NONERGODIC MULTIDIMENSIONAL SYSTEMS
oF AUTOMATA

A. L. Toom UDC 62-507

Identical stochastic automata having a finite number of states are positioned at all points of

a d-dimensional integer-valued space. At any instant of discrete time each automaton can

go to any one of its states with never-vanishing probabilities depending on its own states and
those of a finite number of its "neighbors® at the preceding instant. A system of this type s
synthesized which is capable of "remembering” its initial state for an infinitely long time ’
when the system commences operation in one of n distinct states of the type "all automata

are in state k," where 1 = k = n.

§1. Introduction
—

We propose to investigate a Markov chaln having a continuum of states and describing the behavior
of an infinite system of stochastic automata. All automata are identical. They are presumed to be situ-
ated at the nodes of the d-dimensional integer-valued lattice Zd, where they are enumerated by index vec-
tors i € Z° (i is any d-dimensional integer-valued vector). The state of each automaton assumes a finite
get of values M, = {0, 1,..., m}. The time t is discrete. The state Jr.{' of the i-th automaton at time t
depends probabilistically on tm_- states of r designated automata, known as its "neighbors,” at time t-1,
l.e., X = b with probability ¢®(a,,...,ay) if

I-I::.-'m.“ . .zf::r=arw']flﬁrﬂﬂu. e bEJHrnr E{Fl-i'
; &

The set of vectors Vy,..., Vp and the function @P is the same for all automata. The set of indices
1+Vis..., 1 + Vy is denoted by U(i). If the states of all automata at time t—1 are given, the states of the
gutomata at time t are independent stochastic variables.

The foregoing description of the operation of automata determines a linear operator Py in measure

gpace on the set Xy = M%, where the o-algebra is generated by cylindrical sets. Let o € Xy, i.e.,
e=(aj), aj EM,, i€ z9. We denote by 8, the measure on Xm concentrated ata. The operator Py

maps fi,; into a measure 8,P , in which all automaton states x;, i € z9 are independent and x; = b with prob-
ability 'ﬂb{ﬂi+V1' -+.»@j+y.). The outcome of an application of P, to any measure p is defined as

pP,{:_::,—b. for all ~ iGl}=
= Z plzizy=a; foran EEUUHHtpE’{mn.n..anr,]'f (1)
{ayHET (1) 1Bl

where x = {x;), x € Xy and UI) = U U).
il

We refer to operators P, of the type described above as operators of type (1). A measure u is said
to be invariant for a given operator Py ifp =puPyp. An operator Py is called ergedic if it has only one, up
o @ multiplier, invariant measure (there is always at least one); otherwise it is called nonergodic.

The fundamental result of the article is proof of the nonergodicity of a certain class of operators Py
of the given type and the construction for any positive integer n of operators Py having at least n distinct
e
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variant measures py,..., py. Here n can be any positive integer compatible with dimensions d = 2 or
more, but the number m + 1 of automaton states must be made greater than or equal to n.

Nonergodic operators of the type described above or analogous thereto have been constructed in
several paphers [1-6]. Im [1-5], however, the authors rely heavily on the fact that certain values of the
functions ¢~ are equal to zero, and nonergodicity is associated with the existence of "degenerate” invariam
measures equal to zero on certain cylindrical sets. Dobrushin [6] has demonstrated a technique for the
transformation of Ising models into Markov chains of a form analogous to that considered here, but only
for continuous time t. A phase transition in the Ising models guarantees nonergodicity of the chains in this
situation,.

In our work the functions q:h{al. ..., ar) are positive for allay,..., ar, b, so that the values of the
invariant measures on all cylindrical sets are also positive. Moreover, the conditions imposed on
:,ub:' dy, ..., a8y} for the proof of the fundamental theorem constitute inequalities and are therefore satis-
fied by an entire domain in the space of sets of values of qﬂb{al, R

The operators P, constructed below depend on a parameter g, 0 = &€ = 1, and their nonergodicity is
proved only for sufficiently small values of e. For e = 0 the operator Py becomes deterministic, i.e., the
functions ¢ assume only the values 0 or 1. For e = 0 the invariant measures p;, ..., up 0 Over to mea-
sure &y,..., iy concentrated in states of the type "all xj are equal to k.”

Every operator P, discussed below is the superposition of an operator Py and an operator Sy (Pgis
applied to the measure first, and then S,). Here Pfis a deterministic operator, 1.e., Pf maps measure
8q into g+, where the state @’ = (a) is the following function of the state @ = (aj), i € 79,

& =[(Givwey - o oy Bigwr)- . -

We refer to operators Py of the type just described as operators of type (2). Here f is a deterministic

function of r arguments f: Mrm — M. and is the same for alli € zd,

The operators S, is described by a stochastic matrix of order m + 1:a = {ay ;}, 1 =k, I =m +1.
Broadly, its action may be summed up as taking every automaton found in a state k (1 = k = m + 1) into
state [ with probability «y ; independently of all other automata. In precise terms, the operator Sg
<3PS every measure b, into a measure in which all x; are independent and xj = b with probability aﬂ’i.b‘

It is easily verified that the product P, = PfS, is an operator of type (1), where
L T 8 |

We denote by f{e) the matrix of order m + 1 formed by elements of the type
e/m if k¥,
= 1—e I k=l

where 0 =k, I =m, 0=g=1. As e —0 the matrix f(e) — E and the operator Sg(g) tends to the identity
operator. Following iz our fundamental result.

THEOREM. For any positive integer n it is possible to construct an operator Py such that for suf-
ficiently small (but positive) values of e the operator P, = PfSg(e) has at least n distinct invariant mea-
sures,

The fundamental lemma proved in §2 below is central to the proof of the theorem. In §3 we construc!
the operator Py and complete the proof of the theorem. In all the proofs the matrix g(g) can be replaced
by any matrix « in which a ] < &/m, as long as k =1,

What we actually do in §3 is to construct an operator Py having the property designated by the for-
mula

lim max sup & (PSye) " (z:z%k) =0, @
LEL D T Ll N
Relation (3) implies that for sufficiently small values of & the measures §j are "stable” in the gensé
that they change very little after any number of applications of the operator P, = PfSg(g). Hence, apply~
ing the fixed-point theorem, we readily infer the existence of invariant measures pg, ..., pmy that tend
w lytody..., fimas € =0 and are therefore distinct for sufficiently small & > 0.
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§j2. The Fundamental Lemma
e

We limit the discussion of this section to the case m =1, i.e., to automata having two states: 0 and
1. Let the operator Sgo,) be given by the following matrix B"e) of order two:

Pra=i—e, Pos=e, Pre=0, Pra=1.

Broadly, the action of Sgo(e) may be summed up as leaving all automata found in the state 1 in that
gtate and taking all automata found in the state 0, each independently of the other, into the state 1 with
Prnbabllltles equal to &.

LEMMA. Let an operator Py of type (2) be specified for the case m = 1 by the set of vectors U(0)
s {Viseens VrI- and the function f{ay,..., @y}, which is Boolean in the given case. Let a real number ¢
gnd a8 nondegenerate linear functional L(l) on z9 exist such that if

[(zv,=0 “foranl V,EU(0), mchthat L(V.)=c),or g
(2v,=0 wforall V,EU(0), - suchthat . L(V,)>c)], e

then ﬂ““iﬁ! I xgr.'! =0, Forallt=0,1,2,... andallié Zd there exists an upper bound of the form
8ePy{z : m=1}=a(e), (3)
where the function o(e) is defined for 0 = € < g4 and 'l‘l_l'::'lcrie} = 0.
Here Py = PfSgo(e), and &, is a measure concentrated in the "all-zeros" state.

Proof of the Lemma. Together with the function f we consider a function f' such that to have

[l 3 xyr]' = 0 condition (4) is not only sufficient, but necessary as well. Clearly, ' = f (for any set
of \ra][uea of the arguments). Consequently, Pg > Py in the sense of Mityushin [4], and it suffices to prove
jnequality (3) for Py = PfSgo(g). Clearly, f'(x,, ,..., X, ) can be represented in the form
flve....ze )= V =z ) V zv)
EL{¥, e LV ye (6)
- "'g"' ::f‘zrl.

[RETLNT - E =]
Wwe denote
c¢’= min L(VF,)>c.
DLV ye

We rewrite (6), using the ¢' just defined and enumerating all pair products in (6) in sequence by oumbers
from 1 to q, q being equal to the product of the number of values of k, where L{Vy) = ¢, by the number of
values of I, where L(V]) >¢:

f{:r...”.tr,}- 1'l::l" Tw vy, (7

Livi) = ¢, L(Vg = ¢') for allk, 1 = k =q. Obviously, the list of vectors Vj,..., Vg consists of the vec-
tors Vi for which L(Vk) = c with repetitions, and the list of vectors Vy,..., Vg consists of the vectors Vj
for which L({V]) = ¢" with repetitions.

We represent the operator Sﬁg{E} as follows. We introduce stochastic variables ¥y, which are inde-

pendent of one another and are equal to 0 with probability 1—e and to 1 with probability e. Then the mea-
sure 8,5g0(¢) is induced by the distribution of y; under the map

zi=a\/ 1, €L,

At the initial time t = —T (T being a positive integer) let the measure §,-T be given. Let the opera-
lor per then be applied to it repeatedly. We denote by -y[' the variables vy participating in an application of
Pyrthat maps the measure at time t—1 into the measure at time t. Of course, all the -y{' are mutually
lndependent. Clearl'i:. the state x] of the automaton x, at time t = 0 is a deterministic function of a finite
mmber of TE and x; *. We denote that function by F:

#nlnpr{{'!q'. Iilﬂ—ﬂt, —T'-'-.'t"‘:o}, {J:.:'_r, |f|ﬁﬂﬂ},
“here lil is the sum of the moduli of the components i € Z4, R = max |Vil. At T = 0 the function FT goes
1Sksr .
®rer to Fy, which is equal to
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i =Fy(2") ==
For T = 1 the expression for F is obtained by substitution of the expressions

RNV o COC A e |
=T+q

for all xj contained in the expression for Fy_;. It is obvious that for all T the function F is monotone
Boolean. It is therefore representable (in several ways) as the disjunction of conjunction-terms of its
arguments. We define one such representation

Fe= Y/ s (1. wheeet=—T, o z,77)
ey (iiEd =

inductively on T. Here G is the set of pairs (i, t) enumerating those 1«;‘ or xt'T oceurring in the glven
term, and Hr is the set of sets G corresponding to all terms of the disjunction.

Let us suppose that an expression of the form (8) has already been obtained for Fr.;. To obtain an.
=T+ N
expression of the form (8) for FT we need to replace every xj in the expression (8) for Fr-, by

T=-THV ) Iarv;ﬁ'r:::
i,
and develop the parentheses. This defines an expression of the form (8) inductively (we do not know
whether it is a disjunctive normal form).

Definition. A cycle @ is a combination formed by a finite sequence of pairs of the form (i, t) € Zdﬂ
{some of the pairs can be identical) and a set Gg containing certain pairs entering into that sequence:

O=({(in &), 0=k=S5.—1}, Gq),
where the following conditions are satisfied:
a) (i tg) = (0, 0);
b) all pairs in Gg enter into the sequence in (9).
We define

g

(s tirn) — (i ), i Osh=S5—2,
&.-{ I:E“"'“]_“lq-u tlﬂ-l}f if |E='Sn—1;

c) for any k, 0 = k = Sg—1 the difference vector Ag has one of the alternative forms I{Vj . =1},
(V{'=Vv}, 0), or (-V{, 1), where1 = [ = q;

d) if Ak, 0 = k = SQ-1 has the form (V] =V}, 0), then the pair (i), t)) enters into the set Gg-
Remark. Suppose that the sequence involved in a cycle of the form (9) satisfies conditions a) and cl.

, We estimate the lower bound of the number of indices 0 = k = Sg—1 for which Ay has the form (v
-V}, 0). We introduce the following linear functional on Z3™: L'(i, t) = L(i) + (1/2)(c’ + e)t.

It is readily shown by calculations that L'(4y) = (1/2)(c—c') if Ay has the form (V;,~1)or (=vg. 1
We define

D= max L' (V," —-¥,",0).
LEE |

; A=0,

Clearly,

whereupon

IE L' {A)=0.

We separate the latter sum into two parts. We assign to the first sum those terms for which A has the )
form (V}'-V}, 0), 1 = I = q, and to the second sum all remaining terms. Suppose that the first sum co™
prises h terms. Then it is not greater than Dh. The second sum is not greater than (1/2)(c—c') (5@~}
Therefore, 0 = Dh + (1/2)(e—e")(Sq~h), whence
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hs ———
2D+c =

Se. {10

We now prove the following statement by induction on T. For every G € HT, where Hy is defined
mmﬁ'r ag the form (8) is defined, there is a eycle @ such that G = GQ.

For T = 0 the set HT comprises only one set G, which consists of the single pair (0, 0). For this G
choose 5g = 3 and the sequence of pairs (0, 0}, (Vf =Vy, 0), (=Vy, 1). (Instead of Vy, V{ we could have
ghosen vy, VY foranyl, 1= I =q.) Nextwe gofrom T-1to T. We have described an algorithm for the

gerlvation of the form (8) for Fr from the form (8) for Fr.;. Every term of the form for Fr is obtained
from some term of the form for Fr- in such a way that every x71 "1 is replaced either by y {Tﬂ or by

some product xi'f‘ﬁxffvf, where 1 = | = q. By the induction hypothesis the leading term in the form (8)
for FT-1 has associated with it a eycle @ of the form (9). We transform it into the cycle Q' correspond-
jog to & new term entering into the form (8) for F.
We call an index k, 0 = k = Sg-1 singular (for a given leading term and given new term derived
m.erefrcrm} if the term (i), t)) of the sequence in Q meets the following conditions: & = —T +1; the facfor
% is included in the leading term; in transition to the new term the indicated factor is replaced by a

prﬂd“"t of the form
Ii::v'lxij‘:v';; where 1=l=gq. ; {11}

The sequence involved in Q' differs from the sequence (i, tg), 0 = k = Sg—1 to the extent that after
every term (i, ty) thereof with a singular index k three new terms are inserted into the sequence in the

following order:
GtV =T), (atV", =T), (bt V5, =T), (12)

where the Index I coincides with the index I in (11}, The resulting sequence lengthened by three times the
pumber of singular indices 1s reenumerated by integers beginning with zero.

The set GqT is defined as the set of pairs (i, t) enumerating all factors of the new term. It is easily
proved that the @' so constructed satisfies conditions a) through d).

Wwe now deduce the bound (5), which is the substance of the lemma. We must find an upper bound for
the probability that xE = 1 when the "all zeros" measure §; is specified at time —T. (Obviously, for any
1E2d the probability that xf =1 is the same as for { = 0.) In other words, we must find an upper bound
for the probability that Fp({ v}, il = =Rt, =T <t = 0}, {]T, lil = RT}) =1, when all x;"Tare identically

zero, while all | are independent and equal to zero with probability 1-6 and to unity with probability #.
We denote by F&»{{Tf. lil = =Rt, =T <t = 0}) the function obtained from FT by the substitution of zeros for

all xi'T. Clearly,
Fo= VA 1 | (13)

Ol (10066
where the set HFr is obtained from HT in (8) by the deletion of all sets included therein containing at least
one pair of the form (i, =T).
We define a complex K as a nonvacubus finite set (N-tuple) of cycles
E=(Q:...,0x). (14)
We =ay that a complex K generates a Boolean function F of a finite number of variables ..__,;C if
F=% A 1 {15)
Qg qi.q]equ
Here GQI are the sets entering into the cycles @ forming K. We have proved above that the function

?-ur is representable as generated by a certain complex K of the form (14), where Q,..., Qu are the cycles
corresponding to all sets G entering into Hi}r in (13). (Since T is now fixed, we do not attach an index to
it.)

We transform the complex K into another complex K' = (Q{,..., Q}y) in such a way as to meet con-
ditions a) through d) below. We denote by Ffr the function generated by K"
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a) Fp = Fr (on all sets of values of '-"1]"
b) for each cycle Q;, 1=1=N' all terms of its member sequence are distinct;

- ) all seta G'Qi entering Into the cycles Q; » 1 = 1 = N' are not subsets, any one of any other. (I
particular, therefore, all GQE are distinct, so certainly all Q; are distinet);

d) the sequence entering into each cycle Q;, 1 = I = N' contains at least three terms.

We construct in succession complexes K, K!, K2, ..., where K = K, until we obtain a complex K2 |
that can be adopted as K'. The complexes K® are formed inductively. Suppose that the following com-
plex has already been constructed:

K“““{?.‘,.r.,gnl']. |_|'ﬁ"

If K® satisfies conditions b) and c), we can adopt it as K'. Incidentally, conditions a) and d) are
satisfled by allK®, n=0,1,2,....

Let K™ not satisfy condition b). Then in one cycle Q? of the form Q? - '[{ik- t) 0=k = SE);"'}-
GHQI} two pairs entering into the member sequence are identical: I{i{.cl L) = (i, f,), where ky <k,.

In this case we delete from the sequence in Q all pairs (i), by k <k =k, We enumerate the
remalning pairs in succession by integers l:-eginnmg with zero. We also eliminate from the set GQI
those elements (i, t) that are now included in the sequence. Clearly, we obtain as a result another cycle,
which we call EQ?}H Replacing the cycle Qfl in K? by {Qf}‘ we obtain a new complex K™,

Let K? not satisfy condition e). Then for a certain pair of cycles QI . QI entering into K" the set
GQII is a subset (possibly not a proper subset) of the set GQl - In this case the list of cycles defining the

complex K**! is obtained from the list (16) by deletion of the cycle Q!f

It is easily verified that after a finite number of such reconstructions of the complex K a complex
satisfying condltlons a) through d) is obtained, which is then taken as K'. From condition a) and the defl- .
nitlon of FT we have ‘

1

Pr{F"=1)=Pr{F: =1}
=Pr{ V A =)

taglagn’ Cheped ge
= ZPr[ A 1i=1)
o=y (LT
= sluqull
isiay

where |G| is the number of elements in G.

vl
From condition b) for the complex K' and condition d) in the definition of a cycle the number IGQI’
' oet
of elements in GQI' is not less than the number of difference vectors &y, 0=k = SQE‘T- in the Q; sequ€
of the form Wj" -‘Vi, 0), where 1 = j = q. We therefore obtain from relation (10}

%
c =c -L |

z cht¥
We separate the last sum in (17) into a sum of sums. We assign to the j-th sum those terms Ioru:'lli; 8
number SQ' of the elements in the Q; sequence is equal to j. By condition d) for the complex K

1Ger, |

sets of terms of sums for j = 3 are nonvacuous. Consequently, taking (18) into account, we obtain ‘

= = =& §

o= 0 <, 3,

IESES =3 1 i i [T L
sqi-_j 8g,=




From condition ¢) for the complex K' we know that all cycles in K' are distinct, Invoking conditions
) p), and ¢) in the definition of a cycle, we readily verify that there are at most [qui distinet eycles
:{:u\‘-‘ member sequences contain | terms. Therefore, the last expression in (19) is not greater than

- =g '
; (6g)’ ()
= (8077)" [ (1-00) o) @

This equation serves as a definition of o{e). As e —0 it tends to zero, whereupon we arrive at the
gonclusion of the lemma.

y3. Proof of the Fundamental Theorem
—

Let a positive integer n be given. It is required to construct an operator Py = PfSﬂ{EJ, having at,
jeast n distinct invariant maasures.d'-\?e set m +1 =n. We determine f. To do so we choose m + 1 linear
"ncﬁopﬂls Lk, 1=k=m+1, on Z". All that is required is that the functionals L) be nondegenerate and

{rwise nonproportional; otherwise they can be arbitrary. We define a finite set U(0) = {V,,..., Vy} so
that it has a nonvacuous intersection with each of the four quarter lattices into which z9 is divided by each
ir of hyperplanes L, =0, I; =0, 1 =k = [ =m + 1. [Itis sufficient, for example, to draw through the
ot 0 in Z° a two-dimensional rational plane on which each of the functionals Ly is not constant and to

form the set U(0) of 2({m + 1) integer-valued points belonging to that plane, one per node, at which that
plane intersects the hyperplanes L =0, 1 = k=m + 1. Then the following definition of f{xvl, s xvr‘.i is
goncontradictory:

.lf{zfll wway :v-}-k. if
Zy=k forall VEL(0), mchthat La(V.)=0 or @1
zy=k forall VEL(0), suchthar La(V;) =0,

For the case in which condition (21) is not satisfied for any k, the definition of the function is aug-
mented in any way necessary. We are required to prove that condition (3) is satisfied. We show that the
following specific condition holds, which clearly guarantees (3):

6P, (z: z#k)=a(e), (22)
where the function o(e) is defined in (20).

We fix k from the outset, 0 = k = m. We use the fundamental lemma proved in §2. For convenience

we denote by Y the space X; and let the points of Y be denoted by y = (y;), yi € {0, 1}, i € zd,

Along with the operator Py constructed above we introduce the operator Py = Pf Sgo(g), Which acts

In the measure space on Y and has the form designated in the fundamental lemma. Here the Boolean func-
ton f; of r arguments is defined by the relation
faltwir - - oy ¥w,) =0, if and only if
Pri=0 for all Vi,
such that L,(V,)=0, where 1=I=r, or (23)

y’r’:“ﬂ for all Vi..
such thar | Ly (V) >0, wherel=<i=r

d
We also define the map H: Xy — Y as H = h% , where h: My, — M, is as follows: h(k) = 0, h(a) = 1, if
e*k. If pis a measure on X, we denote by uH the measure induced on Y by u under the map H. It now
nffices to show that for any t

PS/H-HP, (24)
In the sense of Mityushin [4]; note that (22) follows from the fundamental lemma and (24).

The operator Py is clearly monotone (since f; is monotone; see [4]). We therefore prove (24) by
Isduction on the basis of the relation

P H~HP,, - : (25)
k suffices to prove that 8;P,H <6,HP, for any a € Xp,, i.e.,

8.2, Sy H—<8.HP Spin- (26)
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¢
oth measures in (26) are such that all yj in it are independent; consequently, it is sufficient to prove the
snequality only for the projections of those measures onto the 1-th coordinate:

6., Sy H(y : yy=1)=8.0P Sy (y : y=1), Le.,
(1—em=") 8P [z : 27 k) +eba U (2 : 2=k} =

<8.HP,(y: ye=1) +ebliPy(y : y.=0). en)
Clearly, each of the measures &;Pf, 6, HPf, 1s concentrated in a certain state. If condition (21) is
satisfied for aj+y,, ..., @j+v,, then both sides of {27) are equal to e. Otherwise the left-hand side is

either (1-em™) nr £, and thg right-hand side is equal to 1. In either case (27) is satisfled. This proves
the theorem.
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