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Part I. Introduction and the general theorem.

Random processes with discrete time are usually defined by some transition op-

erator or just operator, which transforms the measure at any time step into the

measure at the next time step. A measure µ is called invariant for an operator

P if µ = µ P . (We write operators between measures and events, therefore on

the right side of measures.) Existence and uniqueness of an invariant measure

are among the most important features of an operator. If an operator has an

invariant measure, it generates a stable process, which may model some equilibria

in the nature. If an operator has two invariant measures, it generates a process,

which certainly is not completely chaotic. From the mathematical point of view,

the problem of existence of invariant measure is a special case of the well-known

fixed-point problem.
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It seems that in the context of random processes with an infinite set of inter-

acting components existence of an invariant measure was proved till now mainly

for linear operators, which is understandable, because linearity is very common

for random processes. Even when the word “non-linearity” is used, the transition

operators are mostly linear. The most usual way to prove existence of invariant

measure of a random process is to take an arbitrary initial measure, iteratively

apply to it the transition operator P , prove that the Cesàro transformation of

the resulting sequence has at least one accumulation point and prove that this

point is invariant for P . For example, one version of this method was presented

in [T.2001, chapter 5] and another, more general version is presented in [T.2006].

However, all versions of this method work only for linear operators. Here we

prove existence of invariant measure for a larger class of operators of random

processes without assuming their linearity. This allows us to apply this proof to

some variable-length processes (like those studied in [T.2004]), whose operators

are mostly non-linear.

Let us take any set Ω and a countable algebra A of its subsets. We denote by

σ(A) the minimal σ -algebra, which contains A . Let M be the set of normalized

measures (or probability distributions, which is the same) on σ(A) . Let us say

that a sequence of measures µn ∈ M tends or converges to a measure λ ∈ M if

µn(S) tends to λ(S) for every S ∈ A .

In fact, we shall deal with some M′ ⊂ M and call maps from M′ to M′

operators. We say that an operator P : M′ → M′ is continuous if whenever a

sequence µn ∈M′ tends to λ ∈M′ , the sequence µnP tends to λP . (The well-

known sequential continuity.) We call a set M′ ⊂M compact if every sequence

µn ∈M′ has a subsequence, which converges to an element of M′ . We say that

a set M′ ⊂ M is convex if for any µ, ν ∈ M′ and any k ∈ [0, 1] the measure

k · µ + (1− k) · ν also belongs to M′ . A measure µ ∈M′ is called invariant for

an operator P if µ = µ P .
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Theorem 1. For any non-empty compact convex M′ ⊂ M , any continuous

operator P : M′ →M′ has an invariant measure.

Before proving this theorem, let us make several observations. Given a topology

T on a set S , for any S ′ ⊂ S we call restriction of T to S ′ and denote by T S ′ ,

the topology on S ′ , whose elements are intersections of S ′ with elements of T .

In fact, our theorem 1 refers to the following topology on M . Let us call a set

K ⊂M closed in M if whenever a sequence µn ∈ K converges to some λ ∈M ,

the measure λ also belongs to K . After that we call a set K ⊂ M open in M

if its complement M\K is closed in M . We denote this topology by Tseq . It is

easy to observe that the continuity and compactness defined above are equivalent

to continuity and compactness in Tseq M′ .

We shall use the well-known Schauder-Tychonoff theorem. In [Edwards, section

3.6] it is stated essentially as follows:

Let L be a separated locally convex topological linear space,

K a non-void compact convex subset of L , P any continuous

map of K into itself. Then P admits at least one fixed point.

 (1)

Here continuity and compactness are in the topology on that space restricted

to that set. Since every normed linear space can be easily transformed into a

separated locally convex topological linear space, we can use this theorem as soon

as we put M into a normed linear space; let us do it.

Applying the Carathéodory extension theorem (see e.g. [Ash, p. 19]) to our

case, we conclude that any normalized measure on A has a unique extension to

a measure on σ(A) , which is also normalized. Thus a generic element of M is

determined by its values on elements of A . Thus M may be interpreted as the
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set of maps µ : A → IR such that

µ(∅) = 0, µ(Ω) = 1, (2)

µ(S) ≥ 0 for all S ∈ A, (3)

µ(S1 ∪ S2) + µ(S1 ∩ S2) = µ(S1) + µ(S2) for all S1, S2 ∈ A. (4)

Since A is countable, we can enumerate it in some order

A = {C1, C2, C3, . . .}. (5)

Also we choose a sequence of positive numbers w1, w2, w3, . . . , whose sum is

finite. We call a pseudo-measure any map µ : A → IR without assuming (2) ,

(3) or (4) . Given a pseudo-measure µ , we define its norm as

‖µ‖ =
∞∑
i=1

wi · |µ(Ci)|. (6)

We denote by Mnorm the set of those pseudo-measures, whose norm (6) is finite.

Thus, Mnorm is a normed linear space, which contains M . Having a norm, we

define a metric in the usual way and then topology on Mnorm , which we denote

by Tnorm . It is easy to prove that the topologies Tseq and Tnorm M coincide.

Now to prove theorem 1. From this theorem’s assumptions, M′ is a non-

empty convex compact subset of Mnorm . Then all the conditions of (1) are

fulfilled for the normed space Mnorm with the norm (6) , for the set M′ in it

and for any P : M′ → M′ continuous in the topology Tseq = Tnorm M . The

same is true in the topology Tnorm M′ = Tseq M′ . Hence follows our theorem 1.

Part II. Continuity vs. locality.

For any M′ ⊂ M , any natural number n and any sets S1, . . . , Sn ∈ A , let us

define the set

Dom (S1, . . . , Sn M′) ⊂ [0, 1]n

as follows:

Dom (S1, . . . , Sn M′) def= {(µ(S1), . . . , µ(Sn)) : µ ∈M′} .
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In other words, an n -tuple

(x1, . . . , xn) ∈ [0, 1]n

belongs to Dom (S1, . . . , Sn M′) if and only if there is µ ∈M′ such that

µ(S1) = x1, . . . , µ(Sn) = xn.

Lemma 1. Every set Dom (S1, . . . , Sn M′) is compact.

Proof. Since [0, 1]n is compact, it is sufficient to prove that the set

Dom (S1, . . . , Sn M′)

is closed in [0, 1]n . Suppose that we have a sequence

v1, v2, v3, . . . ∈ Dom (S1, . . . , Sn M′),

which converges to some w ∈ [0, 1]n . Every vk is an n -tuple vk = (vk
1 , . . . , v

k
n) ,

for which there is µk ∈M′ such that

µk(S1) = vk
1 , . . . , µ

k(Sn) = vk
n.

Since M′ is compact, we can select a sub-sequence of this sequence, which con-

verges to some λ ∈M′ . Therefore

w =
(

λ(S1), . . . , λ(Sn)
)
∈ Dom (S1, . . . , Sn M′).

Lemma 1 is proved.

For any M′ ⊂ M we call an operator P : M′ → M′ quasi-local if for any

S ∈ A and any ε > 0 there is a natural number n , sets S1, . . . , Sn ∈ A and a

continuous function f : Dom (S1, . . . , Sn M′) → [0, 1] such that

∀ µ ∈M′ :
∣∣∣∣ µ P (S)− f

(
µ(S1), . . . , µ(Sn)

) ∣∣∣∣ < ε. (7)

Theorem 2. For any compact M′ ⊂M , any quasi-local operator P : M′ →

M′ is continuous.
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Proof. For any S ∈ A and any real number a we call each of the sets

{µ ∈M : µ(S) < a}, {µ ∈M : a < µ(S)}

a gate. We denote by Tgates the minimal topology on M , which includes all the

gates. It is easy to observe that the topologies Tseq and Tgates coincide. So it is

sufficient to prove continuity of P in Tgates .

Let us choose any µ ∈ M′ , any S ∈ A and any ε > 0 . We need only to

present an intersection of several gates Π 3 µ such that

∀ ν ∈ Π : |νP (S)− µP (S)| < ε.

Since P is quasi-local, there are a natural number n , sets S1, . . . , Sn ∈ A and a

continuous function f : Dom (S1, . . . , Sn M′) → [0, 1] such that

|a1 − b1| <
ε

3
, |a2 − b2| <

ε

3
, (8)

where we denote

a1 = νP (S), b1 = f
(

ν(S1), . . . , ν(Sn)
)

,

a2 = µP (S), b2 = f
(

µ(S1), . . . , µ(Sn)
)

.

Due to lemma 1, the set Dom (S1, . . . , Sn M′) is compact. Hence, since the

function f is continuous, it is uniformly continuous. Therefore there is δ > 0

such that

∀ µ, ν ∈M′ : |ν(S1)− µ(S1)| < δ, . . . , |ν(Sn)− µ(Sn)| < δ =⇒ |b1 − b2| <
ε

3
.

Now let us choose Π as follows:

Π =
{
λ ∈M′ ∀ i = 1, . . . , n : µ(Si)− δ < λ(Si) < µ(Si) + δ

}
.

Then for any ν ∈ Π

|b1 − b2| <
ε

3
.
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Together with the inequalities (8) this implies that |a1 − a2| < ε , which is all we

need. Theorem 2 is proved.

Now let us go to a still narrower class of operators. For any M′ ⊂M , we call

an operator P : M′ →M′ local if for any S ∈ A there is a natural number n ,

sets S1, . . . , Sn ∈ A and a continuous function

f : Dom (S1, . . . , Sn M′) → [0, 1]

such that

∀ µ ∈M′ : µ P (S) = f
(

µ(S1), . . . , µ(Sn)
)

. (9)

Evidently, all local operators are quasi-local and therefore continuous. (In [T.2006]

the terms “local” and “quasi-local” are attributed to narrower classes of operators.)

Now let us speak about so-called cellular automata. We cannot present a single

“classical” definition of cellular automata, but it seems that all their usage was

based on the idea of an infinite (or large) set of components, locally interacting

with each other in a random way. To fix the ideas, let us use the following ad hoc

definition. Our configuration space is

Ω =
∏

i∈W

Si,

where W is countable and every Si is finite. Let T be the product topology,

whose factors are discrete topologies on all Si . Suppose that we also have an

arbitrary auxiliar space Aux and an arbitrary probability distribution ξ on it.

Also for every i ∈ W we have a finite set Vi ⊂ W and a function

fi :
∏

j∈Vi

Sj × Aux → Si.

Then a cellular automaton is a linear map P : M → M defined as follows: for

any µ ∈M the result of application of P to µ is the measure on T induced by

the product of the measures µ and ξ with the map D : Ω×Aux → Ω resulting in

a configuration y , whose i -th component for every i is the result of application

of the function fi to the components xj for all j ∈ Vi and to z ∈ Aux .
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This definition is more general than some well-known definitions (e.g. that in

[T.2001, chapter 5]). It is evident that all cellular automata thus defined are local

operators, so our theorem 1 applies to them also.

Part III. Applications to variable-length operators.

In this part we omit some technical details, which will be described in detail in

another publication [Rocha]. Starting here, we consider only the special case, in

which Ω is a bi-infinite product A ZZ , where A is a non-empty finite set, which

we call alphabet. Elements of the alphabet are called letters. A generic element of

Ω is a bi-infinite sequence x = (. . . , x−1, x0, x1, . . .) , where all xi ∈ A . Taking the

discrete topology on A , we obtain the algebra A as the minimal algebra, which

contains all the sets of the form

{
x ∈ Ω xi+1 = a1, . . . , xi+n = an

}
, (10)

where i ∈ ZZ and a1, . . . , an ∈ A . The class of sets (10) also serves as a base for

the product topology on Ω , in which Ω is compact due to Tychonoff compactness

theorem (see e.g. [Ash, p. 215]). Hence the set M of normalized measures on

σ(A) is compact also.

We call a normalized measure on Ω shift-invariant if it is invariant under all

shifts along ZZ . We shall use the abbreviation “s.i.n. measures” for shift-invariant

normalized measures. We denote by MA the set of s.i.n. measures on A ZZ . Notice

that MA is closed in M , whence it is compact.

Any finite sequence of letters is called a word. The length of a word W ,

denoted by |W | , is the number of letters in it. Any letter may be considered as

a word of length one. There is the empty word, denoted by Λ , whose length is

zero. We assume that comma and brackets never belong to our alphbet and if we

write several words and letters one after another, perhaps separated by commas

or included in brackets, they form one word (commas and brackets eliminated),

which we call their concatenation. Dealing with s.i.n. measures, we may use the
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following simplified notation for any word W = (a1, . . . , an) :

µ(W ) = µ(a1, . . . , an) = µ(xi+1 = a1, . . . , xi+n = an). (11)

Due to shift-invariance of µ , the probability (11) does not depend on i and we

call it the frequency of the word W in the measure µ . Any s.i.n measure on

Ω is determined by its values (11) on all words in the alphabet A . Applying

the conditions (2) , (3) and (4) to the present case, we see that to form a s.i.n.

measure, all the numbers µ(W ) must be non-negative, µ on the empty word

must equal one and for any letter a and any word W (including the empty one)

must be

µ(W ) =
∑
a∈A

µ(W, a) =
∑
a∈A

µ(a, W ),

where (W, a) and (a, W ) are concatenations of the word W and letter a in the

two possible orders. Given two words W, V , where |W | ≤ |V | , we say that W

enters V at a position k if 1 ≤ k ≤ |V |−|W |+1 and W coincides with the word

consisting of those letters of V , which occupy positions from k to k + |W | − 1 in

it. We call a word W self-overlapping if there is a word V such that |V | < 2 · |W |

and W enters V at two different positions. A word is called self-avoiding if it is

not self-overlapping. In particular, the empty word is self-avoiding.

Now we are ready to speak about a class of non-linear operators from MA

to MA , which we call substitution operators. They are a special case of variable

length operators, which we discussed in [T.2002, T.2004].

Although we shall speak only about some particular classes of operators, it

makes sense to start with a general, although informal explanation. A generic

substitution operator is denoted by (G ρ- H) , where G and H are words, G

is self-avoiding and ρ is a number in [0, 1] . Informally speaking, this operator

substitutes every entrance of the word G in every configuration by the word H

with a probability ρ or leaves it unchanged with a probability 1−ρ independently

of states and fate of the other components. However, we define only how our
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operators act on s.i.n measures, but not on configurations. We have to avoid the

bad case, in which

Bad case: G is non-empty, H is empty and ρ = 1. (12)

In the bad case the substitution operator cannot be applied to the measure concen-

trated in the bi-infinite concatenations . . . , G, G, G, . . . of the word G . In all the

other cases a substitution operator can be applied to all s.i.n measures. For every

substitution operator and every µ ∈ MA , we define a coefficient of extension or

just extension for short, denoted by Ext , which equals

Ext = 1 + ρ ·
(
|H| − |G|

)
· µ(G). (13)

Informally speaking, extension is that coefficient, by which is multiplied the length

of a long word distributed according to the given measure µ in result of action

of the operator in question. We shall provide a rigorous treatment of extension in

[Rocha]. Right now we only state that it is positive.

Lemma 2. Except in the bad case (12) , for every substitution operator there

is a positive constant such that extension of this operator, when it is applied to

any s.i.n. measure, is not less than this constant.

Proof. If |G| ≤ |H| , Ext ≥ 1 . Now let |G| > |H| . This implies that

|G| > 0 . Then we notice that since |G| is self-avoiding, µ(G) ≤ 1/|G| for any

µ ∈MA . Therefore in this case

Ext = 1− ρ ·
(
|G| − |H|

)
· µ(G) ≥ 1− ρ · |G| − |H|

|G|
≥ 1− ρ + ρ · |H|

|G|
.

If ρ < 1 , the last expression is positive because it is not less than 1−ρ . If ρ = 1 ,

the last expression equals |H|/|G| , which is positive whenever H is not empty.

Lemma 2 is proved.

Now we are going to define several specific classes of substitution operators.

In every case P denotes the operator in question, µ ∈ MA denotes an arbitrary
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s.i.n measure and µ P denotes the result of application of P to µ .

Conversion: (g ρ- h) is a subclass of cellular automata. It is the only linear

operator in our list. Given two different letters g, h ∈ A , conversion of g into h

is a map from MA to MA . Informally, conversion means that every occurrence

of the letter g is either substituted by h with a probability ρ ∈ [0, 1] or left

unchanged with a probability 1−ρ independently from presence and fate of other

occurrences. The extension in this case equals one. We define the value of the

resulting measure µ P at any non-empty word (a1, . . . , an) as follows:

µ P (a1, . . . , an) =
∑

b1,...,bn∈A

 n∏
i=1

F (ai | bi)× µ(b1, . . . , bn)

 ,

where

F (ai | bi) =



1− ρ if bi = g, ai = g,

ρ if bi = g, ai = h,

0 if bi = g and ai is neither g nor h,

1 if bi 6= g and ai = bi ,

0 if bi 6= g and ai 6= bi.

Compression: (G 1- h) . Given a non-empty self-avoiding word G in an

alphabet A and a letter h /∈ A , compression of G into h is the following map

from MA to MA′ , where A′ = A ∪ {h} : every occurrence of the word G is

substituted by the letter h with probability 1 . The extension in this case equals

Ext = 1− (|G| − 1) · µ(G) ≥ 1

|G|
.

Now let us define µ P (W ) for any non-empty word W in the alphabet A∪ {h} :

If the word G enters W , then µ P (W ) = 0 . In the other case,

µ P (W ) =
µ(W ′)

Ext
,
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where W ′ is the word in the alphabet A obtained from W by substituting the

word G instead of every occurrence of the letter h .

Decompression: (g 1
- H) . Informally speaking, given a non-empty word

H in the alphabet A and a letter g /∈ A , decompression of g into H is the

following map from MA′ to MA , where A′ = A ∪ {g} : every occurrence of the

letter g turns into the word H with probability 1 . The extension in this case

equals

Ext = 1 + (|H| − 1) · µ(g).

We shall define decompression as a superposition of several operators.

First, we define decompression of a letter g to a word (h1, h2) with a rate

1, where the letters h1 and h2 are different from each other and do not belong to

the alphabet A , in which the original measure µ was given. The extension in this

case equals 1+µ(g) . Let us define the value of µ P (W ) for any non-empty word

W in the alphabet A∪{h1, h2} . We define another word W ′ as a concatenation

W ′ = (U, W, V ) , where

U =

{
h1 if the first letter of W is h2,

Λ otherwise.

and

V =

{
h2 if the last letter of W is h1,

Λ otherwise.

After that we turn every entrance of the word (h1, h2) in W ′ into g and denote

the resulting word by W ′′ . (This is unambiguous because the word (h1, h2) is

self-avoiding.) Now, if W ′′ contains at least one entrance of h1 or h2 , then

µP (W ) = 0 . Otherwise

µP (W ) =
µ(W ′′)

1 + µ(g)
.

Second, we define decompression of a letter g to a word (h1, h2, . . . , hn)

with a rate 1, where the letters h1, . . . , hn are different from each other and do

not belong to the alphabet A in which the original measure µ was given. We
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define it by induction in n . The case n = 2 is treated above. Now for any n > 2

we define this decompression as a superposition of decompression of g into (h1, k)

and a decompression of k into (h2, . . . , hn) .

Finally, we define decompression of a letter g into an arbitrary word

(h1, . . . , hn) , whose letters may coincide with each other and/or belong to the

original alphabet as a superposition of n + 1 operators: first, decompression of g

into a word (k1, . . . , kn) of the same length, all of whose letters are different from

each other and do not belong to A and then n conversions of ki into hi for all

i = 1, . . . , n , each with a rate 1 .

Insertion: (Λ ρ
- h) . Informally, insertion of a letter h /∈ A into a measure

in the alphabet A with a rate ρ ∈ [0, 1] means that a letter h is inserted with

the probability ρ between every two neighbor letters independently from other

places. The extension in this case equals 1 + ρ . Now let us take any non-empty

word W in the alphabet A ∪ {g} and define µ P (W ) as follows: If W contains

the word (h, h) , then µ P (W ) = 0 . If W does not contains (h, h) , then

µ P (W ) =
1

1 + ρ
· µ(W ′) · ρN1 · (1− ρ)N2,

where W ′ is the word obtained from W by deleting all the letters h , N1 is the

number of letters h in W and N2 is the number of pairs of consecutive letters in

W , both of which are not h .

Deletion: (g ρ- Λ) . Informally, deletion of a letter g ∈ A from a measure

in the alphabet A with a rate ρ ∈ [0, 1) means that every occurrence of g ei-

ther disappears with a probability ρ or remains unchanged with a probability

1 − ρ independently from other occurrences. The extension in this case equals

1− ρ · µ(g) . The value of µ P at any non-empty word (a0, . . . , ak) is

1

1− ρ · µ(g)
·

∞∑
n1,...,nk=0

µ
(

a0, gn1, a1, gn2, · · · gnk, ak

)
·ρn1+···+nk ·(1−ρ)N , (14)

where N is the number of entrances of g in (a0, . . . , ak) . Deletion is the only
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operator in our list, which needs the condition ρ < 1 .

Now let us speak about continuity of these operators. Compression, Decom-

pression, Conversion and Insertion are evidently local, therefore continuous for all

ρ ∈ [0, 1] . Deletion is not local, but we are going to prove that it is quasi-local

for all ρ < 1 . Let us substitute the infinite sum in the numerator of the right part

of (14) by a finite sum of the same terms, only for n1, . . . , nk from zero to a large

enough number M . We get

1

1− ρ · µ(g)
·

M∑
n1,...,nk=0

µ
(

a0, gn1, a1, gn2, · · · gnk, ak

)
·ρn1+···+nk ·(1−ρ)N . (15)

We take the expression (15) as the function f in the formula (7) . Those

values of µ , which are used in (15) , will serve as µ(S1), . . . , µ(Sn) in (7) .

Since ρ < 1 , our function f is defined and continuous on [0, 1]n , therefore on

Dom (S1, . . . , Sn MA) . It remains to choose an arbitrary ε > 0 and M large

enough to make the modulo of the difference between the infinite sum (14) and

the finite sum (15) less than ε . We can choose M so large that

k · ρM+1 < ε · (1− ρ)k+1.

Let us show that this value of M is large enough. The difference between (14) and

(15) is

1

1− ρ · µ(g)
·

∑
∃ i : ni > M

µ
(

a0, gn1, a1, gn2, · · · gnk, ak

)
· ρn1+···+nk · (1− ρ)N , (16)

where the sum is taken over only those k -tuples, in which at least one term exceeds

M . This sum is estimated by a sum of k sums, in which one term exceeds M

and all the others take all the values from zero to infinity. We can only augment

our sum by substituting all the values of µ and all the factors 1 − ρ by ones.

Thus the expression (16) does not exceed a sum of k equal terms, which can be
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written as k times the first term, i.e.

k

1− ρ

∞∑
n1=M+1

∞∑
n2,...,nk=0

ρn1+···+nk ≤ ρM+1 · k · (1− ρ)−(k+1).

With the chosen value of M this expression is less than ε . Thus Deletion is

quasi-local for all ρ < 1 .

We conclude that all the operators defined above are continuous, whence all

their finite superpositions are continuous also. Let us show that these superpo-

sitions include a large variety of possibilities. For example, if we want some

non-empty self-avoiding word H to appear with a rate ρ into a measure in an

alphabet A , we may first use Insertion to make some special letter g /∈ A ap-

pear with the rate ρ and then use Decompression to turn every occurrence of g

into H . If we want some non-empty self-avoiding word G to disappear with a

rate ρ < 1 from a measure in an alphabet A , we may first use Compression to

turn every occurrence of G into some special letter h /∈ A , then use Deletion to

make every occurrence of h disappear with the rate ρ and finally use Decom-

pression to expand the remaining occurrences of h back into G . Finally, if we

have two non-empty self-avoiding words G and H in an alphabet A and want

G to turn into H with a rate ρ < 1 , we may first use Compression to turn every

occurrence of G into some special letter g /∈ A , then use Conversion to turn

every occurrence of g into another letter h /∈ A with the rate ρ and finally use

Decompression two times to turn all the occurrences of g back into G and all the

occurrenhces of h into H . Everyone of these superpositions is continuous and

therefore has an invariant measure due to theorem 1.

Part IV. Application to the process studied in [T.2004].

In [T.2004] we considered alphabet A = {⊕,	} , whose elements were called plus

and minus, and two specific operators: flip denoted by Flip β and annihilation

denoted by Ann α . Flip is a special case of Conversion. In our present notations,

Flip β is (	 β- ⊕) as it turns every minus into plus with a probability β
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independently from the fate of other components. Annihilation Ann α is

((⊕,	) α- Λ) as it makes every entrance of the self-avoiding word (⊕,	) disap-

pear with a probability α < 1 independently from fates of the other components.

We iteratively applied the superposition of these two operators (first flip, then

annihilation) to the initial measure δ	 , concentrated in the configuration “all

minuses” and denoted by µt the resulting sequence of measures:

µt = δ	( Flip β Ann α)t.

The main result of [T.2004] with a correction in [Ramos] was this:

for all natural t the frequency of pluses in

the measure µt does not exceed 250 ·β/α2 .

 (17)

Now we can prove more:

Theorem 3. For all β ∈ [0, 1] and α ∈ (0, 1) the operator Flip β Ann α has

an invariant measure, whose frequency of pluses does not exceed 250 · β/α2 .

Proof. First let us speak about convexity. Given any measures µ, ν , we

denote by Conv (µ, ν) their convex hull, that is

Conv (µ, ν) =
{
kµ + (1− k)ν 0 ≤ k ≤ 1

}
.

In [Rocha] we shall prove that

λ ∈ Conv (µ ν) =⇒ λP ∈ Conv (µP, νP ) (18)

where P is any substitution operator. For linear operators it is obvious. Here

we use this property only for Flip β with any β ∈ [0, 1] and Ann α with any

α ∈ (0, 1) .

Now let us speak about continuity. Evidently, flip is local and therefore contin-

uous. Regarding annihilation, we shall not use its representation given in [T.2004].

Instead we represent it as a superposition of the following three operators. First
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we use Compression which turns every word (⊕,	) into one letter g , which is

neither ⊕ nor 	 . Then we use Deletion, which deletes the letter g with the

rate α . Finally, we use Decompression, which transforms every remaining letter

g back into the word (⊕,	) . Since all the three operators are continuous on

MA′ , where A′ = A ∪ {g} , all their superpositions are continuous also, whence

P is continuous on MA . Now let us denote by M′ the closure in MA of the

convex hull of the measures µ0, µ1, µ2, µ3, . . . Evidently, M′ is a non-empty

convex closed subset of MA . Since MA is compact, M′ is also compact.

Now let us denote P = Flip β Ann α . Due to the formula (18) and continuity

of P , if µ ∈ M′ , then µ P also belongs to M′ . Therefore we can apply (1) to

conclude that M′ contains a fixed point for the operator P . It follows from

(17) that the frequency of pluses does not exceed 250 · β/α2 for all elements of

M′ including that fixed point. Theorem 3 is proved.

Since the measure δ⊕ concentrated in the configuration “all pluses” is invariant

for the operator Flip β Ann α , this operator has at least two different invariant

measures whenever β < α2/250 .

Referee #1 and Mikhail Raskin noticed mistakes in the early versions of this

article. Leonid Levin and referee #3’s suggestions made this article more urbane.

Serge Pirogov shared with me his interesting reflexions on formula (18) . Alex

Dias Ramos unexpectedly found several misprints in the final version. I thank all

of them. This work was partially supported by CNPq, grant # 300991/1998-3,

and PRONEX.
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[T.2001] André Toom. Contours, convex sets, and cellular automata. Text of a

course at the 23-th Colloquium of Brazilian mathematicians. Translated from
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