## An error correction. Letter to the editor A. D. Ramos<sup>1</sup> and A. Toom<sup>1</sup>

## Dear Editor:

In 2004 the JSP published an article [Toom] authored by one of us, which studied a certain random process with discrete time. Components were enumerated by integer numbers and every component had only two possible states denoted  $\ominus$  and  $\oplus$  and called *minus* and *plus*. Thus the configuration space was  $\{\ominus, \oplus\}^{\mathbb{Z}}$ . We denote by  $\mathcal{M}$  the set of translation-invariant normalized measures on this space and by  $\delta_{\ominus}, \ \delta_{\oplus} \in \mathcal{M}$  the measures concentrated in the configurations "all minuses" and "all pluses" respectively.

The initial condition was  $\delta_{\Theta}$ . At every step of the discrete time two operators acted. The first of them, called *flip*, was denoted Flip<sub> $\beta$ </sub>; under its action any minus turned into plus with probability  $\beta$  independently of states and fate of other components. The other operator, called *annihilation* was denoted by Ann<sub> $\alpha$ </sub>. Under its action, whenever a plus was a left neighbor of a minus, either both of them disappeared with a probability  $\alpha$ , or both remained intact with a probability  $1 - \alpha$  independently of states of all the other components. Following [Toom], we write operators on the right side of measures on which they act and denote by  $\mu_t$  the

<sup>&</sup>lt;sup>1</sup>Federal University of Pernambuco, Department of Statistics Recife, PE, 50740-540 Brazil, E-mail: toom@de.ufpe.br, toom@member.ams.org

result of t application of our two operators, first  $\operatorname{Flip}_{\beta}$ , then  $\operatorname{Ann}_{\alpha}$  to the initial condition:

$$\mu_t = \delta_{\ominus} (\mathrm{Flip}_\beta \mathrm{Ann}_\alpha)^t. \tag{1}$$

The main result of [Toom] was this:

If  $0 < \alpha < 1$ , then for all natural t the frequency of pluses in the measure  $\mu_t$  does not exceed  $300 \cdot \beta/\alpha^2$ . (2)

The purpose of this letter is to state the following:

- The article [Toom] contains an error, but all the main results of [Toom] (stated as theorems there) are still true.
- 2) Correction of this error rather improves than deteriorates the results;in fact, it allows us to substitute 250 instead of 300 in (2).
- 3) The restriction  $\alpha < 1$  assumed throughout [Toom] is unnecessary and all the theorems of [Toom] are true for the case  $\alpha = 1$  also. In fact, for this case we obtain numerical estimations (presented below) which are better than those obtained for  $\alpha < 1$ .

Now let us explain our statements. We use the same enumeration of formulas as in [Toom]. The error of [Toom] was the unnumbered affirmation (right after the formula (40)) that the quantities defined in (38) satisfy the initial condiction

$$S_1(1) = 1/q, \quad S_2(1) = S_3(1) = S_4(1) = 0,$$

while in fact

$$S_1(1) = q$$
,  $S_2(1) = S_3(1) = S_4(1) = 0$ .

We use the same values of parameters p and q as those given in (39) in [Toom]. Thus q < 1 and the correction assigns a smaller value to  $S_1(1)$ . After that, following essentially the same way as in [Toom], we obtain the better estimation.

Now let us prove that all the theorems of [Toom] are true for  $\alpha = 1$ . It is sufficient to prove that the process  $\mu_t$  is defined when  $\alpha = 1$ . Let us denote by  $\mu_{chess}$  the (unique) measure in  $\mathcal{M}$  defined by the condition

$$\mu_{chess}(\ominus, \ \oplus) = \mu_{chess}(\oplus, \ \ominus) = 1/2.$$
(3)

The operator Ann<sub>1</sub> cannot be applied to  $\mu_{chess}$ , which was the reason why [Toom] excluded the case  $\alpha = 1$ . However, Ann<sub>1</sub> can be applied to all the other measures in  $\mathcal{M}$ . Thus, to include the case  $\alpha = 1$ , it is sufficient to prove that we never have to apply Ann<sub> $\alpha$ </sub> to  $\mu_{chess}$  in the course of inductive generation of measures  $\mu_t$ . According to (1), Ann<sub> $\alpha$ </sub> is always applied after Flip<sub> $\beta$ </sub>. It is evident that

$$\mu(\oplus, \ \oplus) \ge \beta^2 \tag{4}$$

for any measure  $\mu$ , which is a result of application of operator  $\operatorname{Flip}_{\beta}$ . We may exclude the trivial case  $\beta = 0$ . Then the right side of (4) is positive, whence the left side is positive, which is incompatible with the conditions (3).

Finally, here are some estimations in the case  $\alpha = 1$ , tighter than in the case  $\alpha < 1$ :

- 1) If  $\alpha = 1$ , then for all natural t the frequency of  $\oplus$  in the measure  $\mu_t$  does not exceed  $150 \cdot \beta$ .
- 2) If  $\alpha = 1$  and  $\beta \ge 0.36$ , the measure  $\mu_t$  tends to  $\delta_{\oplus}$  when  $t \to \infty$ .

The technical details of our arguments may be found in [Ramos].

## References

- [Ramos] A. D. Ramos. Particle processes with variable length. Ph. D. thesis (in portuguese). Available at: http//www.de.ufpe.br/~toom/ensino/doutorado/alunos/index.htm
- [Toom] A. Toom, Non-ergodicity in a 1-D particle process with variable length, Journal of Statistical Physics 115 (2004) 895-924.