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Abstract

We prove a multi-dimensional version of the law of large numbers for invariant measures
of a large class of probabilistic cellular automata, whose transition probabilities satisfy some
inequalities, which are known to assure their ergodicity. In some non-ergodic cases analogous
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A multi-dimensional law of large numbers.

Proofs of the Law of Large Numbers or LLN for interacting random processes are

non-trivial even when applied to special cases [1, 2]. Some deal with applications

[3, 4, 7]. Several theorems and propositions proved in Liggett’s well-known books

[5, 6] seem to be the most important general results in this area. Especially rel-

evant to our cause are proposition 4.18 on page 40, proposition 2.16 on page 143

and open problem 7 on page 178 of [5] and theorem B52 on page 23 of [6]. How-

ever, all the results of [5, 6] are about processes with continuous time. It would

be great to transform them into analogous discrete time results, but till now it

has not been done (unless this article is counted to this end). We are not aware of

any algorithm capable of transforming arguments pertaining to continuous time

processes with local interaction into discrete time arguments; every instance needs
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human intelligence. This article’s contribution is to prove some version of LLN

for invariant measures of a large class of probabilistic cellular automata or p.c.a.

and some non-local functions in a simple straightforward way. Some of our argu-

ments are similar to those used in [8, 9] and we shall mention these works when

appropriate.

We denote by IR the set of real numbers, by ZZ the set of integer numbers,

by ZZ + the set of non-negative integer numbers, and by ZZ ′+ the set of positive

integer numbers also known as natural numbers. By #(·) we mean cardinality.

We choose a non-empty finite set A called alphabet and a natural number d

called dimension. The space of our process is ZZ d and its configuration space is

Ω = A ZZ d

. Every configuration x ∈ Ω is determined by its components xv ∈ A

for all v ∈ ZZ d .

For any v ∈ ZZ d and any a ∈ A we call a basic cylinder with a locus {v} the

set of those configurations, which have a at the place v . We may denote this

set by {x ∈ Ω : xv = a} . Any non-empty intersection of several basic cylinders is

called a thin cylinder with a locus, which is the union of their loci. We may denote

any thin cylinder by {x ∈ Ω : xL = aL} , where L is any non-empty finite subset

of ZZ d , called the locus of this thin cylinder, xL is the restriction of x to L

and aL is an arbitrary element of AL . Elements of the algebra generated by thin

cylinders are called cylinders. A finite set L ⊂ ZZ d is called a locus of a cylinder

C if it is the minimal set with the following property: for any configuration x ∈ Ω

it is sufficient to know its restriction to L to decide, whether x belongs to C .

We denote by M the set of normalized measures on the σ -algebra generated by

cylinders. By convergence in M we mean convergence on all cylinders.

We may add and subtract elements of ZZ d as vectors. It this spirit, for any

set S ⊂ ZZ d and any vector v ∈ ZZ d we denote S + v = {w + v : w ∈ S} and

S − v = {w − v : w ∈ S} . Based on this, given any vector v ∈ ZZ d :
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• for any configuration x ∈ Ω we denote by x ⊕ v the translation of x at v ,

that is another configuration defined by the rule ∀ w ∈ ZZ d : (x⊕ v)w = xw−v ;

• for any set C ⊂ Ω we denote by C ⊕ v the translation of C at v , that is

another subset of Ω defined by the rule C ⊕ v = {x⊕ v : x ∈ C} ;

• for any real function f : Ω→ IR we denote by f ⊕ v another function from Ω

to IR defined by the rule (f ⊕ v)(x) ≡ f(x⊕ v) ;

• for any µ ∈M we denote by µ⊕ v another measure such that (µ⊕ v)(C) =

µ(C ⊕ v) for any cylinder C ; we call a measure µ ∈ M uniform if µ ⊕ v = µ

for all v .

As soon as we want to prove a law of large numbers for some measures on an

infinite-dimensional product A ZZ d

, we need first to define it because the classical

law of large numbers was stated for sequences of random variables. One way

to manage the multi-dimensionality is to take average over 0 ≤ y ≤ x , that is

0 ≤ yi ≤ xi for all i = 1, . . . , d , and then make all xi tend to ∞ , as was done in

theorem 4.9 and some other statements in chapter 1 of [5]. The definition, which

we use, is stronger and similar to that of [9].

Main definition. Suppose that we have a uniform measure µ ∈ M and a

function f : Ω → IR such that f has a mathematical expectation according

to µ . We say that a d -dimensional law of large numbers is true for µ and f

if there is a number H such that for any natural k , any k different vectors

v1, . . . , vk ∈ ZZ d and any ε > 0

µ

( ∣∣∣∣∣ 1

k

k∑
i=1

(
(f ⊕ vi)− E (f ⊕ vi)

)∣∣∣∣∣ ≥ ε

)
≤ H

k · ε2 .

Another strength of this definition is its right side, which is more explicit than

usual. Throughout this article varm and covarm mean variance and covariance

according to any measure m .

Main lemma. Suppose that we have a uniform measure µ ∈M and a function
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f : Ω→ IR such that all covarµ(f, f ⊕ v) exist and∑
v∈ ZZ d

∣∣∣covarµ(f, f ⊕ v)
∣∣∣ <∞. (1)

Then the d -dimensional law of large numbers is true for µ and f .

Proof. Let us estimate:

varµ

(
k∑
i=1

f ⊕ vi

)
=

k∑
i=1

k∑
j=1

covarµ(f ⊕ vi, f ⊕ vj) ≤

k∑
i=1

k∑
j=1

|covarµ(f ⊕ vi, f ⊕ vj)| (2)

Since all vj are different, we may estimate (2) as follows:

k∑
i=1

∞∑
j=1

|covarµ(f ⊕ vi, f ⊕ vj)| ≤ k ·
∑
v∈ ZZ d

|covarµ(f, f ⊕ v)|.

According to our assumption, this sum converges and may be denoted by H .

Thus

varµ

(
k∑
i=1

(f ⊕ vi)

)
≤ k ·H

for all natural k and all different vectors v1, . . . , vk . Now our main lemma follows

from Tchebyshev inequality.

Probabilistic cellular automata and statement of the theorem.

Any map P : M → M is called an operator. A measure µ ∈ M is called

invariant for P if Pµ = µ . Existence of at least one invariant measure has

been proved for a very large class of operators (see e.g. [11]), including all those

considered here. As usual, we call P ergodic if it has a unique invariant measure

µ such that P nν tends to µ for any initial measure ν .

Probabilistic cellular automata or p.c.a. for short, as defined here, are linear

operators P :M→M , parametrizied by a non-empty finite set N ⊂ ZZ d called
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neighborhood and non-negative numbers θ(b a) , where b ∈ A and a ∈ AN ,

subject to condition

∀ a ∈ AN :
∑
b∈A

θ(b a) = 1.

Given these parameters, the following formula (3) defines a generic p.c.a. as it

expresses the value of Pµ at an arbitrary thin cylinder as a linear combination

of values of µ at several thin cylinders:

(Pµ)(yS = bS) =
∑

aS+N ∈AS+N

µ(xS+N = aS+N)
∏
i∈S

θ(bi ai+N) (3)

for any finite set S ⊂ ZZ d and any bi ∈ A for all i ∈ S .

For every b ∈ A we denote by sure(b) the minimum of θ(b a) over all

a ∈ AN . Also we denote

unsure = 1−
∑
b∈A

sure(b).

Given a p.c.a. P , we call its memory and denote by mem(P ) this:

mem(P ) = #(N) · unsure.

It is known that any p.c.a. P with mem(P ) < 1 is ergodic. The idea of a proof

was explained e.g. in [10, section 5.2]. See also the seminal work [12].

We call a function f : Ω→ IR local if there is a finite set S ⊂ ZZ d such that the

value of f(x) is in fact determined by those components of x , which are placed

in S ; in other words, f(x) ≡ f(xS) . The minimal S with this property (which

exists and is unique for any local function) is called the locus of this function and

denoted by locus(f) . We use the Euclidean norm ‖·‖ on our discrete space ZZ d

and containing it continuoua space IRd and denote for any finite set S ⊂ ZZ d

ρ(S) = max
v∈S
‖v‖.
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Theorem. Suppose that we have a p.c.a. P with mem(P ) < 1 . Suppose also

that we have a function f : Ω→ IR , which can be represented as a series

f =
∞∑
i=1

fi, (4)

where
∞∑
i=1

id · sup |fi| <∞, (5)

every fi is local and there is a number L such that

∀ i : ρ(locus(fi)) ≤ L · i. (6)

Then P has a unique invariant measure, which we denote by inv , function f

has a mathematical expectation according to inv , and the d -dimensional law of

large numbers is true for the measure inv and function f .

Proof.

As we said before, under our conditions P is ergodic and therefore has a unique

invariant measure inv . Since inv is unique, it is uniform. From (5) f is bounded

and therefore has a mathematical expectation according to any measure on Ω .

The bulk of this article is the proof of the d -dimensional law of large numbers.

We assume that #(N) > 1 and unsure > 0 , because thus excluded special cases

are easy. Also, without loss of generality we may assume that

∀ i : ρ(locus(fi)) ≥ 1. (7)

Auxiliary statements.

Starting here we fix a certain p.c.a. P and a function f , which satisfy the

conditions of the theorem. A constant means a number, which depend only on P

and f . Since unsure is positive, mem(P ) is also positive. Using this, for any

real number X we denote

expmem(X) = (mem(P ))X .
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Proposition 1. For any p.c.a. P with mem(P ) < 1 , any cylinders C, D ⊂ Ω

and any v ∈ ZZ d

(a) |covarinv(IC , ID ⊕ v)| ≤ 1/4;

(b) if ‖v‖ ≥ 2ρ(locus(C)) + 2ρ(locus(D)) + 4ρ(N), (8)

then |covarinv(IC , ID ⊕ v)| ≤(
#(locus(C)) + #(locus(D))

)
· expmem

(
‖v‖

4ρ(N)

)
, (9)

where IC and ID are the indicator functions of C and D .

Proof of proposition 1. The item (a) follows from the fact that

covarinv(IC , ID ⊕ v) = inv(C ∩D ⊕ v)− inv(C) · inv(D ⊕ v).

The maximum of this expression is 1/4 and takes place when C = D ⊕ v and

inv(C) = 1/2 .

Let us prove the item (b). The following will be called the big space:(
A×A× {true, false}

) ZZ d· ZZ +

, (10)

Here the first and second factors are denoted by x and x′ and the third factor is

denoted by old . The variable old(v, t) is Boolean and takes values ”true” and

”false”, to which we apply the usual operations ∨ and ∧ . Thus for every point

(v, t) ∈ ZZ d · ZZ + we have

x(v, t), x′(v, t) ∈ A and old(v, t) ∈ {true, false} .

We call a point (v, t) old-fashioned if old(v, t) = true and new-fashioned oth-

erwise. Informally, an old-fashioned point still keeps some memory of the initial

condition, while state of a new-fashioned point is completely determined by the

random noise of subsequent time steps. Since mem(P ) < 1 , the old-fashioned

points die out as time t tends to ∞ .
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We shall construct a probability distribution on the big space, which we call the

big process. The big process will be induced by a certain auxiliary distribution P

of auxiliary variables with a certain auxiliary map. Let us describe the auxiliary

variables and their distribution. They include:

The initial condition denoted by x init ; it is distributed according to inv inde-

pendently from all the other auxiliary variables.

For every point (v, t) , where v ∈ ZZ d and t ∈ ZZ ′+ , we introduce the following

auxiliary variables, all of which are independent from each other and from x init .

We denote by MA the set of probability distributions on A .

• Identically distributed random variables ηa(v, t) ∈MA indexed by a ∈ AN

and distributed as follows:

P
(
ηa(v, t) = c

)
=

θ(c a)− sure(c)
unsure

for any c ∈ A.

The denominator of this fraction is not zero because we have excluded the case

unsure = 0 .

• A variable assign(v, t) , whose set of values is A ∪ {free} , where free

is an especially coined state not belonging to A . This variable is distributed as

follows: For any a ∈ A the probability that assign(v, t) = a is sure(a) ; finally,

assign(v, t) = free with the remaining probability unsure .

Now let us describe the auxiliary map. It is defined by induction in t .

Base of induction:

x(v, 0) = x init(v),

old(v, 0) = true

}
for all v ∈ ZZ d.

The t -th induction step. Suppose that x(v, t − 1) and old(v, t − 1) are

already determined as functions of the auxiliary variables for all v ∈ ZZ d . Then

we determine x(v, t) and old(v, t) for all v , proceeding in two stages.

Stage 1.

x′(v, t) = ηa(v, t), where a = x(v +N, t− 1).
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Stage 2.

• If assign(v, t) ∈ A , then we define

x(v, t) = assign(v, t) and old(v, t) = false.

• If assign(v, t) = free , then we define

x(v, t) = x′(v, t) and

old(v, t) =
∨
w∈N

old(t− 1, v + w).


Thus the auxiliary map is defined. Thereby the big distribution on the big space

(10) is defined also: it is induced by the distribution of the auxiliar variables

with the auxiliary map. We shall use the same letter P for values of the big

distribution.

For every t let us denote by P t the restriction of P to the time level t .

Notice that for any t the restriction of P t to the marginal x coincides with

inv .

Let us observe also that the marginal old of the big process does not depend on

the other marginals and in fact is an oriented site percolation model. Its vertices

are (v, t) , where v ∈ ZZ d and t ∈ ZZ + . Its edges go from any vertex (v, t) to

the vertices (v − i, t + 1) for all i ∈ N . They are always open in this direction

and always closed in the opposite direction. Every vertex with t > 0 is open

with a probability unsure and closed with the remaining probability 1−unsure

independently from other vertices. A path from (v′, t′) to (v, t) is a sequence

of alternating vertices and edges

(v0, t0)→ (v1, t1)→ · · · → (vn, tn), (11)

where arrows mean edges, passed in those directions in which they are always

open, (v0, t0) = (v′, t′) , (vn, tn) = (v, t) and every edge goes from the vertex,

which preceeds it to the vertex, which succeeds it in the sequence (11) . We call

a path open if all its vertices are open.
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Lemma 1.

(a) P
(

(v, t) is old-fashioned
)
≤ expmem(t) .

(b) For any finite set S ⊂ ZZ d

P
(
∃ v ∈ S : (v, t) is old-fashioned

)
≤ #(S) · expmem(t).

Proof. First we prove item (a). Any point (v, t) is old-fashioned if and only

if there is an open path from the level zero to (v, t) in our percolation model.

There are (#(N))t paths from the level zero to (v, t) and each of them is open

with a probability unsuret . So the probability P that at least one of them is

open does not exceed (
#(N)

)t
· unsuret = expmem(t).

Item (a) of lemma 1 is proved. Item (b) follows immediately.

Lemma 2. (Similar to lemma 1 in [8].) Suppose that we have a measure m on

some space and events

A = A1 ∪ A2 and B = B1 ∪B2,

where A1 and B1 are independent according to m . Then

|covarm(IA, IB)| ≤ m(A2) +m(B2).

Proof. First notice that for any events A, B

covarm(IA, IB) = m(A ∩B)−m(A) ·m(B). (12)

Now, on one hand

m(A1 ∩B1) ≤ m(A ∩B) =

m
(

(A1 ∪ A2) ∩ (B1 ∪B2)
)

=

m
(

(A1 ∩B1) ∪ (A1 ∩B2) ∪ (A2 ∩B)
)
≤

m(A1 ∩B1) +m(A2) +m(B2). (13)
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On the other hand

m(A1) ·m(B1) ≤ m(A) ·m(B) =

m(A1 ∪ A2) ·m(B1 ∪B2) =(
m(A1) +m(A2 \ A1)

)
·
(
m(B1) +m(B2 \B1)

)
=

m(A1) ·m(B1) +m(A1) ·m(B2 \B1) +m(A2 \ A1) ·m(B) ≤

m(A1) ·m(B1) +m(A2) +m(B2). (14)

Lemma 2 follows from (12) and estimations (13) and (14) .

Now for any cylinders C, D ⊂ Ω we define the events:

A = (C, t);

A1 = (C, t) and all the points (w, t), where

w ∈ locus(C), are new-fashioned;

A2 = A \ A1;

B = (D ⊕ v, t);
B1 = (D ⊕ v, t) and all the points (w, t), where

w ∈ locus(D) + v, are new-fashioned;

B2 = B \B1;



(15)

where t is a natural parameter, whose value will be chosen later.

Lemma 3. Let A, A1, A2, B, B1, B2 be defined by (15) . Then for any

natural t

P(A2) ≤ #(locus(C)) · expmem(t), P(B2) ≤ #(locus(D)) · expmem(t).

Proof follows from lemma 1.

Now let us choose the value of t as follows:

t =]t′[−1, where t′ =
‖v‖ − ρ(locus(C))− ρ(locus(D))

2ρ(N)
, (16)

where the denominator is not zero because we have assumed that #(N) ≥ 2 . In

other words, t is the greatest integer number, which is less than t′ . Notice that
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due to (8)

1 ≤ t′ − 1 ≤ t < t′. (17)

Lemma 4. Let A1 = C and B1 = D ⊕ v be defined by (15) and t defined by

(16) . Then A1 and B1 are independent according to P .

Proof. For every set (S, t) , where S ⊂ ZZ d , we define a set π(S, t) as follows:

π(S, t) = (S +N, t− 1).

For any set (S, t) and any k = 0, 1, 2, . . . , t we define πk(S, t) by induction:

first π0(S, t) = (S, t) , then πk+1(S, t) = π(πk(S, t)) . Finally we denote

Π(S, t) =
t⋃

k=0

πk(S, t).

Evidently, whether the event A1 takes place or not, depends only on those aux-

iliary variables, which are placed in Π(locus(C), t) ; analogously, whether the

event B1 takes place or not, depends only on those auxiliary variables, which are

placed in Π(locus(D) + v, t) . To prove that these sets do not intersect, let us

denote by S1 the set of space components of elements of Π(locus(C), t) and by

S2 the set of space components of elements of Π(locus(D) + v, t) . Then

ρ(S1) ≤ ρ(C) + t · ρ(N) and ρ(S2 − v) ≤ ρ(D) + t · ρ(N).

If S1 and S2 have a common element, then by the triangle inequality

‖v‖ ≤ ρ(locus(C)) + ρ(locus(D)) + 2tρ(N),

whence t ≥ t′ , which contradicts (17) . Lemma 4 is proved.

Now let us prove the item (b) of proposition 1. From lemma 4, the events A1

and B1 defined in (15) are independent according to P , provided t is defined

by (16) . This allows us to use lemma 2 to conclude that

|covarP(IA, IB)| ≤ P(A2) + P(B2),
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where A, B, A2 and B2 are also defined by (15) . Then, using lemma 3, we get

|covarP(IA, IB)| ≤
(

#(locus(C)) + #(locus(D))
)
· expmem(t).

Since mem(P ) < 1 and t ≥ t′ − 1 , this implies

|covarP(IA, IB)| ≤
(

#(locus(C)) + #(locus(D))
)
· expmem(t′ − 1).

Substituting here the expression (16) for t′ , we get

|covarP(IA, IB)| ≤
(

#(locus(C)) + #(locus(D))
)
·

expmem

(
‖v‖ − ρ(locus(C))− ρ(locus(D))

2ρ(N)
− 1

)
. (18)

But from (8)

‖v‖ − ρ(locus(C))− ρ(locus(D))− 2ρ(N) ≥ ‖v‖
2

.

Hence, from (18)

|covarP(IA, IB)| ≤
(

#(locus(C)) + #(locus(D))
)
· expmem

(
‖v‖

4ρ(N)

)
.

Hence follows the item (b) of proposition 1.

Example. The following example should clarify our way to prove proposition

1. Let us assume that our alphabet has only two elements 0 and 1. Let us

denote n = #(N) and let us have n vectors v1, . . . , vn ∈ ZZ d and a non-

constant function φ : An → A . This is sufficient to define a deterministic cellular

automaton, that is a map D : Ω→ Ω defined as follows:

∀ x ∈ Ω, v ∈ ZZ d : (Dx)v = φ(xv+v1, . . . , xv+vn
).

Now let us transform D into a p.c.a. by adding some random noise parametrized

by two non-negative numbers sure(0) and sure(1) , whose sum does not exceed 1.

The time step of our p.c.a. P consists of two parts, deterministic and random: first,

given configuration x at time t , for every v ∈ ZZ d the v -th component at time
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t+1 is assigned the value D(xv+v1, . . . , xv+vn
) (as in the deterministic case). Then

with probability sure(0) it is assigned the value 0, with probability sure(1) it is

assigned the value 1 and with the remaining probability unsure = 1− sure(0)−

sure(1) it keeps the value D(xv+v1, . . . , xv+vn
) . In this case mem(P ) = n·unsure

and our main condition mem(P ) < 1 is equivalent to

sure(0) + sure(1) > 1− 1

n
.

Now to continue with our argument. Let us call a real function on Ω a step

function if it takes at most two different values. For any real function we call its

span

span(f) = sup f − inf f.

Proposition 2. For any p.c.a. P with mem(P ) < 1 , any local step functions

g, h and any v ∈ ZZ d

(a) |covar(g, h⊕ v)inv| ≤
1

4
· span(g) · span(h);

(b) if ‖v‖ ≥ 2ρ(locus(g)) + 2ρ(locus(h)) + 4ρ(N), then

|covarinv(g, h⊕ v)| ≤ span(g) · span(h)×(
#(locus(g)) + #(locus(h))

)
· expmem

(
‖v‖

4ρ(N)

)
. (19)

Proof of proposition 2. Both statements (a) and (b) follow from proposition 1,

linearity of covariance in both arguments and the fact that any local step function

equals a constant plus an indicator function of some cylinder multiplied by another

constant. Proposition 2 is proved.

Lemma 5. Any local function φ : Ω→ IR can be represented as a sum of several

step functions, whose loci belong to the locus of φ , and the sum of whose spans

equals the span of φ .

Proof. Since φ is local, it takes only a finite set of different values. Let c0 < c1 <

· · · < cn be the complete list of values of φ . We may assume that φ is defined
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on a finite set D = AL and represent this set as D = D0 ∪D1 ∪ · · · ∪Dn , where

every Dk = {x ∈ D : φ(x)} = ck . Now we can represent φ as

φ = φ0 + · · ·+ φn,

where

φ0 ≡ c0 and φk(x) =

ck − ck−1 if x ∈ Dk ∪ · · · ∪Dn

0 otherwise

for all x ∈ D and k = 1, . . . , n . Evidently, all φk are step functions and the

sum of their spans equals the span of φ . Lemma 5 is proved.

Proposition 3. For any local functions g, h and for any v ∈ ZZ d

(a) |covarinv(g, h⊕ v)| ≤ 1

4
· span(g) · span(h);

(b) if ‖v‖ ≥ 2ρ(locus(g)) + 2ρ(locus(h)) + 4ρ(N),

then |covarinv(g, h⊕ v)| ≤ span(f) · span(g)×(
#(locus(g)) + #(locus(h))

)
· expmem

(
‖v‖

4ρ(N)

)
. (20)

Proof of proposition 3. The item (a) follows from the item (a) of proposition

2. To prove (b), we apply lemma 5 to represent

g = g0 + · · ·+ gm and h = h0 + · · ·+ hn,

where all gi and hj are step functions and

span(g) =
m∑
i=0

span(gi) span(h) =
n∑
j=0

span(hj).
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Then, using linearity of covariance, we represent∣∣∣covarinv(g, h⊕ v)
∣∣∣ =∣∣∣∣∣covarinv

(
m∑
i=0

gi,
n∑
j=0

hj ⊕ v

)∣∣∣∣∣ ≤
m∑
i=0

n∑
j=0

∣∣∣covarinv (gi, hj ⊕ v)∣∣∣ . (21)

Since all gi and hj are local step functions, we can apply proposition 2 to prove

that (21) does not exceed

m∑
i=0

n∑
j=0

span(gi) · span(hj)×

(
#(locus(g)) + #(locus(h))

)
· expmem

(
‖v‖

4ρ(N)

)
=

(
m∑
i=0

n∑
j=0

span(gi) · span(hj)

)
×

(
#(locus(g)) + #(locus(h))

)
· expmem

(
‖v‖

4ρ(N)

)
=

(
span(g) · span(h)

)
×

(
#(locus(g)) + #(locus(h))

)
· expmem

(
‖v‖

4ρ(N)

)
.

Proposition 3 is proved.

Proposition 4. For any local functions g, h : Ω→ IR∑
v∈ZZd

|covarinv(g, h⊕ v)| ≤ const · span(g) · span(h) ·

((
ρ(locus(g)) + ρ(locus(h)) + 1

)d
+ #(locus(g)) + #(locus(h))

)
.
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Proof of proposition 4. Let us denote

r0 = 2ρ(locus(g)) + 2ρ(locus(h)) and r1 = r0 + 4ρ(N),

define

small =
{
v ∈ ZZ d : ‖v‖ ≤ r1

}
, large = ZZ d \ small,

represent ∑
v∈ZZd

∣∣∣covarinv(g, h⊕ v)
∣∣∣ =

∑
v∈small

∣∣∣covarinv(g, h⊕ v)
∣∣∣+

∑
v∈large

∣∣∣covarinv(g, h⊕ v)
∣∣∣

and estimate each sum in turn. First we estimate the sum over v ∈ small .

Due to the definition of small , #(small) ≤ const · rd0 , whence from item (a) of

proposition 3∑
v∈small

∣∣∣covarinv(g, h⊕ v)
∣∣∣ ≤

const · span(f) · span(g) ·
(
ρ(locus(g)) + ρ(locus(h)) + 1

)d
. (22)

Now we estimate the sum over v ∈ large . Due to item (b) of proposition 3,

this sum does not exceed

span(g) · span(h) ·
(

#(locus(g)) + #(locus(h))
)
·

∑
v∈large

expmem

(
‖v‖

4ρ(N)

)
. (23)

The last sum (23) does not exceed a constant times the d -dimensional integral∫
‖v‖≥r0

expmem

(
‖v‖

4ρ(N)

)
dv.

This integral can be transformed into a constant times one-dimensional integral∫ ∞
r0

rd−1e−c·x dx, (24)
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where

c = − ln(mem(P ))

4ρ(N)
> 0.

It is easy to prove that the integral (24) does not exceed const · rd−1
0 . Therefore∑

v∈large

expmem

(
‖v‖

4ρ(N)

)
≤ const ·

(
ρ(locus(g)) + ρ(locus(h)) + 1

)d−1
.

Finally, this implies that∑
v∈large

∣∣∣covar(g, h⊕ v)inv

∣∣∣ ≤ const · span(g) · span(h) ·

(
ρ(locus(g)) + ρ(locus(h)) + 1

)d−1
·(

#(locus(g)) + #(locus(h))
)
. (25)

Summing (22) and (25) , we obtain proposition 4.

Proof of the theorem. Due to the representation (4) ,∑
v∈ZZd

∣∣∣covarinv(f, f ⊕ v)
∣∣∣ =

∑
v∈ZZd

∣∣∣∣∣covarinv(
∞∑
i=1

fi,
∞∑
j=1

fj ⊕ v)

∣∣∣∣∣ =

∑
v∈ZZd

∣∣∣∣∣
∞∑
i=1

∞∑
j=1

|covarinv(fi, fj ⊕ v)

∣∣∣∣∣ ≤
∑
v∈ZZd

∞∑
i=1

∞∑
j=1

∣∣∣covarinv(fi, fj ⊕ v)
∣∣∣ =

∞∑
i=1

∞∑
j=1

∑
v∈ZZd

∣∣∣covarinv(fi, fj ⊕ v)
∣∣∣ .
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Taking g = fi and h = fj in proposition 4 and using (7) , we get∑
v∈ZZd

|covarinv(fi, fj ⊕ v)| ≤ const · span(fi) · span(fj) ·

((
ρ(locus(fi)) + ρ(locus(fj))

)d
+ #(locus(fi)) + #(locus(fj))

)
. (26)

Due to (6) , the bracket (26) does not exceed const · (id + jd) . Therefore∑
v∈ ZZ d

∣∣∣covarinv(f, f ⊕ v)
∣∣∣ ≤ const ·

∞∑
i=1

∞∑
j=1

·span(fi) · span(fj) ·
(
id + jd

)
.

Due to (5) , this double series converges. Denoting its sum by H , we get

varinv

(
k∑
i=1

(f ⊕ vi)

)
≤ k ·H.

Hence our theorem follows from the main lemma.

To apply our theorem to a given function f we have to expand f into a series

(4) subject to conditions (5) and (6) , but it may be unclear how to do it even

when it is possible. The following sufficient condition may be helpful.

For any v ∈ ZZ d let us denote by (xv, znot(v)) the configuration, whose value

at v is xv and values at all the other elements of ZZ d form a configuration znot(v)

on ZZ d \ {v} . Given a function f : Ω→ IR , for every v ∈ ZZ d , we denote

impact(f v) = sup |f(xv, znot(v))− f(yv, znot(v))|,

where the supremum is taken over all xv, yv ∈ A and all znot(v) ∈ A ZZ d\{v} .

Proposition 5. Given a function f : Ω → IR for which there is a number K

such that

∀ v ∈ ZZ d : impact(f v) ≤ K · ‖v‖−(2d+1). (27)

Then f can be represented as a series (4) subject to conditions (5) and (6) .

Proof of proposition 5. For every S ⊂ ZZ d , we denote

impact(f S) = sup |f(xS, znot(S))− f(yS, znot(S))|,
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where the supremum is taken over all xS, yS ∈ AS and all znot(S) ∈ A ZZ d\S .

Notice that

impact(f S) ≤
∑
v∈S

impact(f v).

Let us choose an arbitrary element of A and denote it by 0. Given a config-

uration x ∈ Ω and a set S ⊂ ZZ d , we denote by x S the configuration defined

as follows:

∀ v ∈ ZZ d : x S (v) =

{
x(v) if v ∈ S,
0 if v /∈ S.

For any f : Ω→ IR and any S ⊂ ZZ d we define another function f S as follows:

∀ x ∈ Ω : f S (x) = f(x S).

Evidently

locus(f S) ⊂ S.

For any real positive r we denote

Ball(r) =
{
v ∈ ZZ d : ‖v‖ ≤ r

}
.

Then we define a sequence of functions

gi = f Ball(i) for i = 1, 2, 3, . . .

and a sequence of functions fi , where f1 = g1 and fi = gi−gi−1 for i = 2, 3, 4, . . .

Let us prove our conditions for thus defined fi . First, it follows from (27) that∑
v∈ ZZ d

impact(f v) <∞. (28)
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Further, since gn = f1 + · · ·+ fn , it is sufficient to estimate for arbitrary x ∈ Ω

|gi(x)− f(x)| =

|f Ball(i)(x)− f(x)| =

|f(x Ball(i))− f(x)| ≤

impact(f ZZd \Ball(i)) ≤∑
v∈ZZd\Ball(i)

impact(f v),

which tends to zero when i→∞ due to (28) . Thus (4) is proved.

Now let us prove (5) . First let us estimate

sup |fi| ≤ sup |gi − gi−1| =

sup
∣∣∣f Ball(i) − f Ball(i−1)

∣∣∣ =

sup
∣∣∣f(x Ball(i))− f(x Ball(i−1))

∣∣∣ ≤∑
i−1<‖v‖≤i

impact(f v). (29)

Due to (27) , every term of the sum (29) does not exceed const · i−(2d+1) . The

number of terms in the sum (29) does not exceed const · id−1 . Therefore the sum

(29) does not exceed const · i−(d+2) . Thus sup |fi| ≤ const · i−(d+2) . Therefore the

sum (5) converges.

Now notice that locus(gi) ⊂ Ball(i) , whence locus(fi) ⊂ Ball(i) for all i .

Hence follows (6) with L = 1 . Proposition 5 is proved.

I cordially thanks Pablo Ferrari and Thomas Ligget, who brought to my atten-

tion the most relevant features of [5, 6]. The referees also were very helpful. This

work was partially supported by CNPq, grant 301266/2007-7.
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