Stability in Lattice Systems with Local
Prohibitions*

A, L. Toom

1. Definitions and Examples

We consider integral lattices Z%, in which every point v has a corresponding
finite set of states X, = X,. the same for all points of the lattice. The set
X =IIx_ is called the configuration space, a configuration being an infinite
vector x = (x,) of components x, € X,, where v EZ% The set X, =
IT, . ,.X, of configurations x, on a set ¥ C Z7 is defined similarly.

The characteristic function x,: X — (0; 1] for a set 4 C X is defined to
be equal to 1 on the configurations contained in 4 and on these only. A set
Vo Z9 is called a support of A C X if x,(x) depends only on x,. A set
A C X is called cvlindrical if it has a finite support. For any eylindrical A,
the smallest support is the collection of all ¢ such that x, depends
essentially on x,_.

For any v € Z¥ we define the shift mapping T : X — X by the condition:
YweZ: (T (x), = x,_.. An image T,(A) is called a translate of A. Call
a configuration periodic if it has only a finite number of distinct translates.

Definition 1. Let  be a given dimension and X a finite set. Also let E be
a countable collection of cylindrical subsets of X = X7, satisfying the
following three conditions:

{a) If aset C belongs to E, then all the translates of C also belong to E.

(b) If every set is defined to be equivalent to its translates, then E will
break up into only a finite number of equivalence classes.

ic)  All elements of £ are nonempty and distinet from X
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Then we say that (E,X) is a homogeneous latlice system with local
prohibitions, from now on referred to as a sysfem for the sake of brevity.
We call a configuration x € X consistent in the system (E, X} if x belongs
to the intersection of all the elements of £,

For any set ¥ C Z we also call a configuration y, € X, consistent in
the system (E,X) if (x:x, = y,} belongs to the intersection of all the
elements of E whose supports are subsets of V.

The diameter of a system is defined to be the smallest number D such
that any element of E is supported on a cube with edges of length D which
are parallel to the axes of Z7. In the case of a one-dimensional system, D is
the smallest number such that every element of E is supported on a
segment [v; v + D).

Remark 1. Let (£, X) be a system of diameter D. Let us construct another
system (E": X). All elements of E” are the translates of a set C° whose
support is the cube ¥ with edges of length D, among which 4 edges lie on
the positive half-axes of Z. The set C” is the intersection of all elements of
E supported in V. It is easy to see that the set of consistent configurations
of (E,X) is the same as that of (E® X).

Remark 2. All that has been said above can be restated in another
language which we shall need only in the one-dimensional case for the
systems ( £% X) constructed in Remark 1. We call a sequence of n terms—
elements of X,—a word of length n in the alphabet X, Let us assign to
every one-dimensional system (E", X) of diameter D a list of prohibited
words. To do this we choose an element C° of E® with support [0; D] and

include in our list all words x,,, . . ., x, such that

[PEX :yy=x5,...,ppmxp) L CO
We say that a configuration y contains the word x, . .., x, if there exist
v €& such that y, ., = x, ..., ¥4, = X,. A configuration will be consis-

tent if it contains no prohibited words.

Remark 3, [t is casy to state an algorithm which would determine, for any
one-dimensional system, whether it contains a consistent configuration and
whether such a configuration is unique. Construct a finite oriented graph g
with |X,|” vertices, each corresponding to a word of length D in the

alphabet X,;. We construct an edge from a vertex x,, ..., x, to a vertex
Viooooayp i xa=y, xy=ps, ..., xp=1yy_,, and. moreover, the word
Xy o1y Xp, Vp 15 not prohibited. If the graph g has no oriented cycles,
then the system contains no consistent configurations. If g has exactly one
oriented cycle, consisting of one vertex of the form a,a, ..., a, then the
system contains exactly one consistent configuration ....a,a.a,....In

any other case the system contains more than one consistent configuration.
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The analogous questions for the case d > 1 are algorithmically unsolvable;
see [2].

Consider a system (£, X). Let M denote the class of probability mea-
sures on X, or, more precisely, on the o-algebra generated by the cylindrical
sets. We define a subclass M, © M for any parameter €  [0; 1], A measure
puis contained in M, if the following inequality holds for any k €4, and
for any & distinct elements C,, ..., €, of E:

MEUGU - UC)»1-¢e.

For any configuration x we write N (x) for the.collection of configura-
tions that differ from x only on a finite number of points. For a point o we
define

Nxy={reN(x):y#=x.}

Definition 2. A consistent configuration is called stable in the system
(E,X)if
lim sup p(N (x))=0.
g+ HE M,
!.,‘—_z«'

Remark 4. Since x is consistent, M, is nonempty because it contains the
d-measure concentrated on x. This is why the supremum makes sense.
Furthermore,

<=M CM,__.

so the supremum depends on ¢ in a monotonic way; therefore the limit
always exists.

The purpose of the rest of this section 15 1o explain why such construc-
tions are considered. The starting point of the present paper is a particular
case, which we describe in the following example.

Example 1. We denote the points of Z7 by (s5,1), where s€Z7 ' € Z.
Introduce the set UV = {(s,1):|s| = B; —m = 1< — 1}, where R and m are
parameters. Let us choose a function f: X,¥!— X, and form the collection
£ of the translates of the set {x:x, 5= flx, )]

This system can be interpreted as a system of finite automata placed at
points s £Z7 ! and working in discrete time ¢ € Z. A configuration is
consistent if the state of every automaton at any point in time 5 computed
as a function f ol its own state and the states of its neighbors within radius
R during the m previous instants of time. A measure p = M, then arises if
the automata computing the function f(-} err in a random fashion, and
their errors happen seldom enough and are not too dependent on each



76 AL Toom

other and on the previous history. For instance, p € M, if every automaton
at any point in time errs with probability e independently of other errors.
Stahility of a configuration x means that the deviations from x caused by
the small independent errors of the automata are not accumulated.

Theorems providing sufficient conditions for stability of configurations
inn the systems described in Example | are given in [8], [9]. The method of
proving them is a variant of the well-known Peierls method [3], [5], [6]. The
present paper is an attempt to carry the method of [8], [9] back to systems
where the time axis is not singled out. The following example is an
illustration of this sort of system.

Example 2. Let every point of Z° possess two states, 0 and 1. The
collection E consists of all translates of the following two sets:

{x X0 = Xg,} {x X0 = Xp}-

It is obvious that here we have exactly two consistent configurations:
“all zeros™ and “all ones.” Tt follows from Propositions 5 and 6 that these
configurations are stable. This system reminds one of the classical Ising
maodel.

Unfortunately, at present, our Propositions 5 and 6 cannot be success-
fully applied to Gibbs distributions, since we cannot find sufficiently
interesting measures in M, for the case « > 1. The only step in this
direction is Proposition 4 which treats the case 4 = 1, but Propositions 5
and 6 are inapplicable precisely in this case. One would like to prove the
analog of Proposition 4 for all dimensions,

2. Formulations
Our first proposition plays an auxiliary role.

Proposition 1. Ler (E.X) and (E'.X) be two given systems. Let every
O E E contain the infersection of a finite number of the elemenis of E' as a
subset, Let every C' & E' contain the intersection of a finite number of the
elements of E as a subset. Then the systems (E, X ) and (E", X') have identical
sets of consistent configurations and identical sets of stable configurations.

Proposition 1 shows that in order to study a system (E,X), we can
replace it by another system (E", X} with the same consistent and stable
configurations, where all the elements of E " are translates of each other.
The construction of the system ( E% X) is described in Remark 1.

The following proposition, together with Remark 3, gives a rather
complete description of one-dimensional systems.

Proposition 2. A consistent configuration in a one-dimensional system is
stable if and only if no other consistent configurations exist.

The following proposition contrasts with Proposition 2.
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Proposition 3. Let d = 2 be a given dimension and X a finite set containing
at least two elements. Let a finite collection of configurations in the space
X= X“{' be given, satisfving the following condition: if a configuration belongs
to this collection, then all ity translates also belong to it. Then there exists a
system (E,X) in which all the configurations from owr collection are stable
and all others are inconsisient.

Proposition 6, fundamental to this paper, will establish the stability of
certain configurations, Obviously, the value of the statement that a configu-
ration is stable depends on the wealth of the classes M . Furthermore, to
achieve the largest possible values of p(N (x)), we should take measures p
concentrated on N(x). Proposition 4 shows that in the case 4 = 1 such
measures can be found among the Gibbs measures. Unfortunately, we must
require periodicity of x.

Before we formulate Proposition 4 let us perform some constructions.
Let (£, X) be a one-dimensional system of diameter 2 and y a consistent
configuration in it. We are also given a segment ¥ C Z and a function
g: X" >R, , assuming only strictly positive values, We define a Gibbs
measure p on X, depending on y, V, g(-) as well as on parameters. The
measure p outside of V is concentrated on the configuration vy, . The
value of p(x,) for any configuration x,. € X, is equal to a normalizing
coefficient =~ ' multiplied by the product

el

in which ¢ runs over the values for which [v: ¢ + D] has at least one point
in common with . Here Z is the sum of such products over all x,..

Proposition 4. Let (E, X) be a system whose set of consistent configurations
is nonempty. Then for any e = 0 we can choose a function g(-) so that for any
consistent periodic configuration vy and any segment V, the Gibbs measure i,
described in the previous paragraph, belongs to M,

In order to formulate the nexi two propositions we must introduce some
definitions. Let (E, X') be a d-dimensional system and y a configuration in
it. We call a set ¥ C Z% a guarantor (of y) if for an}.f point v € Z¢ there
exists a finite family {C,, ..., C,} C £ such that

(XX, F P X pp = Yrpd NG N NG =0,

Furthermore, let us immerse Z7 in RY with the same origin 0. We identify
the points of RY with vectors. Call the unit vectors directions. The set of all
directions, i.e., the unit sphere, is denoted by £ We call the set of vectors
which have negative (nonpositive) scalar products with a given direction w
the open (closed) half-space opposite w. A set I© < R? is called a guarantor
if ¥ 1 Z¥is a guarantor.

Proposition 5. Ler (E, X) be a system and v a periodic consistent configura-
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tion in it Let there exist a finite set of directions wy.owp, . ... w, with the
Jollowing two praperties:

(a) There exist positive py, pp, ..., B, such that
Powy t Py + - +pa, = 0.

(b) For any m from | through n the intersection of the two open half-
spaces oppoesite w, and w, is a guarantor of v,

Then v is stable,

The next proposition applies to the case d = 2. In this case R =R’ is a
plane, § is a circle, and half-spaces are half-planes. We call a direction w
coguarant if the open half-plane opposite it is a guarantor.

Proposition 6. [f. in a fwo-dimensional system (E.X). the sei of all
cognarani directions of a given periodic consistent configuration y contains an
are which constitutes more than a half of the circle Q, then v is stable,

3. Proofs

Proof of Proposition 1. 1 is evident that sets of consistent configurations
are identical. Suppose that a configuration » is stable in (£, X). Let us
prove that it is stable in ( £', X'). For this purpose it suffices to find, for any
e>0,ad >0such that M{ C M,, where M; corresponds to (E", X). From
homogeneity considerations we can choose a & such that every ¢ C E
contains the intersection of no more than & distinct elements of £’ as a
subset. Since all elements of E are distinct from X, we can choose a number
{ such that every €' € E’ is a subset of no more than [ distinct elements of
E. Let 8 = (¢/k). Suppose that p = M. Let us prove that p € M,. Take

any C, ..., C, € E. Due 1o our choice of &k, we can write:
Cf.l MoevsF C;.k = CP
C':J.I REES AR |:|.k = C-.lrl »
where all the sets T}, ..., .. are elements of E'. We may have added

arbitrary elements of E' to every intersection so that cach intersection
consists of exactly & terms. Clearly,

B(C U -+ UG,)
Pa(ClLN - NCYU - U(GraN v NCLY]

il
o “[{"““i" U A U Cr;r.1} r-l s I—" {Ci'l U S L’I Cr;r..ﬂ}]'

Here the third expression is obtained from the second by interchanging the
order of intersections and unions. It contains &™ pairs of parentheses. The
sets inside the first pair are taken from different sets C,, ..., C,. Hence
there are at least m /[ distinet sets among them. Therefore,

e W e WL e 1 — Fmil
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The same reasoning applies to every pair of parentheses. Thus:
F’{CI U-ee U Cm};a‘ 1 —k’"*ﬁ”-"r"=1“5’".

Proof of Proposition 2. Proposition | allows us to assume that all the
elements of E are the translates of a single set €Y whose support is the
segment [0; D]. In the course of the proof of Proposition 2, only [0; D] is
called the support of C” and only [v; v + D] for any v is called the support
af T[T

I. Suppose that a one-dimensional system (E, X') contains (at least) two
distinct consistent configurations v and z. Let us prove that y is unstable.
We can assume that y, # z,; in fact, for any ¢ > () we can find a measure
p € M, such that u(Ny »)) = 1. We shall construct the measure p in the
form

,u;=%{6,+62+ x4+ 8,

where §,, ..., &, are §-measures concentrated on configurations v, . ... ¥,
which will now be constructed. Choose an integer n > &~ *” and define y,
for all & from 1 through » in the following way:

z(v) if |e|<k(D+2),

yul®) = {}'{u] it o| > k(D +2).

The measure p is defined. Clearly, p(Ny(y)) =1, Let us prove that
& M., Denote by E, the collection of the elements of E which do not
contain y,. Notice that if C € E,, i.e., y, & C, then the support of C either
contains the points k- (D + 2)and & - (D +2) + 1 or the points — k- (D +
Dyand —[k- (D +2)+ 1] It follows that the sets £, are disjoint and that
each of them contains no more than 20 elements. Mow suppose that
C.....C, are distinct elements of E. Let us prove that

pC,uU---uC )1 —¢"
Consider the following two cases:

(a) Allof C, ..., C, belong to a single E,. Then p(C, U --- U C,)
=1—1/n. On the other hand, [ < 2D, and hence the inequality in
guestion holds.

() Mot all of C,...,C, belong to one E,. Then every E_ fails to
contain at least one of Cy, ..., C,. [n this case p(C, U -- - U C,)
= 1.

fI. Suppose that a one-dimensional system (£, X') contains exactly one
consistent configuration y. Let us prove that y is stable. Notice that all the
components of y are the same, Let y= ... ,a,a,a,... .

We call a word z, .. ., z, in an alphabet X, consistent if the configura-

tion zjy, 4 = (21 - - - z,) 1s consistent.
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Lemma. We set M = |X|” + D. Any consistent word has all its component
letters—except perhaps M on the left end and M on the right—equal to a.

Proof. Suppose otherwise, Discarding extra letters, we obtain the consis-
tent word:
iy By s by

where z; # a. Clearly, a word of length M in the alphabet X, has at least
one combination of D consecutive letters repeated twice. Let zp ., ...,
Zyypand 2.\, ..., 2,5, where k < [, be two identical combinations in
the sequence z,,...,2zy. In the word z_,., ..., 24 ..., 2y Temove the
letters with indices larger than /4 D and add on the right of it an infinite
number of periods, each coinciding withz, , ... ...z Z;+ p- We carry out a
similar operation on the left end. Thus we obtain a consistent sequence
which is infinite in both directions, hence a configuration conlaining a
component different from a, which contradicts our hypothesis.

Now consider a measure p € M, and let us estimate (Nl v = pl{x:x
= a}) from above. We expand the last expression in the form

E_u{{x:x1__”:”]={z__.w.....zu....“:.“}]}.

where the sum is taken over all (z_,,..... 24 ....2,) in which z; 7 a. It
follows from the lemma that all such words are not consistent; hence every
summand 15 al most e. Thus,

p{{x ixpal) < | XM e

which approaches 0 when & does.

' v" be the given collection. We

call it a balf of radius

Proof of Proposition 3. Lf:T. ¥
denote by (v, p) the set {w e
p = 0 with center v € Z°,

Define £ to be the collection of the translates of a set €, determined by
the following condition: a configuration y belongs to C, if the restriction of
v to the ball (0,p) coincides with at least one of the restrictions of
1", ..., ¥" to this ball. The only requirement on p is that it is to be
SIIffIL!E]‘It]}f large. We now describe how to choose p.

We call a shift T, proper to a configuration y if y = T,_( ¥), and we denote
by G(y) the group of proper shifts of y. Set G =[_,G(»"). It follows
from the hypothesis of our Proposition that the quotient group Z7/G( y') is
finite for all i from 1 through n; hence Z/ G is finite as well. Choose a

representative w, . ... w,, from every coset in Z/G. Also choose a basis
Hy oo, iy of the d-dimensional group G. We set
p = max{ |""'I| ~~~~~ |w1r||1 iu1| ~~~~~ |u<.f|} + 1

and proceed to prove Proposition 3.

I. Suppose y is consistent. Then y, = y,,, for any v €Z¢ and any j
from 1 through 4. It follows that G = G(y). Let y coincide with »' on the
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ball (0.p). Then y coincides with »' on the points w, ..., w,. This and
G C G(y) imply that y = y".

i1, The stability of ¥',..., ¥" can easily be proved by the contour
method.

Proof of Proposition 4. Proposition 1 allows us to assume that all the
elements of £ are the translates of a set whose support is [0; D] and which
is defined by a list of prohibited words of length D + 1.

I Graphs. We consider finite oriented graphs which for any pair of
vertices @ and b (including @ = &) have at most one edge directed from a to
b and denoted by a— b, if it exists. 4 path of length m going from a, to a,,
is a sequence of vertices and edges which can be written as a;—a,— - - -
—»a, . A path is called a cpele if its first and last vertices coincide and these
two vertices are identified.

Our basic graph G has a set of vertices X', and a set of words of length

D in the alphabet X;,. An edge goes from a vertex (x. .. .. x,) o a vertex
(¥povou¥p) of x, =y for all & from 1 through D — 1. Every word
T xp) corresponds in a one-to-one relationship to the edge going
from (x4, ....xp_) 0 {x},..., xp). We call an edge prohibited if it
corresponds to a prohibited word.

A sequence that is infinite in both directions is written - - - —a,_,—a,
—+a, ,,—*-- and called an infinite path. Every configuration x = (x,}
corresponds in a one-to-one relationship to the infinite path --- —
(X oy .. X, 4 p)— - inthe graph G. A configuration is consistent if its

corresponding path has only unprohibited edges. Cyelic vertices and edges
of & are those through which an infimte path, corresponding to a periodic
consistent configuration, can pass. It is equivalent to define a vertex or an
edge as cyclic if a cycle of & which contains only unprohibited edges passes
through it. Define two cyclic vertices to be equivalent if both of them
belong to a cycle containing only unprohibited edges, and call the resulting
equivalence classes pools. The cyclic edges connecting the edges of a pool
will also be considered to belong to this pool.

I, The choice of the function g(-). The function g(-} must be defined
on the set X or, equivalently, on the set of the edges of . We look for
g(-) in the form

q{xﬂ R xn} = P{"TU G ¥ ”-} . ,rr[n.-". .. """f-'].-

The functions p(-) and r(-), which we shall choose, depend only on (E, X');
and p(-) assumes only positive values, whereas r(-) assumes only integral
non-negative values. The number r(x,, ..., ) is called the degree of the
edge (x5, ..., xp). The degree of a path is the sum of the degrees of iis
edges, counted as many times as they are included in the path. We also
assign lo every vertex g of G the degree r(a), equal to the minimum of the
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degrees of the paths starting on cyclic vertices and terminating at a. The
parameter 7 > () depends only on (E£.X) and e, is positive when ¢ > 0, and
approaches 0 when ¢ does, The precise dependence of ¢ on ¢ will be
indicated later.

Assign to our function g(-) a square non-negative matrix (J_, whose rows
and columns are indexed by the elements of X,;’. The element of Q. at the
intersection of the ath row and bth column is gla— b) if the edge a — b is
in G, and 0 otherwise. Clearly, Q. is irreducible for v > 0. Therefore, by
Perron’s theorem, (), has a positive eigenvalue of maximal absolute value,
denoted by A . We denote the corresponding eigenvector, which we normal-
ize so that its components add to 1, by ¢".

MNow we shall require certain conditions to hold for pl-)and #(-), and
then show that we can choose p(-) and r(-) so that they satisfy these
conditions,

1. r(-) is zero on all cyclic edges and integral positive on all noneyelic
edges.

This implies that if 7 =0, then g(-) is zero on all the noncyclic edges,
and 0, = Q. _, factors into the submatrices corresponding to the poals. To
every peol B there corresponds an irreducible non-negative matrix Q.
Denote the corresponding maximal eigenvalue by A, and the corresponding
eigenvector, normalized so that its components add to 1, by o®. It is clear
that as we vary the values of p(-) over all positive numbers on the edges of
B. we can make Ay assume any given positive value. All that we ask of p(-)
on the cyclic edges is that A, be the same for all pools. On noncyclic edges
we merely require p(-) to be positive. Without striving for generality, we
impose the following two conditions on FIRY

2. The values of p(-) on all cyclic edges are positive and such that all A,
are equal to 1,

3. The values of p(-) on all noncyclic edges are equal to one.

We also require the following statements to hold for the function r(-)
and positive integers R:

4. If the first and the last vertices of a path are cyclic, then the degree
of the path is either 0 or at least R.

5. Construct the graph y whose vertices are in one-to-one correspon-
dence with the pools and are denoted by the same symbols. We
construct an edge from a vertex B, to a vertex B, of y if the graph
contains a path of degree R going from the pool B, to the pool B,.
For any two vertices B, and B,, a path from B, to B, exists in vy,

Let us prove that we can choose r(-) and R so that conditions 4 and 5
hold. For this purpose we first prove that G contains a Hamiltonian cycle,
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i.e. a cycle containing all the vertices of , once each. It follows from the
corollary to Theorem 2 of Chapter 10 in [1] that G contains a factor, ie., a
system of cycles such that every vertex has exactly one cycle passing
through it just once. If more than one such cycle exists, their number can
easily be decreased by merging two suitable cycles into one.

Let us choose a Hamiltonian cycle in G and cut it into pieces at all cyclic
vertices, Every piece is a path containing at least one edge, and every piece
has only its first and last vertices cyclic. If a piece contains a cyclic edge,
then the piece consists entirely of this edge. Otherwise all the edges of the
piece are noncyclic, and we assign them integral positive degrees such that
their sum—the degree of the piece—is &, Thus, we chose pi-) ri-) and R
s0 that all five of our conditions hold. We shall use only these conditions.

111, Estimates. In the next part of the proof we use the following two
conventions.

(a) Distinct positive entities depending only on the system (£, X), the
functions pi-)and r(-), and the number B are called constants and
denoted by “const.”

{b) 7 is assumed to be positive and less than a sufficiently small
constant,

Lemma 1. A < 1+ const- 7%

Proof. It follows from formula (40} of [4] that if A is the largest positive
eigenvalue of an irreducible non-negative matrix M and v is a positive
vector of the appropriate dimension, then

{”t}

L

A nmx

To make use of this formula we construct the vector ¢ by the following
method. Identify the restriction v, of © on a pool B with the eigenvector o ¥
Now let @ be a noncyclic vertex. Let [T, denote the collection of all paths
of degree r(a) which terminate on a, start at a nuncycliu vertex b, and
contain only noncyclic edges. Denote by I, the union of IT,, over all
cyclic b. Clearly, TT, is always finite and nonempty. We write a = b if I1,,
is nonempty. Set

i'::I'i' = {2']":"'[”"' E i"'.\.Il-'l. |.I..I-I'J.II-'|-

[
This defines the vector v. Let us compare the components of ¢ and O v

1. If a is noncyclic, then ( @,¢), < ©,. In fact, { @,v), is a polynomial
in 7 whose term of lowest degree has degree r(a) and is equal to Zp, - gih
—+a), where & runs over all possible penultimate vertices of the paths
belonging to II,. We can transform this expression using the inequality
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rih) < rla)—1:
zﬁ:v,,- g(h—a)

CT“”'EE'{M' Z vy |, < 77 - 279 I'E 2 o [Tl
- bRkeh h b:h<b

<T@ S o= g0,
and the inequality follows.
2. It is easy to prove that if a is cyclic, then
(Q,r), < v, +const- 7%,
which implies Lemma 1.
Lemma 2. For all vertices a,

const - 7 < ¢] < const - 71,

Proof

1. The upper bound. This is evident when a is cyclic. Let a be
noncyclic. Consider the inequality

ﬂ‘: } ( Q”'ﬂuil‘l_]u d

which is obvious since A, = 1. The right-hand side equals the sum, over all
paths of length r(a) which terminate at a, of the values of g(-) on the edges
of the path multiplied by vg, where b is the starting point of the path. The
degree of each of these paths is at least r(a). Therefore ¢ is bounded above
by a polynomial in v whose term of lowest degree has degree r(a); the
upper bound follows.

2. The lower bound. We first consider cyclic vertices. In this case it

suffices 1o show that
vy > const - vy

for all eyelic vertices a and all vertices b, The inequality is obvious when
both a and & belong to the same pool. We now prove it when a and b
belong to different pools. Since our function r(-) satisfies condition 5, the
inequality is implied by the following proposition. Suppose that there exists
a path of degree R from pool B to pool 4. Then there exist two vertices
b€ B, a € A such that ¢] > const - ¢]. Let us prove this statement. Write
N =|X,|" — 1. Apply the matrix Q. to the vector v". The matrix Q. acts
on the components of (¢7), in the pool 4. It follows from the formula at
the beginning of the proof of Lemma | and the fact that A, = 1 that at least
one component will not decrease in the course of this action. Let this be the
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ath component. Thus,
{ Q,;‘,"'vf]” =0, .
Subtract this inequality from the following equation:
( 0" }‘r =AM

The difference of the left-hand sides is the merease of the ath component
resulting from 7's not being zero. We choose N large enough so that there
exists a path of length & and degree R which terminates at @ and starts at a
vertex & € B. Then

|:: Q:ttlr::lu_ { Q‘;’Itt.r}.-:} |r',|-:|".I ) ?R ' U; L]
where p, = min{ 1, min p{-)}. Hence,
l:‘:-{}g_r'\l == ]} = FL'-'\I : 'TR . I_‘:;.

This and Lemma 1 imply our claim.

Now from the upper bound for noncyclic vertices one can easily prove
that v > const - ¢} also holds when a is cyclic and b is not. Then, once the
estimate from below for cyclic vertices is proved, it can also be proved for
noneyelic vertices.

Lemma 3. const- A" < Z < const- A",

Proof. The upper bound is obvious. Let us establish the lower bound. If
| V| < const-(t®)"', then the lower bound is also obvious, since in that
case A" < const by Lemma 1, while Z is no less than its summand
corresponding to the configuration v and equal to 1.

Let ¥=[0:N]. Then Z is equal to the component with the index
A Vo p) of the vector Q¥ Py, where v has the component
with the index (y_p....,»_ ;) equal to | and all other components equal
to zero. We use this fact in the case when N = N - (%), where Nyis a
constant 1o be chosen in the course of the proof. In this case the lower
bound is obtained as follows:

Suppose that the vector ¢ has one component v, = 1, where a is a cyclic
vertex, and all other components zero. Then there exists a constant N, such
that if N = N, - (=®)7", then the following inequality holds:

0"c > const- v,

Let us prove this claim. Let |4| be the number of vertices in the pool 4
which contains a. Then

{ s ::L = const - o

Suppose that a path of length ! and degree R exists which leads from the
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pool 4 to the vertex b of another pool B. Then
("), > const - ¥;
hence,
(@Y *18g) > comst- +7- 0”.
Induction on positive integral & vields
(@ MRy > const- k- v" - 0.

Setting k = [(®) '] we obtain ( Q"c), = const: v B for N = const - (%)L,
After const - (7)™ additional steps, we will have the components bounded
below by a constant in the third pool, to which a path of degree R leads out
of B; elc. By condition 5 we will reach every pool in this fashion. Therefore,
for C = const large enough, in C - (%)~ steps we will obtain a vector all of
whose cyclic components are no less than a constant. After a constant
number of additional steps we find that the value of every noncyclic
component a is not less than const- ™", and this, by Lemma 2, is
sufficient.

Now let us prove Proposition 4. From the sum for which = stands,
choose the terms corresponding to those configurations x,. which have
prohibited words on & fixed segments of length D + 1. The sum of such
terms is easily estimated from above hy

(const - 1'}*- Mt'l.

We divide this expression by the estimate for = from Lemma 3 and obtain
the required estimate for + as ¢ times a sufficiently small constant.

The proof of Proposition 5 is similar to the proof of Theorem 1 in [9]
and we omit it

Proof of Proposition 6. The first five lemmas do not require the hypoth-
esis of Proposition 6.

Lemma 1. 4 set containing a guarantor is alse a guarantor.
Lemma 2. Every guarantor contains a finite guarantor.

Lemma 3. Let A’ be a subset of guarantor A. Suppose every element a of A’
is in some correspondence with the gpuarantor B,. Then the set

(Av4yu | (a+ B,)

acE A

is also a guarantor.

The proofs of the first three lemmas are obvious.

A nonemply intersection of two distinet closed half-planes, with 0 not
included. is called a angle. An r-section of an angle « is any bounded subset
a C a which satisfies the following condition: if £y, ¢ . vy, . . . i5 & sequence
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of points with vy =0 such that all its other points belong to a‘e and
ltyy) — | = rfor all i, then {¢,} is bounded.

Lemma 4. If an angle o is a guarantor, then there exisis a mumber rin) >0
such that any ria)-section of a is also a guarantor.

Proof. Let the angle & be a guarantor, By Lemma 2 there exists a finite
guarantor A C «. Set #{«) equal to the maximal distance from the points of
A 1o 0. Let o be an r(a)-section of a. Let us prove that o is a guarantor.
Denote by p the set of points which can belong to sequences g v, 05, . . . .
Wuh vy =10, all the other terms belong to ate and |, | — v = r(a) for all

. From what was said above, p is bounded: hence, the collection of the
E[emenls of E whose supports intersect p is also bounded. Suppose that a
configuration x belongs to all such elements of E and that x, # y,. Let us
find a point ¢ € ¢ such that x, # y,.

We construct points v, inductively until the point to be defined as v has
been constructed. Set v, = 0. Assume that we have constructed a point
v, € p for which x_ = y_. Since 4 is a guarantor and since x belongs to all
the elements of E wh:m, supports intersect p, we can find a pointa € ¢, +
A such that x, # y,. If a € p, then take v, , = a. If a does not belong to p,
then we stop the construction and take v = a. Evidently, in the latter case,
a=uv < a, as required. The construction must terminate by the definition
of a section.

Lemma 5. Let the angles o and f be guarantors and subsets of another
angle; also assume that « 0\ B is nonempty. Then any angle which properly
containg o 1 B is a guarantor,

Proof. Since y\(a N ) is nonempty, it intersects either a or B; let it
intersect a. Denote by o the intersection of o with the annulus centered at 0
with outer radius R + r(a) and inner radius R, where R is chosen suffi-
ciently large. By Lemma 4, o is a guarantor. To every point v € o'y we
assign a set B, by the following rule: B, is the intersection of # with y — ¢
and a disk with center at 0 and sufficiently large radius p. It is easy to see
that we can first choose R sufficiently large and then p sufficiently large so
that B, is an r( f)-section of £ and hence is a guarantor by Lemma 4.
Then, by Lemma 3. the set
(enyyu LJ (e+ B
cEahy

15 a guarantor; therefore, the angle y that contains it is also a guarantor.

We call an arc & C £ coguarant if the intersection of all open half-planes
which are opposite a point of a is a guarantor. We can restate Lemma 5 in
the following way,

Lemma 5'. If two coguarant arcs intersect, and their union is not farger than
half the circle, then any open arc which is properly contained in their union ix
also coguarant.



88 A. L. Toom

From now we assume the hypothesis of Proposition 6. The following
lemma is stated in two equivalent formulations.

Lemma 6. There exist two angles o and . which are guarantors and subsets
of another angle, such that the intersection of o and B is empty,

Lemma 6'. There exist two coguarant arcs whose union is an arc larger than
half the circle.

It suffices to prove Lemma 6'. By Lemma 2 any coguarant direction
belongs to at least one coguarant arc; hence, the union of all coguarant arcs
contains a closed half-circle. It follows by a well-known lemma on finite
coverings that there exists a finite collection of coguarant arcs whose union
contains a closed half-circle. If there are two of these arcs, then our Lemma
is proved. Let the number of such arcs be M > 2. We now prove the
following statement by induction on the parameter m, decreasing from M
to 2: *There exist m coguarant arcs whose union is an arc larger than half
the circle £2.” The basis of our induction for m = M is the statement proved
above, and the inductive step reduces to Lemma 5.

We add an equivalent restatement of Lemmas 6 and 6'.

Lemma 6. In R there exist oblique coordinates st with the origin at 0,
and finite guarantors A and B, such that s <0, ¢ = 0 at all points of A and
s =0, ¢ =0 ar all poimts of B,

Lemma 6" is the only reason for proving the previous lemmas. We now
fix the coordinates 5 and 1 and the sets 4 and B for which Lemma 6" holds.
Quantities which are uniquely defined by this convention are called con-
stants.

To every point v € Z* we assign the following set:

== e ; =y =y 3
D={xeX:x,#=y.a0d (X, 4= Fora O Xonpg=Vers)}

We assign to every finite set ¥ C Z° the set D, which is the intersection
of the sets D, over all ¢ € V. The following lemma is the only one which
uses the periodicity of y.

Lemma 7. There exists a finite collection {C,, ..., C,} C E such that for
any v € Z7 the following intersection is empty:

DI: n TJECI:I Mies 0l ?—I'{Cn'l?} =g"

The proof follows easily from the fact that 4 and B are guarantors.

Besides our given system (£, X), we construct the system (£, X). To
obtain E” we adjoin to E theset "= C, 1 -+ - N C,, and all its translates,
where C,, ..., C,, are the sets described in Lemma 7. By Proposition 1 the
systems (E.X) and (£°, X) have identical sets of siable configurations;
hence, it suffices to establish the stability of y in (E",X). The system
(E',X) is convenient because if p € M,, then u(D,) < £"! for any finite
V ez
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We now prove Proposition 6 by an argument similar to the proof of
nonergodicity of Stavskaya’s problem in [7]. Our s axis iz analogous to the
line on which the automata in [7] are positioned, our ¢ axis corresponds to
the time axis with the reversed sign, our configuration y corresponds to the
state “all automata are 0 all the time,” and the relation x & D_ is analogous
to the relation “spontaneous excitation in the realization of x oceurs at the
point ©. In order to obtain an upper bound for the measure of Ny v) we
cover it by a countable system of the sets D, for certain special ¥ which we
now construct.

By a (piecewise linear) ctrve we shall mean a finite sequence P
={P..... P whose terms will be called knots. Every knot is of the
form P, = (g,; I1,), where v, €27, II, € {0; 1}. We say that the kth knot
P, = (v.;11,) is located at the point v, and has the label 11,. We call the
knot P, = (v; [1,) labelled if 11, = 1. We denote by M(P) the set of points
at which the labelled knots P are located. We call the vector difference
Up 4 — €y an edge of our curve, 1 < k< n— L

Call a curve P= (P, ..., P ) admissible if it satisfies the following five
conditions:

1. The first and the last knots are at (.

2. The curve contains at least one labelled knot.

3. All the labelled knots of the curve are at distinct points.

4. Each edge v, — vy, where 1 < k< n— 1, belongs to 4 U (B -

AyU (- B).

Before we state the requirements, observe that the sets 4, 8 — 4, and
— B are disjoint. This allows us to assign to every edge v,,, — ¢, of an
admissible curve a type 4, defined in the following way:

1 if o, — 1 EA;
d,=1{2 if o, -, E8—4;
3 if oy, — 0, € —B.
Mow we state the last requirement for an admissible curve:

5 If(d,_,=3and d, = D or(d,_,+ 3 and d, # 1), then the knot P, is
labelled.

Lemma 8. The set Ny y) is covered by the sets D, ., where P runs over all
admissible curves,

Proof. Take an arbitrary configuration x € Ny y). Corresponding (o it,
we construct an admissible curve P(x) such that x € Dy p, . For conve-
nience we assign to every curve P the set of points

§(Py={vEM(P):x&D,).
Clearly, x € Dy p, if and only if §(P) is empty.



90 A L. Toom

We construct a sequence of curves Py(x), P,(x), ... . At each step, after
constructing the next P,(x) we prove that P,(x) is admissible and that the
knots of £, (x) are located only at the points v where x, # y,. Then, using
this fact, we transform P (x) into the next curve P, _,(x). After a finite
number of such steps we obtain the curve to be defined as P(x). We omit
the proofs, since they are obvious, and the inessential details of the
construction,

First we describe an auxiliary operation called “discarding a loop.”
Suppose that a curve P = (P, ..., P ) does not satisfy requirement 3 for
an admissible curve. Choose indices k& and ! such that | < k < [ < »n and
v, =1, [I, =1I,= 1. Discard from our curve the terms with indices i,
where k < i < {, i.e, form the curve P' = (P, ..., P}, ;) in which

aral B if sk
T P, W 4Pk

Clearly, starting from a curve which satisfies requirements 1, 2, 4, and 5
of the admissible curve, after discarding a loop sufficiently many times we
obtain an admissible curve,

We now describe the inductive construction. As the first step we take the
curve Py(x) which consists of one labelled knot positioned at 0.

Now assume that we have the curve P(x)=(P,,....P). If xE
D s p i 1y - then the construction terminates and P, (x) is defined to be P(x).
Suppose that x & Dy, p 0. Le, 8(Py(x)) is nonempty. Take any point
whtt.h is an element of §(P,(x)). Let the ]dhL"LL{ knot at this point be

P, = (v, I1)). By the inductive hypothesis x, . Then x, , 4 # v, ., and
Xy sB 7 Vo 4po 1€, there exist points w, € 1, + A andnﬂ € v, + B such that
X, #V,, and x, #y, . Form the sequence P'= (P, ..., P, ;) by the

Sfollowing rule:

P if j<i

{00 if j=1i

v ) if j=i+1;

T wa ) i =i
(v:0) if  Jei+3;

P_, if j=i+3

i
Clearly the curve P’ satisfies requirements 1, 2, 4, and 5 of an admissible
curve. After discarding a loop sufficiently many times we obtain an
admissible curve which we define to be P, (x).
Let us prove that the inductive process of curve transformations will
necessarily terminate, i.e., that the set §(P,(x)) will be empty at some step.
We assign the following parameter to every curve P = P (x):

S(Py= I 3w,

v, E8(F)
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This parameter will decrease strictly at each step of our construction. On
the other hand. it can assume only a finite number of distinet values, since
all the labelled knots of P (x) are located at distinct elements of the finite
set {o:x,# .}

Thus, p(Ny( 1) < Zu(Dyy py ) where the sum is taken over all admissible
curves P. It remains to estimate the sum. Denote by |P| the number of
terms of a curve (|P|=n, il P=(P,, ..., )

Lemma9. There exists a constant F > 0 such that |[M(P)| = F-|P| for any
admissible curve P,

Proof. It follows from Lemma 6" that 5 < 0 at all the points of 4 U
{— B). Denote by R = 0 the maximum of s over all points of 8 — 4. Set
F=1p(R+r). Since the first and last knots of the curve coincide, the
number of edges of type 2 is at least (|#| — 1)r /(R + r). Next, it is easy to
see that there exists at least one labelled knot between any two edges of the
curve of type 2. Hence, the number of labelled knots is at least [(|2])-
r /(R + r)] — 1. This expression is not less than F|P| for |P| = 3R+ r)/r.

If |P| < 3(R + r)/r, then, since by requirement 2 the curve contains at
least one labelled knot, the number of labelled knots is still no less than
F-|P|

Now, using Lemma 9, we can obtain an upper bound for the sum of
(D py) over all admissible P for p € M,. Observe that the number of
admissible curves with n knots does not exceed H", where H is a constant.
Therefore,

kol
2 B Doy py) ’QEEHHPH s;z*-""ll“l o E Y. g P

n=1

where the first three sums are taken over all admissible P.

This series converges for sufficiently small £ = 0, and its sum approaches
0 as e—0. This fact and Lemma 8 vyicld an upper bound for PN )
which guarantees the stability of y.
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