1 it is impossible that

(ci = 1, ci+1 = 3) or (ci = 1, ci+1 = 4) or (ci = 4, ci+1 = 1).

LMC-c) cn equals 3 or 4.

LMC-d) Hshift(C) ≥ k.

LMC-e) Vshift(C) ≥ 0.
(2.25)

Since LMC1 ⊇ LMC2 ⊇ LMC3 ⊇ . . ., we denote LMC = LMC1

and call elements of LMC just legal main codes. You may notice also
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that from LMC-a), LMC-b) and LMC-c) any legal main code has
length at least three, so in fact LMC = LMC3, but we shall not use
it. For any legal main code C let us denote by Long (C) the set of
legal codes C ′ such that C = short (C ′). It is easy to observe that
if C ′ ∈ Long (C), then C ′ can be obtained from C by the following
procedure:





a) We start with C.

b) After every 1 we insert 1’.

c) After every 4 we insert 4’.

d) If 3 is followed by 1, we insert 1’ between them.

e) If 3 is followed by 2, we insert 1’ or 4’ between them.

f) If 3 is followed by 3, 4 or 5, we insert 4’ between them.
(2.26)

Also it is easy to prove that for any main code C and any
C ′ ∈ Long (C)

Hshift(C ′) = Hshift(C), (2.27)

Vshift(C ′) ≤ 2 · Vshift(C). (2.28)

Here (2.27) is true because C ′ is obtained from C by inserting only
types 1’ and 4’, both of which have Hshift = 0. To prove (2.28) , let
us classify main types into horizontal, namely 2, whose Vshift is zero,
and vertical, namely all the others. Due to the rule (2.26) we can
establish a 1-to-1 correspondence between vertical terms of C and
the terms inserted after them in the course of this procedure. Then
Vshift of every newly inserted term is not greater than Vshift of the
corresponding vertical term of C. Hence (2.28) immediately follows.

Lemma 2.6.1. For any k, if C ∈ LCk, then short (C) ∈ LMCk.

Now we can estimate the sum in the right side of (2.24) . Due
to lemma 2.6.1 we can represent this sum as

∑

C′ ∈LCk

chance(C ′) =
∑

C ∈LMCk

∑

C′∈Long(C)

chance(C ′). (2.29)
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Let us estimate the right side. Due to the item e), the result of
the procedure (2.26) is not unique, generally speaking. However, the
number of different possible outcomes, that is cardinality of Long (C),
does not exceed 2m, where m is the number of those terms of C,
which equal 2. Also notice that chance(C ′) = chance(C) whenever
C ′ ∈ Long (C) because chance(1′) = chance(4′) = 1. Thus for any
C ∈ LMCk

∑

C′ ∈ Long (C)

chance(C ′) ≤ 2m · chance(C) ≤ rate(C),

where m has the same meaning. Substituting this into (2.29) we
obtain ∑

C′ ∈LCk

chance(C ′)) ≤
∑

C ∈LMCk

rate(C). (2.30)

It remains to prove this:

∞∑

k=1

∑

C ∈LMCk

rate(C) ≤ 250 · β
α2

. (2.31)

Instead we shall prove this:

∑

C ∈LMC

Hshift(C) · rate(C) ≤ 250 · β
α2

. (2.32)

This is sufficient because the left sides of (2.31) and (2.32) are equal.
For any integer x and y, natural z and k ∈ {1, 2, 3, 4} we denote

by Sk(x, y, z) the sum of rates of main codes satisfying conditions
LMC-a) and LMC-b) of the definition of legal main codes, whose
Hshift equals x, whose Vshift equals y and which have z terms, the
last of which is k. It follows from the definition of Sk(x, y, z) and
conditions LMC-c), LMC-d) and LMC-e) of (2.25) that

∑

C ∈LMC

Hshift(C) · rate(C) ≤

∞∑

x=1

∞∑

y=0

∞∑

z=1

x ·
(

S3(x, y, z) + S4(x, y, z)
)

. (2.33)

73



“SO-3”
2011/6/1
page 74

i

i

i

i

i

i

i

i

Due to condition LMC-a) of (2.25) , the numbers Sk(x, y, z) satisfy
the initial condition

Sk(x, y, 1) =

{
1 if x = 0, y = −1 and k = 1,

0 in all the other cases

and due to condition LMC-b) they satisfy the transition equations





S1(x, y, z + 1) =

(
S1(x, y + 1, z) + S2(x, y + 1, z) + S3(x, y + 1, z)

)
,

S2(x, y, z + 1) = 2β ×
(

S1(x − 1, y, z) + S2(x − 1, y, z) + S3(x − 1, y, z) + S4(x − 1, y, z)
)

,

S3(x, y, z + 1) = α ×
(

S2(x + 1, y − 1, z) + S3(x + 1, y − 1, z) + S4(x + 1, y − 1, z)
)

,

S4(x, y, z + 1) = (1 − α) ×
(

S2(x, y − 1, z) + S3(x, y − 1, z) + S4(x, y − 1, z)
)

.

To estimate (2.33) , let us use sums





S1(z) =

∞∑

x=−∞

∞∑

y=−∞

p−x q−y S1(x, y, z),

S2(z) =

∞∑

x=−∞

∞∑

y=−∞

p−x q−y S2(x, y, z),

S3(z) =

∞∑

x=−∞

∞∑

y=−∞

p−x q−y S3(x, y, z),

S4(z) =

∞∑

x=−∞

∞∑

y=−∞

p−x q−y S4(x, y, z),

(2.34)
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where p, q are positive parameters, which we need to choose. The
following values are sufficient to obtain our estimations:

p = 1/3 and q = 1 − α/6. (2.35)

However, it is convenient to keep using letters p and q for a while.
Due to our choice of p and q and since x < 3x for all integer x, the
sum (2.33) is estimated by

∞∑

z=1

(
S3(z) + S4(z)

)
, (2.36)

so it remains to estimate the sum (2.36) .
The quantities (2.34) satisfy the initial conditions

S1(1) = q, S2(1) = S3(1) = S4(1) = 0

and recurrence conditions



S1(z + 1) = q
(

S1(z) + S2(z) + S3(z)
)

,

S2(z + 1) = 2β/p
(

S1(z) + S2(z) + S3(z) + S4(z)
)

,

S3(z + 1) = pα/q
(

S2(z) + S3(z) + S4(z)
)

,

S4(z + 1) = (1 − α)/q
(

S2(z) + S3(z) + S4(z)
)

.

Notice that S3(z) and S4(z) are proportional, namely for every z
they relate as p · α to (1 − α), so we may go to other quantities

S∗
1 (z) = S1(z), S∗

2 (z) = S2(z), S∗
3 (z) = S3(z) + S4(z)

with initial conditions

S∗
1 (1) = q, S∗

2 (1) = S∗
3 (1) = 0 (2.37)

and recurrence conditions




S∗
1 (z + 1) = q

(
S∗

1 (z) + S∗
2 (z)

)
+ p · α/r S∗

3 (z),

S∗
2 (z + 1) = 2β/p

(
S∗

1 (z) + S∗
2 (z) + S∗

3 (z)
)

,

S∗
3 (z + 1) = r

(
S∗

2 (z) + S∗
3 (z)

)
,
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where we have denoted

r =
(1 − α) + p · α

q
. (2.38)

Introducing a vector S∗(z) = (S∗
1 (z), S∗

2 (z), S∗
3 (z)), we can write

these recurrence conditions as S∗(z + 1) = S∗(z) · M , whence
S∗(z) = S∗(1) · Mz−1, where M is the matrix

M =




q 2β/p 0

q 2β/p r

p · α/r 2β/p r


 .

Notice that in the spirit of our article we write matrices on the
right side of vectors, so vectors are horizontal. Eigen-vectors of M
are roots of the equation

|M − λmax · E| = 0

(where E is the identity matrix), which can be simplified to

2β · (λ2 − (1 − α)) = p λ (λ − q) (λ − r). (2.39)

Let us first consider the case β = 0. In this case all the eigen-values
of M can be written explicitly: they equal q, r and zero and it is
easy to show that q > r > 0 for all α, so q is the greatest eigen-value.

Now let β > 0. Remember that β ≤ 1/250. From Perron-
Frobenius theorem, M has the “maximal” eigen-value λmax, which is
real and positive and which is not less than absolute values of all the
other eigen-values of M . If β = 0, λmax = q and it is strictly greater
than all the other eigen-values (which are real and non-negative in
this case, as we have seen). When β grows from zero to 1/250, λmax

also grows and still exceeds absolute values of all the other eigen-
values.

All the components of the eigen-vector V corresponding to λmax

can be chosen real and non-negative. In the present case the first
component of V is not zero, so we may assume that V = (V1, V2, V3)
is normed in such a way that V1 = 1. Then all the components
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of our initial vector (2.37) are not greater that the corresponding
components of the vector V multiplied by 5/6, because

S∗
1 (1) = q ≤ 5

6
V1, S∗

2 (1) = 0 ≤ 5

6
V2, S∗

3 (1) = 0 ≤ 5

6
V3.

Hence and from non-negativity of all elements of M ,

Si(z) ≤ 5

6
Vi · λz

max for all z and i .

Therefore S∗
3 (z) ≤ 5/6 · V3 · λz

max, whence we can estimate the sum
(2.33) as well as the sum (2.36) as follows:

∞∑

z=1

(
S3(z) + S4(z)

)
=

∞∑

z=1

S∗
3 (z) ≤

5

6
· V3 ·

∞∑

z=1

λz
max =

5

6
· V3

1 − λmax

. (2.40)

To estimate this expression, we need to estimate V3 from above
and 1 − λmax from below. Let us first estimate 1 − λmax, for which
we need to estimate λmax. From (2.39)

λmax − q

2β
=

λ2
max − (1 − α)

p λmax (λmax − r)
, . (2.41)

To estimate λmax we need to estimate the left side of this expression.
First we estimate the numerator of the right side:

λ2
max − (1 − α) ≤ 1 − (1 − α) = α.

Now to estimate the denominator. Since p = 1/3 and
λmax ≥ q = 1 − α/6 ≥ 5/6,

p · λmax ≥ 5/18. (2.42)

Also notice that q − r ≥ α/3, whence λmax − r ≥ q − r ≥ α/3. So
we can conclude that

p λmax (λmax − r) ≥ 5

18
· α

3
=

5α

54
.
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Now we can estimate the right side and therefore the left side of
(2.41) :

λmax − q

2β
≤ α

5α/54
=

5

54
.

Since β ≤ α2/250,

λmax − q ≤ 2α2

250
· 54

5
=

54α

625
.

Remember that q = 1 − α/6. Therefore

1 − λmax = (1 − q) − (λmax − q) ≥ α

6
− 54α

625
=

301α

3750
. (2.43)

Thus the denominator of (2.40) is estimated. Now let us estimate
the numerator, i.e. V3, using its explicit representation:

V3 =
2β · r

p λmax

(
λmax − (2β/p + r)

) . (2.44)

It is easy to show that r ≤ 1 − α/2. Therefore the numerator of
(2.44) does not exceed 2β. To estimate the denominator, remember
that λmax ≥ q = 1 − α/6 and 2β/p = 6β ≤ 3α2/125. Therefore

2β/p + r ≤ 3α

125
+ 1 − α

2
.

Using (2.42) , we estimate the denominator:

p λmax

(
λmax − (2β/p + r)

)
≥

5

18
·
(

1 − α

6
− 3α

125
− 1 +

α

2

)
=

58α

675
.

Thus

V3 ≤ 2β

58α/625
=

675β

29α
.

Hence and from (2.43) ,

5

6
× V3

1 − λmax

≤ 5

6
× 675β

29α
× 3750

301α
≤ 242β

α2
≤ 250β

α2
.
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The inequality (2.31) is proved. Collecting together the equality
(2.15) , the inequalities (2.24) and (2.30) summed over k, and
(2.31) , we prove theorem 2.1.1.

2.7 Proof of Our Theorems for α = 1

Now let us prove theorems 2.1.1, 2.1.2, 2.1.3 and 2.1.4 for α = 1.
It is sufficient to prove that the process µt is defined when α = 1.
Let us denote by µchess the (unique) measure in M defined by the
condition

µchess(⊖, ⊕) = µchess(⊕, ⊖) = 1/2. (2.45)

The operator Ann1 cannot be applied to µchess, which was the reason
why [27] excluded the case α = 1 from consideration. However, Ann1

can be applied to all the other measures in M. Thus, to include
the case α = 1, it is sufficient to prove that we never have to apply
Annα to µchess in the course of inductive generation of measures µt.
According to (2.1) , Annα is always applied after Flipβ . It is evident
that

µ(⊕, ⊕) ≥ β2 (2.46)

for any measure µ, which is a result of application of operator Flipβ .
We may exclude the trivial case β = 0. Then the right side of (2.46) is
positive, whence the left side is positive, which is incompatible with
the conditions (2.45) .

Figure 2.2 ilustrates our mains results in this respect. It shows
that in the case α = 1 our estimations are tighter than in the case
α < 1. In more detail:

(1) If α = 1, then the frequency of ⊕ in the measure µt does not
exceed 150 · β. for all natural t.

(2) If α = 1 and β ≥ 0.36, the measure µt tends to δ⊕ when t → ∞.

The technical details may be found in [27, 18].
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Figure 2.2: A scheme of our main results about non-ergodicity of
Flip-Annihilation process in the cases α < 1 and α = 1. The gray
area is that, where we have no result.

2.8 Exercices

Exercise 2.8.1. Prove that for any α < 1 the operator
Annα = Duel α Clean can be applied to any measure in M{⊖,⊕} and
turns it into a measure in M{⊖,⊕}.

Exercise 2.8.2. Prove by induction that ν 2t Clean = µt for all t.

Exercise 2.8.3. Prove the following items:
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a) ν(state(x, y) = ⊖) > 0 for all (x, y) ∈ V .

b) For any integer x0 and any natural y

ν
(
∀ x ≥ x0 : state(x, y) 6= ⊖

)
=

ν
(
∀ x ≤ x0 : state(x, y) 6= ⊖

)
= 0.

c) µt(⊖) > 0 for all natural t.

d) For any integer x0 and any natural t

µt

(
∀ x ≥ x0 : sx 6= ⊖

)
=

µt

(
∀ x ≤ x0 : sx 6= ⊖

)
= 0.

(2.47)

Exercise 2.8.4. Prove that for all µ ∈ M,

(a) µ(⊕,⊖) = µ(⊖,⊕) ≤ 1/2;

(b) µ(⊕,⊖) = 1/2 if and only if µ = µchess.

Exercise 2.8.5. Let k ≥ 2 and µ ∈ M. If µ(⊖k) > 0 and β > 0.
Then:

(a) µ(⊖j) > 0 if 0 < j < k;

(b) µ(⊕,⊖) < 1/2;

(c) µFlipβ(⊖l) > 0 if 0 < j ≤ k.

Exercise 2.8.6. Let k ≥ 2 and µ ∈ M. Prove that

µDuel α(⊖k−1) ≥ µ(⊖k).
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Exercise 2.8.7. For any T prove:





(a) µT (⊕) =
∞∑

k=1

µT (⊖,⊕k).

(b) µT (⊕) ≤ µT (⊕)

µT (⊖)
=

∞∑

k=1

µT (⊖,⊕k)

µT (⊖)
.

Exercise 2.8.8. Let α, β1, β2 ∈ [0, 1] and β1 < β2. Prove that

δ⊖Flipβ1
Annα(⊕) ≤ δ⊖Flipβ2

Annα(⊕).

Unsolved problem. Prove an analog of theorem 2.1.1 for a more
symmetric process, in which pluses and minuses turn into each other
independently with one and the same rate β.

Unsolved problem Let α ∈ (0, 1] be fixed and the values β1

and β2 belongs to (0, 1). If β1 < β2, then

δ⊖(Flipβ1
Annα)t(⊕) ≤ δ⊖(Flipβ2

Annα)t(⊕).

2.9 M. C. and Chaos Approximate FA

In this and two next sections we use Monte Carlo simulation and
Chaos approximations for a numerical study of the process defined in
the previous section and called Flip-Annihilation or FA for short. As
in previous sections, the alphabet A is a finite non-empty set, whose
elements are called letters. Throughout this section, A = {⊕, ⊖},
that is we have only two letters ⊕ and ⊖, called plus and minus.

In the previous section we studied the Flip-Annihilation operator
Flipβ Annα depending on two real parameters α, β ∈ [0, 1]. We
proved several properties of this operator including the following ones,
which we shall call rigorous estimations:

a) if β > α/2, then Flipβ Annα is ergodic.
b) if β < α2/250, then Flipβ Annα is not ergodic and has at least

two different invariant measures. For the case α < 1 these estimations
were proved in [27, 28, 18] and for the case α = 1 they were proved
in [17].
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Now we go to computer approximations of this process. In
addition to the known facts about it, we assume that whenever β
increases, the operator Flipβ Annα cannot pass from ergodicity to
non-ergodicity. Under this assumption, for every α ∈ [0, 1] there
is a value of β in [0, 1], which we denote by true(α), such that the
operator Flipβ Annα is ergodic for β > true(α) and non-ergodic for
β < true(α). We assume also that the function true(α) is continuous,
which allows us to speak about the curve β = true(α), which serves
as the boundary between the regions of ergodicity β > true(α) and
non-ergodicity β < true(α). We call the set {(α, β) : β = true(α)}
the true curve. Of course, the true curve (if it exists) is sandwiched
between the rigorous estimations, but they are pretty far from each
other; we want better numerical estimations and obtain them using
Monte Carlo simulation and Chaos approximation.

2.10 Monte Carlo Approximates FA

Let us describe in detail the Monte Carlo approximation of the FA
(Flip-Annihilation) process. Since there are no infinite computers,
the Monte Carlo method by its very nature always refers to some finite
space case, even when the ultimate motivation is to make conclusions
about the infinite case. With this provision, we may approximate any
infinite-space process with an auxiliary process, whose space is finite
at every step of time but may change as time goes on. We might use
words (that is finite sequences of letters) for that purpose, but this
would necessitate special definitions at the ends when we transform
them. That is why we use circulars as elements of our countable set Ω
of states. By circulars we mean finite sequences of components (like
words), but the indices of their components are remainders modulo
|C| where |C| is the number of components in a circular C. See Figure
2.3, where |C| = n.

For i = 0, . . . , n − 1, we say that a word W = (a1, a2, . . . , ak)
appears at a place i in a circular C = (c1, . . . , cn) if

ci+1 = a1, ci+2 = a2, . . . , ci+k = ak.

We denote by quant(W |C) the quantity of different places where
the word W appears in a circular C. After that we define the
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frequency of W in C as

freq (W |C) =
quant(W |C)

|C| . (2.48)

We denote by M the set of probability distributions, that is the
set of normalized measures on Ω, the set of circulars. Thus the
set, on which the measures µt ∈ M are defined, is the set of
circulars. In every single computer experiment we obtained a
randomly generated sequence of circulars indexed by the values
of parameter t = 0, 1, 2, . . . The circular obtained at time t
is denoted by C t and its components are denoted by C t

i , where
i = 0, . . . , |C t|−1. We construct a sequence C0, C1, C2 . . ., which we
call a trajectory of our process µt, where t = 0, 1, 2, . . . . The integer
time t grow from zero to N, where N is the maximal number of
experiments.

Figure 2.3: A circular C with |C| = n.

We call a measure µ ∈ M local if it is in fact concentrated on a
finite subset of Ω. In fact we shall deal only with local measures. For
any µ ∈ M we define the frequency of the word W according to µ as

freq (W |µ) =
∑

C∈Ω

freq (W |C) · µ(C). (2.49)

The main goal of our Monte Carlo simulaion is to decide (that is,
to make an educated guess), for which α, β our process is ergodic
and for which it is not. We want to make these conclusions based on
behavior of the quantities freq (⊕|µt) when t → ∞. However, due to
limitations of our computer facilities, we cannot estimate these quan-
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tities directly. So we approximate them by the following quantities:

freq (⊕|µt)
def
=

1

t

t∑

k=1

freq (⊕|Ck). (2.50)

Figure 2.4 shows that the Chaos and Monte Carlo (abbreviated to
M.C.) curves are closer to each other than to the rigorous estimations
and we conjecture that they are closer to the true curve also.
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Figure 2.4: This graph shows both rigorous estimations and the two
approximations of true(α): the Chaos approximation (Chaos) and the
Monte Carlo approximation (M. C.).

Our method is based on a procedure, which we call Imitation.
This procedure generates a sequence of circulars in the following in-
ductive way.

Base of induction. The initial circular C0 consists of 1000
minuses.

t-th induction step. Given a circilar C t, where t = 0, 1, 2, . . . ,
we perform three procedures:

First procedure imitating the action of flip: every component
of C t, which is a minus, becomes a plus with a probability β
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independently from other components. In more technical detail, for
every minus in C t we generate a new random variable distributed
uniformly in (0, 1) and change this minus into plus if this variable is
less than β. We denote the resulting circular by (C ′)t.

Second procedure imitating the action of annihilation: whenever
a component of (C ′)t, which is a plus, is a left neighbor of a
component, which is a minus, both are eliminated from the circular
with a probability α independently from other components. In more
technical details, for every such pair we generate a new random vari-
able distributed uniformly in (0, 1) and perform this elimination if
this variable is less than α. We denote the resulting circular by (C ′′)t.

Third procedure, which allows us to overcome the limitations of
computer memory: given (C ′′)t, we generate a new circular, namely
C t+1, in the following way:
if |(C ′′)t| < Nmin, where Nmin = 500,, then C t+1 is obtained from
(C ′′)t by concatenating it with its copy and thereby duplicating its
length; otherwise we keep C t+1 = (C ′′)t.

When we stop: given a constant T = 100000, we stop when
t = T or there is none minus in the circular C t.

Let us explain why we need the third procedure. Remember that
under the action of our operator, components can disappear, but not
appear; so for any β > 0 the length of any finite circular decreases in
the average and finally degenerates. The third procedure allows us to
avoid this and thereby helps us to make our simulation more similar
to the infinity process. Thus the procedure Imitation is described.

We use Imitation to attribute an appropriate value to a Boolean
variable denoted by E (ergodicity), namely E is set yes if the last
circular C t contains none minus; otherwise E is set no. If E = yes,
we interpret this as a suggestion that the process with the given values
of α and β is ergodic; the result E = no is taken as a suggestion that
our process is non-ergodic.

In fact we used Imitation within a cycle with growing β: we
started with β = 0 and then iteratively performed Imitation and
increased β by 0.001 and repeated this until β reached the value 1
or E got the value yes, that is ergodicity was suggested. Thus we
obtained a certain value of β. In fact, we performed this cycle 5
times and recorded the arithmetical average of the 5 values of β thus
obtained.
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Remember that all this was done with a certain value of α. In fact
we considered 1000 values of α, namely the values αi = 0.001 · i for
i = 1, . . . , 1000. The corresponding recorded value of β was denoted
by βi. Thus we obtained 1000 pairs (αi, βi). The graph called M. C.
on Figure 2.4 consists of these pairs plotted.

In [27] we define a function s(α, β) as the supremum of density of
pluses in the measure µt over all natural t. For every α the function
s(α, β) has been proved not to be continuous as a function of β.
Thus we got a first order phase transition, which is different from
contact processes and Stavskaya processes, where the analogous phase
transition is second order.

To get a better picture of our first order phase transition, we
wanted to estimate s(α, β) numerically, but to estimate it directly
was difficult, so, instead of that, we estimated

s(α, β) = max{freq (⊕|C t) : t = 0, . . . , 100 000}.

Figure 2.5 shows the values of s(α, β) in the following way. The
area of ergodicity, that is the area, where s(α, β) = 1, is white.
Other values of s(α, β) are represented by colors according to the rule
shown in the color box on the right side. There our approximation
suggests non-ergodicity. All the values of s(α, β), which we obtained
for all the non-ergodic area, were less or equal to 0.14, which
concretizes the non-continuity of s(α, β) as a function of β.

2.11 Chaos Approximates FA

Let us denote by M the set of normalizad translation-invariant
measures on AZ. We denote by C : M → M, the well-known
chaos operator (also called mean-field approximation). Its action
amounts to mixing randomly all the components. In other words,
for each µ ∈ M the measure µ C is a product-measure with the same
frequencies of all the letters as µ has. (Like in the previous sections,
we write operators on the right side of measures.) The chaos operator
allows us to approximate a given process µP t on the configuration
space AZ by another process µ (C P )t on the same space: at every
time step we apply first C, then P . Thus, instead of the original
process, whose set of parameters is infinite or very large, we deal
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Figure 2.5: Here we used colors to represent the values of s(α, β) in
the area, where the process is suggested to be non-ergodic. The color
box on the right side shows how colors from yellow to black represent
the values of s(α, β). For better visualization, we excluded the values
greater than 0.08, which constitute less than 1% of all data.
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with the evolution of densities of letters, that is we deal with a finite
set of parameters. Since densities of the letters sum up to one, the
number of independent parameters in the chaos approximation equals
the number of letters in the alphabet minus one. In our case, with
only two letters, we deal with only one parameter: as such we choose
the density of pluses. Thus the density of pluses in the measure
µ C Flipβ Annα depends only on the density of pluses in the measure
µ and this dependence may be expressed by the formula

f(x) =
b − α · b(1 − b)

1 − 2α · b(1 − b)
, (2.51)

where x denotes the frequency of pluses in the measure µ,
f(x) denotes the density of pluses in the measure µ C Flipβ Annα

and b = x + (1 − x)β. (b is the density of pluses in the measure
µ C Flipβ .) Since the maximal value of b(1−b) is 1/4, the denominator
of (2.51) is not less than 1/2. So f(t) is defined and continuous for
x, α, β ∈ [0, 1]. Thus the study of the operator Flipβ Annα

is substituted by a study of the operator C Flipβ Annα, which
boils down to the study of the one-dimensional dynamical system
f : [0, 1] → [0, 1] with parameters α, β ∈ [0, 1]. As usual, we call a
fixed point of this system a value of x ∈ [0, 1] such that f(x) = x.
We call our dynamical system ergodic if it has a unique fixed point
xfixed and

∀ x ∈ [0, 1] : lim
t→∞

f t(x) = xfixed,

where f t means the t-th iteration of f.
We conclude that the chaos approximation C Flipβ Annα is ergodic

if β > β∗(α) and is not ergodic if β ≤ β∗(α), where

β∗(α) =





4 − α − 2
√

4 − 2α

α
if α > 0,

0 if α = 0.
(2.52)

Thus for the chaos approximation we know exactly the curve
β = β∗(α) dividing ergodicity and non-ergodicity: it is continuous,
starts at the origin with the slope 1/8, grows smoothly and reaches
3− 2

√
2 ≈ 0.17 at α = 1. The graph of this curve is labeled “Chaos”

in the Figure 2.4.
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In fact, we can describe completely the limit behavior of this
dynamical system. Let us denote

p1 =
α − 3αβ −

√
∆

4α(1 − β)
, p2 =

α − 3αβ +
√

∆

4α(1 − β)
, p3 = 1, (2.53)

where

∆ = α2β2 + 2α2β + α2 − 8αβ. (2.54)

Notice that p1, p2, p3 are real and belong to [0, 1]. Finally

If ∆ < 0, then lim
t→∞

f t(x0) = p3 = 1 for all x0.

If ∆ = 0, then lim
t→∞

f t(x0) =





p1 = p2 if x0 ≤ p1 = p2,

p3 = 1 if x0 > p1 = p2.

If ∆ > 0, then lim
t→∞

f t(x0) =





p1 if x0 < p2,

p2 if x0 = p2,

p3 = 1 if x0 > p2.

2.12 Annihilation-Flip-Mitosis aka AFM

One great disadvantage of the FA process is that its finite analog
shrinks and thereby becomes useless. But we have a remedy: to
introduce Mitosis, which compensates for shrinking. With this idea
in mind, we shall imagine and approximate an infinite process with
the infinite space. As in the other cases, we might choose discrete
or continuous time and we chose the latter. Keep in mind that the
process, which we are going to (informally) describe, has never been
defined rigorously, but we are convinced that it can be defined and
therefore our work makes sense.

So let us start our (intuitive) description. As continuous time goes
on, our sequence (finite or infinite) undergoes the following types of
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transformation:

• Annihilation: (⊕,⊖) → Λ and (⊖,⊕) → Λ.

If the states of the components with indices

x and x+1 are different, both disappear with

a rate α independently of the other compo-

nents. The components x − 1 and x + 2

become neighbours. In the finite case the

length of the circular decreases by two.

• Flip: ⊕ → ⊖ and ⊖ → ⊕. This changes

the state of one component with a rate β

independently of the other components. In

the finite case the length of the circular does

not change.

• Mitosis: ⊕ → ⊕⊕ and ⊖ → ⊖⊖. This

duplicates one component with a rate γ

independently of other components. In the

finite case the length of the cicular increases

by one.





(2.55)

In the finite case the text presented above may be accepted as a
definition, as it was actually done in [12, 13, 14, 15, 16]. In the infinite
case we need a definition (which we do not yet have) similar to that
for the discrete time, which was provided by the previous sections of
this book.

2.13 Monte Carlo Approximates AFM

Now, we shall describe the Monte Carlo approximation of (2.55) .
Here we define a procedure, which we call Imitation. This procedure
generates a sequence of circulars in the following inductive way.
(Forget imprefections of computer generated random numbers.)

Base of induction. The initial circular C 0 consists of 1000
minuses.
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t-th induction step. Given a circular C t, where t = 0, 1, 2, . . .
we performed these three procedures:

The first procedure imitated the random choise of a place where
to perform a transformation: a random integer number x distributed
uniformly in {0, 1, . . . , |C t|−1} was generated to identify the position,
where the transformation would occur.

The second procedure imitated (2.55): first it generated a real
random number ξ distributed uniformly in (0, 1). Then:

• if ξ ∈
[
0,

α

α + β + γ

)
and C t

x 6= C t
x+1, these components

annihilated, that is both of them disappeared.

• If ξ ∈
[

α

α + β + γ
,

α + β

α + β + γ

)
, the component C t

x changes its

state from ⊖ to ⊕ or from ⊕ to ⊖.

• If ξ ∈
[

α + β

α + β + γ
, 1

]
, this component underwent mitosis, that

is turned into two components in the same state.

If we denote the resulting circular by C t+1, we obtain the
induction step of that process, which we have in mind. However,
this process cannot yet be implemented on a real computer. That
is why we denote the resulting circular by (C ′)t. Due to presence
of annihilation and mitosis, the length of (C ′)t may be different
from the length of C t; so in the course of the process the length
of our circular changed randomly and usually had a tendency either
to shrink most of the time or to grow most of the time. To prevent
our process from shrinking to degeneration or growing beyond our
computer limitations, we used the third procedure.
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The third procedure which helped to keep C t within range: given
(C ′)t, we generated a new circular, namely C t+1, in one of the
following ways.

Duplication: if |(C ′)t| < Nmin, where Nmin = 500, then C t+1 was
obtained from (C ′)t by concatenating it with its copy and thereby
duplicating its length.

Cut: if |(C ′)t| > Nmax, where Nmax = 15, 000, then C t+1 was
obtained from (C ′)t deleting half of it.

Otherwise, that is in the case Nmin ≤ |(C ′)t| ≤ Nmax, we kept
C t+1 = (C ′)t.

When we stop: We stop our simulation when each one of the
three transformations (2.55) occured at least 100, 000 times. Now the
procedure Imitation is described.

Now about ergodicity. Since the rules of our process do not change
when we swap plus and minus, the ergodicity of our infinite process
implies that the frequency of pluses tends to 1/2. For its finite analog
we suggest that this frequency tends to 1/2 with a probability, which
tends to 1 when the length of the initial condition (consisting only of
minuses) tends to ∞.

To obtain the small squares on Figure 2.6, approximating the
boundary between the regions of ergodicity and non-ergodicity, we
used Imitation to attribute an appropriate value to a Boolean variable
denoted by E (ergodicity) as follows: if at the end of iteration the
quantity freq (⊕|µt) was in the range (0.45, 0.55), we set E = yes;
otherwise we set E = no. We interpreted the result E = yes as
a suggestion that the infinite process with the triple (α, β, γ) is
ergodic; the result E = no was interpreted as a suggestion that this
triple produces a non-ergodic process.

To obtain the small circles on Figure 2.6, approximating the
boundary between the regions of growth and shrinking, we used
Imitation within a cycle with a fixed α/β and growing γ/β: we
started with γ/β = 0.1 and then iteratively performed Imitation and
increased γ/β by 0.1 and repeated this until γ/β reached the value 8
or there was none duplication in the course of performing Imitation.
Thus we obtained a certain value of γ/β. In fact, we performed this
cycle 5 times and recorded the arithmetical average of the 5 values of
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Figure 2.6: White squares approximate the boundary between
suggested ergodicity and suggested non-ergodicity. White balls
approximate the boundary between suggested shrinking and suggested
growth. Compare this figure with figure 2.10.
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γ/β thus obtained. All this was done with 17 values of α/β, namely
the values 0.5 × i with i = 0, . . . , 16. Thus we obtained 17 pairs
( α/β, γ/β) represented by small circles on Figure 2.6.

Notice that if we multiply α, β and γ by one and the same positive
number, the process does not change. So only ratios of these three
numbers to each other are important for us. We used Imitation within
a cycle with a fixed γ/β and growing α/β: we started with α/β = 0.1
and then iteratively performed Imitation and increased α/β by 0.1
and repeated this until α/β reached the value 8 or E got the value no.
Thus we obtained a certain value of α/β. In fact we performed this
cycle 5 times and recorded the arithmetical average of the 5 values
of α/β thus obtained. All this was done for 50 values of γ/β, namely
the values 0.1 × i with i = 1, . . . , 50. Thus we obtained 50 pairs
( α/β, γ/β) represented by small squares on Figure 2.6.

2.14 Chaos Approximates AFM

Remember our procedure of Imitation. Let us imagine that at every
step of this procedure, in addition to the operations described above
(before or after them - it does not matter), all the components of C t

are randomly permuted. This is chaos approximation, which loses
any spacial structure, so when we use it, we deal only with quantities
of particles in every possible state. In the present case we have only
two possible states for any particle: plus or minus. So behavior of
the resulting process essentially has only two parameters: quantity
of pluses and quantity of minuses at time t, which we denote by X(t)
and Y (t). When X(t) and Y (t) are large, we may approximatedly
treat them as if they were real. In this approximation, we obtain a
deterministic process described by differential equations.

Let us examine the behavior of the densities x and y as a limit
of the original process with X(t) and Y (t) tending to infinity. Let
us consider the vector of densities, u = (x, y) and its increment
∆u = (∆x,∆y).

The vector v = u + ∆u describes the new amounts after a time
step ∆t. Since thus obtained v is not (generally) normalized, we
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normalize v, thus obtaining a normalized vector w:

w =
v

|v| =

(
x + ∆x

1 + ∆x + ∆y
,

y + ∆y

1 + ∆x + ∆y

)
(2.56)

where |.| denotes the sum of componentes. Figure 2.7 illustrates that
special case of normalization, which we have just described.

Figure 2.7: An illustration of normalizaion.

We assume that ∆t → 0, ∆x = O(∆t) and ∆y = O(∆t).
Thus, o(∆x) and o(∆y) are o(∆t). Therefore
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x + ∆x

1 + ∆x + ∆y
− x

=
x + ∆x − x − x∆x − x∆y

1 + ∆x + ∆y

=
(1 − x)∆x − x∆y

1 + ∆x + ∆y

=
y∆x − x∆y

1 + ∆x + ∆y

= (y∆x − x∆y) · (1 − ∆x − ∆y + o(∆x + ∆y)). (2.57)

But, by our assumption

o(∆x + ∆y) = o(∆x) + o(∆y) = o(∆t).

Also, ∆x and ∆y are O(∆t). Thus

∆x · ∆y = ∆x · ∆x = ∆y · ∆y = O(∆t2) = o(∆t).

So, the product in (2.57) can be rewritten as:

(y∆x − x∆y) − (∆x + ∆y) · (y∆x − x∆y) + o(∆t) · (y∆x − x∆y) =

= (y∆x − x∆y) − O(∆t2) · (y − x) + o(∆t) · O(∆t) · (y − x)

= (y∆x − x∆y) − o(∆t) · (y − x) + o(∆t2) · (y − x)

= y∆x − x∆y + o(∆t).

Dividing the expression (2.58) by ∆t and after that making ∆t → 0,
we get

dx

dt

∣∣∣∣∣
x+y=1

= y · dx

dt
− x · dy

dt
(2.58)
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Analogously, we compute
dy

dt

∣∣∣∣∣
x+y=1

so that,

dx

dt

∣∣∣∣∣
x+y=1

+
dy

dt

∣∣∣∣∣
x+y=1

= 0.

In this approximation, we obtain a deterministic process described
by the differential equations (2.59):

dX(t)

dt
= −β · X(t) + β · Y (t) + γ · X(t) − α · X(t)Y (t)

X(t) + Y (t)
,

dY (t)

dt
= −β · Y (t) + β · X(t) + γ · Y (t) − α · X(t)Y (t)

X(t) + Y (t)
.





(2.59)
The last term in each formula is based on our assumption that all

the components are mixed all the time, whence the neighbor compo-
nents are independent from each other all the time. Also notice that
in this case multiplying α, β and γ by one and the same positive
number does change the process, but in a very special way: it only
slows it down or speeds it up. This allows us to use only ratios α/β
and γ/β in the Figure 2.10.

Since the process (2.59) is homogeneous, we deal in fact with a
two-dimensional analog of the theorem on p. 7 of [1]. So we may go
to other variables

S(t) = X(t) + Y (t) and B(t) =
X(t) − Y (t)

X(t) + Y (t)
(2.60)

For simplicity, sometimes we shall denote X(t), Y (t), S(t) and
B(t) by X,Y, S and B respectively. The following system of equations
is equivalent to (2.59):

dS

dt
= S ·

(
γ − α

2

(
1 − B2

) )
, (2.61)

dB

dt
= B ·

( α

2

(
1 − B2

)
− 2β

)
. (2.62)
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The last equation is easy to solve explicitly, but we shall get all we
need by qualitative arguments. Since we are especially interested in
the proportion of each type of particles, we consider also another
process, which we call normalized chaos approximation:

Xnorm(t) =
X(t)

X(t) + Y (t)
, Ynorm(t) =

Y (t)

X(t) + Y (t)
. (2.63)

Then

Xnorm(t) =
1 + B(t)

2
and Ynorm(t) =

1 − B(t)

2
.

Thus, all we need to do is to study the behavior of B(t). Let us
treat the equation (2.62) as a deterministic dynamical system with a
space [−1, 1] and continuous time t. We call a number B∗ ∈ [−1, 1]
a fixed point of this system if (2.62) equals zero at B = B∗. We say
that a fixed point B∗ ∈ [−1, 1] attracts a point B ∈ [−1, 1] if the
process (2.62) starting at B(0) = B tends to B∗ when t → ∞. Given
a fixed point, we call its basin of attraction or just basin the set of
points attracted by it. We call the process ergodic if there is only
one fixed point B∗ and B(t) tends to B∗ for any initial value when
t → ∞. Otherwise, we call the process non-ergodic. It is easy to
describe completely fixed points and their basins for (2.62) . The
right side of (2.62) equals zero at three (generally complex) values of
B, which we denote by

B∗
1 = −

√
1 − 4β

α
, B∗

2 = 0, B∗
3 =

√
1 − 4β

α
. (2.64)

Hence follows our classification:
If α/β < 4, then B∗

1 and B∗
3 are not real and the right side of

(2.62) is 



positive when B ∈ [−1, 0),

zero when B = 0,

negative when B ∈ (0, 1].

Figure 2.8 illustrates this.
Therefore, in this case B(t) tends to zero from any initial value

when t → ∞.
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Figure 2.8: Behavior of B(t) when α/β < 4.

If α/β = 4, then B∗
1 and B∗

3 are real and equal to zero. The signs
of the right side of (2.62) are the same as in the previous case and
B(t) also tends to zero from any initial condition when t → ∞.

If α/β > 4, then B∗
1 and B∗

3 are real and

−1 < B∗
1 < B∗

2 = 0 < B∗
3 < 1

(remember that β > 0). So the right side of (2.62) is




positive when B ∈ [−1, B∗
1),

zero when B = B∗
1 ,

negative when B ∈ (B∗
1 , B∗

2),

zero when B = B∗
2 = 0,

positive when B ∈ (B∗
2 , B∗

3),

zero when B = B∗
3 ,

negative when B ∈ (B∗
3 , 1].

Figure 2.9 illustrates this case.

- - - ¾ ¾ ¾ --- ¾¾¾
s s s s s

-1 B∗
1 0 B∗

3 1

Figure 2.9: Behavior of B(t) when α/β > 4.

Therefore in this case B(t) tends to B∗
1 or B∗

2 or B∗
3 from any

initial condition when t → ∞. So [−1, 1] is a union of these three
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basins:

basin(B∗
1) = [−1, 0), basin(B∗

2) = {0}, basin(B∗
3) = (0, 1].

Thus the normalized chaos approximation is ergodic if α/β ≤ 4
and non-ergodic if α/β > 4.

Now we are ready to study the chaos approximation (2.59) . Let
us remember that X(t) + Y (t) = S(t) and say that our dinamical
system:

• grows if S(t) tends to infinity when t → ∞.

• shrinks if S(t) tends to zero when t → ∞.

Let us find out when it grows and when it shrinks.
Notice that we may rewrite (2.61) as

d ln S

dt
= γ − α

2
(1 − B2). (2.65)

Let us denote by G(B) the right side of (2.65) .
Given two positive functions f1 and f2 of t ≥ 0, let us write

f1 ≍ f2 if f1 = O(f2) and f2 = O(f1).

Lemma 2.14.1. Let B(0) ∈ basin(B∗
i ), where i ∈ {1, 2, 3}. Then:

If G(B∗
i ) > 0, then lnS(t) ≍ t.

If G(B∗
i ) = 0, then | ln S(t)| = o(t).

If G(B∗
i ) < 0, then − lnS(t) ≍ t.

Proof: evident.

Figure 2.10 resumes our findings.

In the special case when X(0) = Y (0) we have B(t) = 0 for all
t. But zero is a fixed point and B(t) → 0 when t → ∞ for all initial
values. So the process is ergodic.
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Figure 2.10: Classification for X(0) 6= Y (0). Compare this figure
with figure 2.6

.

2.15 Exercices

Exercise 2.15.1. Let v ∈ Z and sv ∈ {0, 1}. The Stavskaya
process is a discrete-time version of contact processes. Stavskaya
operator is defined as a composition of two operators: the first one
is deterministic and is defined by the rule (sD)v = min(sv, sv+1).
The other one, Rα, is random and transforms any zero into one with
probability α independently from others.

Write and study the chaos approximation of Stavskaya process.
Show that the chaos approximation presents a kind of phase
transition between ergodicity and non-ergodicity.

Exercise 2.15.2. Let v ∈ Z
2 and sv ∈ {0, 1}. Consider the following

process with discrete time: the deterministic operator D is defined by
the formula

(Ds)(0,0) = med(s(0,0), s(0,1), s(0,2))
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and the random operator Rα transform every zero into one with
probability α independently from each other.

(a) Show that this process is ergodic whenever α > 0.
(b) Show that the chaos approximation of this process presents a

phase transition between ergodicity and non-ergodicity.

Exercise 2.15.3. Let us consider the following process with variable
length. Every particle has two possible states, minus and plus. At
every step of the discrete time two transformations occur. The first
one turns every minus into plus with probability β independently
from what happens at other places and thereby favors pluses against
minuses. The second one: whenever a plus is a left side neighbor of
a minus, the plus disappears with probability α independently from
what happens at other places.

Write a chaos approximation to this process and show that this
chaos approximation presents a kind of phase transition between
ergodicity and non-ergodicity. Propose a computational model for
this process.
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[20] Alex D. Ramos and André Toom. Nonergodicity and growth are

compatible for 1D local interaction. Brazilian Journal of Probability
and Statistics, v. 24, p. 400-412, 2010.
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