I.5

Markov invariant measures
and Gibbs fields

These last chapters are about some independent homogeneous operators
on X = {1,2,...,n}" having an invariant measure which can be expressed
explicity 1n one or another sense.

Chapter 16 describes the set 2%, of all operators on the graph I
having a Markov invariant measure. It proves in the case n > 2 that the
largest dimension component of #°,, consists of operators having a Ber-
noulli invariant measure (as in Example 1.3).

Chapter 17 proves that on any homogeneous graph I'(Z¢, %) there is a
family of operators having a Bernoulli invariant measure and that oper-
ators of this family are ergodic.

Chapter 18 discusses the notion of a Gibbs measure which is a gener-
alisation of a Markov measure to any graph. It presents some operators
which have Gibbs invariant measures. In particular, a non-ergodic non-
degenerate operator on V = Z7 is built in Chapter 18 (which has been
mentioned as Example 1.4b). This operator is reversible in the following
sense: its evolution measure is such that the back transition from ¢ + 1 to
t can be treated as given by the same (modulo translation) independent
operator. A necessary and sufficient condition is given for an operator to
be reversible and some results about ergodicity of reversible operators are
given too. ,

Chapter 19 1s about evolution measures as random fields. These are
always Gibbs fields. Some new kind of non-ergodicity is possible for
them. Markov systems with refusals which generalise these fields are
treated too.



Chapter 16
Operators on the graph 7]

Remember that I'y(V, %) has V = Z, U(h) = {h—1,h}. Here
Xy =12, X = X2

A homogeneous independent operator is defined by n” transitional prob-
abilities
t+1

&;q = ji(xy = = Sle&—l =px,=4q),p,q,5=1,2, ...,n.

which are subject to conditions
Y6, =1, 65, =0.
L)

Throughout this chapter all the operators are non-degenerate, that is, all
0,5 = 0. Let 2 stand for the set of non-degenerate operators of this sort
which may be seen as the inner points of the (n° — n*)-dimensional
polyhedron given by the inequalities 6,, = 0. The aim of this chapter is
to find out which operators of 22 have invariant homogeneous Markov
(and Bernoulli among them) measures. Let us have a stochastic matrix

B = (Bpq);
pog =, Ly i %:-qu =1, Bpy =0
which has a row-eigenvector
b = (B,), ‘éﬁﬁ, =1,8,20,bB =b.
This matrix defines a homogeneous Markov measure uz on X as follows:

KB(Xp=50,Xn+1=515 - - Xpsm=35m) = Jgs..ﬁ--‘.m o ﬁ» A (16.1)
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As we restricted ourselves to non-degenerate operators only, we need
only non-degenerate Markov measures which have all 3,, = 0. This
measure g is Bernoulli if and only if B has range 1, or if §,, = ..

Using the notations introduced, we can write down the conditions for a
Markov measure g to be invariant of an operator P € &

TBiBsis o Ba. 5 Bts winOf oo=felley vy 5 (162)

where the summation is over all py, p1, -- .. P € Xpand forallme 7,
515 « .5 8, € Xg. We denote

Upg = Bpatpq
and consider the n square matrices
A; = (0p4), s € X
Now (16.2) may be rewritten as
BA A ciavdpe = Bie v By s (16.3)
where e is the column vector, all components of which equal 1. We shall
use this notation throughout this chapter.

Proposition 16.1 Any Markov measure is invariant for some operator.

Proof. Take any jigz. First we present B as a product of two commuting
stochastic matrices A4 = (4,,) and K = (x,,). This can be done in many
ways, say A4 = B, K = E. But we want all 4,, = 0, »,, > 0. For this we
can take, for example,

A=(1+¢&BE+eB) ™, K=(1+ ¢ YE + &B),

where ¢ > 0 is small enough. Now Proposition 16.1 just follows from

Lemma 16.2 Let
B=KA=AK

where K and A are stochastic n X n matrices. Then up is invariant for the
operator having

Org = Hpshsq/Bpq (16.4)
as transitional probabilities. '
Proof of Lemma 16.2 consists of simply checking the (16.2) equalities.
Before doing it we note that

bKB = bBK = bK, be = bKe = 1.

So bK is a normed eigenvector of B with eigenvalue 1. But B has only
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one such vector (because f3,, = 0), which is b; so
b= bk,
Now we are ready to check (16.2). First we do it for m = 1:
E ﬁpuﬁpupla.;upi = Z ‘{;}PHHPHPH-"_A-"T}I = ’85 Z j""f’t = ﬁ"'
Po-y Puo-y ”y
where we used bK = b and Ae = e. Now for m = 2:
E ﬁpnﬁf-’ni-ﬁﬁ.’ﬁﬁza;;np:ﬂ;::.”: = E ﬁanPn51i—"]ﬁxﬁ-’r‘"ziﬂfﬂ-’: =

PosPv P2 Pos-Pv-P3
= (Z 'Bpnx.pnj'.l) (E J‘vjlplxpl_i':) (E A"FEP‘E) = ﬁsjﬁ.§1j)
P Po P

where we used bK = b, AK = B, and Ae = e. For m = 2 one can do the
same. This proof of Lemma 16.2 is ingenuous rather than ingenious. But
in Chapter 18 we shall prove Proposition 18.6, of which Lemma 16.2 is
just a corollary. (Example 18.8 is relevant too.)

To formulate the main theorem of this chapter we need the following
notation: P is the set of those operators of #° for which the measure
tp 1s invariant (Proposition 16.1 means that all %5 are non-empty); rp
stands for the defect of B:

rg = n — rang B,
Ry = Ker B = {a € R": aB = 0}, R' = R"/R,,

B’ is the transformation of R’ induced by B, and finally £ is the dimen-
sion of the space of those linear transformations of R’ which commute
with B'.

Theorem 16.3 (I. 1. Piatetski-Shapiro)

(a) For up to be invariant under P it is sufficient that (16.2) hold for
m=n+1,5, ...,5, € X,.
(b) g is the intersection of 27 with an algebraic manifold of dimension
nln — Vrg + €5 — 1.
(¢c) Py= U Pg 1s the intersection of % with an algebraic manifold of
B
dimension (n — 1)(n* — n + 1).

Let us sketch the proof. We shall use (16.3) instead of (16.2). Let ./
stand for the algebra generated by the matrices

E, A ...,. Ay.

L stands for the set of bA where A € .« and L, stands for the set of thosc
a € L for which
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YA € o: ade = ()
and
a, = ﬁ;lb/dl_.l-, o = )1/[;.

The central part in proving our theorem is played by
Lemma 16.4 upP = ug if and only if the two following conditions hold:

(1) all the scalar products
ae = 1,5 € Xy;
(2) a;A;, — B 5,05, € Lo for all 51, 5, € Xj.
Proof of the lemma. First we suppose (16.3) and prove (1) and (2). In
fact, (1) is just (16.3) for m = 1. To prove (2) we denote -

I O (M -

Since

Cos s, - As e =agA; ... A; € — B, A, ... As e (16.5)
the assumed (16.3) implies
Criggy, wow Ay &=

whence (2) follows.
The inverse way from (1) and (2) to (16.3) uses (16.5) and induction in
m

The proof of the lemma also shows that (16.3) being fulfilled for all
m = M is equivalent to

Ysivoniysame Xopm= Myc. oA, Age =1,

Now let us prove the assertion (a) of Theorem 16.3. It is sufficient to
prove the following: if

CAg . wo. Age =0 forall msn-—1
then
cAe = (0 forall A e .
To do it, we form the sequence of subspaces
by B & LalGs
by the rule:
Ly = {Ac,A€eR},
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L, 1s the linear hull of L,, and all L, A, s € X,. Since dimensions of
all L,, do not exceed n, they become one and the same at some number
which does not exceed n. Hence the union of all L,, is generated by
vectors

CAs. ove Ag =N~ ].
Thus,
cA; ... A;ge=0 forall m=sn—1
implies
(a,e) =0 forall ae |JL,

L
which proves assertion (a) of the theorem.

At the same time we have proved that all #g and their union %, are
algebraic manifolds defined by (n + 1) equalities (16.2) with m €
{1,...,n+1} (we mean intersection of these manifolds with the poly-
hedron ), where parameters f8,, are fixed for %5 and arbitrary for
Prs

The most cumbersome and technicaily complicated part of the proof
remains: calculation of dimensions. Note that %y is reducible in the
general case and its structure depends on the Jordan form of the B
matrix. Let us first examine in detail the two extremal cases in which the
range of B equals n or 1.

Proposition 16.5 Let rang B = n. Then all the operators P having ug
as invariant are those given by (16.4) where K and A are any stochastic
matrices such that

KA = AK = B.

Proof. First let us prove that a; (s=1,2,....,n) of Lemma 16.4 are
linearly independent and that Ly = 0. This follows from linear independ-
ence of a; modulo Ly. Suppose the contrary. Then there are y, some of
which differ from 0, for which

dp = Z Vpap € Lo.

P

For every s € Xj
(] = HUA.?'E = E }'papA.f'F = E T_pﬁp-.--

P P
Since rang B = N, this implies y, = 0. This contradiction proves that
Ly = 0 and a, are linearly independent.

Now let e, stand for the row-vector which has | at the sth place and
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zeros at all the other places. Let A stand for such a matrix that
"r-?_w/l = da, fOl‘ H“ 5 e X”.

Of course, (a,,e) = 1. which implies cAe = (c,e) for all e € R".

The proved Ly = 0 implies a,A; = B,.a;. This means that every A
projects R" to the one-dimensional linear hull of a;. Hence there are such
%pq that

& i
Qpg = Hpshsg.

Finally
a,B = a;,EAS = ;ﬁp,a_f
which implies e,AB = e,BA and AB = BA. This and non-degeneracy of
B leads to
B = KA = AK
and
OpaPra = Cpq = #pshsq

which are the (16.4) we had to prove.
The inverse assertion has been proved with Lemma 16.2.

Proposition 16.6 Let rang B = 1, upg be invariant for P, and dim L equal
1 or n. Then b 1s:

either a common eigenvector of all the n matrices A; whose elements are
o 5
Ups = Opgs _
or a common eigenvector of all the n matrices A, whose elements are
Gy = O,

5

where 6, are transitional probabilities of P.

Proof. First case: dim L = 1. Lemma 16.4 implies
bA; = psb
that is
%] BoB.050 = BBy
Reduction at 8, yields
z?}.;ﬁ;r@fw = f;.



Operators on the graph I 139

This just means that all the linear transformations A, have the common
eigenvector b.

Second case: dim L = n. Lemma 16.4 implies that L, and a, generate
all the L. Hence

aA’e = f,(a,e)
for all @ € R", s € X,. This implies

2. B,65, = B
q

for a = e,. This just means that all the linear transformations A, have the
- common eigenvector b.

The assumptions of Proposition 16.6 allow us to prove some more: P is
ergodic and has a Bernoulli invariant measure. A more general assertion
will be proved in Chapter 17.

In the case n = 2 the classes of operators built in Propositions 16.5 and
16.6 exhaust 97, since rang B equals only 2 or 1. The corresponding
equalities have been found in [2]. These are:

If 80191{1(1 = 6(}(] = 9”) = ﬁmf}“(l = gm == Qm} the Dperamr has a
Markov invariant measure.

If G10(1 — 6g1) = 611(1 — Bgo) or (1 — 619)8p; = 61:1(1 — Byo) the operator
has a Bernoulli invariant measure.

The points
Boo = 011 = €, 00 =0 p=1—¢

of our Example 1.3 belong to the intersection of all three manifolds.

Let us sketch a way to find the dimension of 2, that is, to prove the
theorem’s assertion (b). Remember L, of Lemma 16.4 and introduce L,
which is the set of such vectors

E,lﬂap for which Vg € X E ApBpg = 0.
P

_!‘.i'
Of course

LU = Ef} R R[}.

So operators induced by B on £ = L/L, and on R’ = R"/R, act in the
isomorphic way. If the B-invariant L, and L are fixed, the set of A,
(needed) is defined by the three following conditions:

(1) ), A, = B,

(2) L and L, are A -invariant for all s,
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(3) there is such an invertible linear operator A': R' — L’ which com-
mutes with the action on R’ and L’ of the functionals and operators
induced by the functional @ — (a,e) (the sum of coordinates) and the
operator @ — aB on R".

Then the equalities
apAp = Bpqg

hold for all p, g, where the matrix A, is induced by A, on L" and ¢, € R’
is the image of the row e,, and a;, = e,/'. Using this construction of the
set of A,, one can check that the maximal dimension among components
of Pg equals n(n — 1)rg + €5 — 1 and is reached if Ly = R, or in the
case Ker B> = Ker B = R, if L, = 0.

Now we shall count the dimension of Z2,,, that is, prove assertion (c)
of the theorem. First we count the dimension of those components of Z7;,
considered in Proposition 16.6. The vector which defines a Bernoulli
measure has (n — 1) parameters, and there are n matrices preserving this
vector, each having (n — 1)* parameters. The total dimension of every

component in question equals
(mn—1)+nn-1>=0n-1)n —n+1). (16.6)

This counting is correct because Theorem 17.1 proves that all operators
treated in Proposition 16.6 are ergodic, whence none of them can have
two different invariant measures.

Now about the other components of @,,. All their dimensions are no
more (with n > 2, actually less) than (16.6). In fact, remember assertion
(b) and note the following. The set of n X n stochastic matrices of range
n — rhas n(n — 1) — r* parameters, and € of these matrices equals n — r
in the general case. So
dim U Pg=nn—1)—-r+nn—-—1Nr+m-r)—1=

rang B=n-2
= i(ﬁ' —Dn?—-n+1)—(n—r—1)n*=2n-r (16.7)

{hecéuse the set of those B which have € = n — rp has still lower
dimension). You can see that (16.7) is maximal with r = n — 1. (Note
that the dimension of the set of matrices of range n — r is maximal in the
other extreme case r = 1.) '

Note 16.7 This chapter has been about operators on just one graph 7,
the simplest one. In some sense the case of homogeneous operators on
V = Z can be reduced to this one. Having any

U0) = {-R,...,R} (16.8)
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we can separate Z into segments of length 2R + 1 and claim the states of
all the segments to be states of a super-automaton. The resulting system
of super-automata is an operator on I';. However, the resulting operators
are not general but special. So the general description of operators having
Markov invariant measures, as was given by Theorem 16.3, is not suitable
in this case.

Moreover, the notion of Markov measure is still more insufficient in
the case (16.8) than it was with I';. The notion of a k-Markov measure
seems more relevant. A measure 4 on X is termed k-Markov if x4,
..., Xp+x having been fixed, the x;, i = h become independent from x;,
j = h + k + 1. The described reduction of the case (16.8) to I'; reduces
k-Markov measures to Markov ones, but the resulting Markov measures
are special, and this method did not help us to describe ail operators on
V = 7 having k-Markov invariant measures, as we wanted.

The class of asynchronous (continuous-time) interacting Markov pro-
cesses having an invariant Markov measure, is larger than that of syn-
chronous ones. More is known about the description of such systems; in
particular, it has been proved that a homogeneous process in {0,1}* with
the transition probabilities (flip-rates)

fl(}’,‘!lj_,.g}, R = [—r.r] C 7

may preserve a k-Markov measure only if £k = r. A more exact and
general result will be described in Chapter 18.

We shall finish this chapter with a negative result which claims that
some operators on X = {0,1}* have ‘bad’ invariant measures. Before
formulating it we introduce a set of ‘good’ measures. A measure u €
A(X) belongs to % if it is induced by some homogeneous Markov
measure on X with X finite with some space mapping f*: X§ — {0,1}*
where f: X, — {0,1}.

Proposition 16.8 (published in a slightly more general form in [86]).
X = {0;1}%, P € 2(X), that is, P is a homogeneous independent
operator on X with 9, as invariant measure. Then any invariant measure
of P different from &; does not belong to 7#".

This proposition can be applied to operators of Example 1.2, Theorem
8.4, Theorem 10.1 and Proposition 11.2, in particular.

Historically, the first proof of non-ergodicity of our Example 1.2 oper-
ator P, with small £ was based not on percolation, but on quite another
idea: on constructing a non-trivial convex invariant set of measures [71].
This proof was more cumbersome than the percolation one, but it is
interesting in its own way, since it provides some information about the
non-trivial invariant measure of P,. In fact. Proposition 16.8 follows the
idea of this proof.



Chapter 17
Bernoulli invariant measures

This chapter is about homogeneous operators on
X ={1,...,n}Y where V =Z%

Here we generalise Proposition 16.6 and find sufficient conditions for
both ergodicity and having a Bernoulli invariant measure.

Let us have an operator P. Take two finite subsets I, K C Z% and fix
the state bﬂyund one of them: z € X,«;. The operator P induces some
operator P; k. X;— Xy defined as follows:

i‘rzr’l:: = (6, X u)P|x

where i € #(X;) and |x means projection to Xg. In fact, the result does
not depend on all components of z, but only those in U(K)\/.

Theorem 17.1 (A. V. Vasilyev, L. G. Mityushin and I. I Pmrerskz—
Shapiro). We have a homogeneous operator P on X = Xn with a

translation v of Z¢ and a Bernoulli measure ¢ = [Ty, on X = H Xy
hefd

Assume the following:

(a) For any finite K C Z9 there is & € K such that v(4) does not belong to
U(K\{h}); (17.1a)
(b) For any h € Z and any z € Xugivon) »

(z}) s
-“V{W.Ipé.fr].a’r = Hy- (l?lh]
Then w is invariant under P. If P is non-degenerate, it is ergodic.

Note. The set of operators in question for this theorem is non-trivial
only if v(0) € UJ(0). This is possible even in the simplest case of I'}, where
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we can put v(h) = h or v(h) = h — 1; that gives us just those sets of
operators referred to in Proposition 16.6.

Proof. The simpler part is to prove invariance of u. We take any K C
7% I = v(K), z € Xza; and prove

#rPEffI{: = UK (17*2}

where u; and ug are projections of 4 to I and K. We prove it by induction
over the number |K| of points in K. In the starting case |K| = 1 (17.2)
coincides with (17.1b). Suppose we have proved (17.2) for all |K| < m.
Take some K having |K| = m. We have h € K which fulfils (17.1a).
"Denote j = v(h), I' = I\{j}, K' = K\{h}. We shall write states of X in
the form (x,y,z) where x € X, y € X;, z € Xz+,. From the induction
“ supposition,

prPYR = e
Since P is independent, and j does not belong to U(K'), we have

é{x,y}P(f}f = éI{.vr,_v,z}f:)|.": =
= 5{1‘,y,z]P|K’ X (}{r,_v.z‘.lp|h = 5A'PE’%,]IK' X éfh}’}PS’i‘}r-

Multiplying the left-hand and right-hand sides by wu;(y), then summing
over y € X; and using (17.1a), (17.1b) leads us to the following:

(ax X Ju;)Pf’z}{ = étPEfz}ﬁ X (é'x X :”j)PEJ}t = ﬁ.tPEr?‘]K- Ao Uy

Multiplying the left-hand and right-hand sides by up(x), then summing
over x € X and using the induction supposition leads to (17.2).

Thus, (17.2) is proved. Hence (v X u;)P|x = ug for any v € X4, and
uP|x = ug for any K, which means uP = p.

Invariance of u is proved. This part of the proof works as well for a
much more general case: any graph I'(V, %), any mapping v: V — V, and
any non-homogeneous (but still independent) operator P on X = H Xy

heV

But ergodicity of P is more difficult to prove. Take first, the simplest
case of I'i: Z¢ = 7, U(h) = {h—1,h}, and v(h) = h. The following
proposition is crucial in this case:

Proposition 17.2 Let the assumption of Theorem '17.1 hold for a non-
degenerate operator P on I} with v(h) = h, K = {1,...,m}, x € X and
p is invariant of P. Then (xP' — )|k tend to 0 with ¢t — o uniformly in
x e X.

Proof. Let x" and z' stand for the states of set K and point 0 at time ¢. Of
course,
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Gy = X AT a0 (17.3)
where the sum is taken over all zI"7 " = (z°,. . . zT°Y, 2" = x{}. The
following equality can be proved too:

AT 20T = xOPER . PRKOGT). (17.4)

This can be reworded as follows: If we modify the process by ‘freezing’
the states z', ..., z' ! and preserving the transition probability in K, all
the parameters of 4 remain as before. This is not trivial, and becomes
wrong with another U, say U(h) = {h—1,h,h+1}. To prove (17.4) we
have no better way than to express the relevant values in transitional
probabilities.

We assumed P to be non-degenerate, whence P) contractive with

some »x < 1:
[«P® = vPO| < xflu = v,
whence
75 — &l < ="

and tends to 0. The simplest case is over.

The more general case, with V = Z¢, y(h) = h and all points of U(0)
being non-negative in some coordinate system, can be proved in the
similar way.

To reduce the general case to that mentioned just now, we need the
following lemma.

Lemma 17.3 Let us have a finite set U(0) = U, € Z¢ and a shift v(h) =
v + h with v € U, for which (17.1a) holds. Then v is a boundary point of
the convex hull of Uj.

Proof. Assume the contrary: v is inside the convex hull of U,. Then
there are such points u,, ..., ug € U, and such naturals M,, ..., Mg that

Mi(u; —v) + ... + Mg(ug — v) = 0.

We are going to find K for which (17.1a) does not hold. We take K as
sums

my(uy, —v) + ..+ mglug — v) (17.5)
where m, ..., my are integers in the ranges
D=sm. = M,.

In fact, any i € K is presentable as (17.5) with some m, = 0 (for i # 0 1t
is obvious; for h = 0 we can take all m, = M,). Hence any h € K is
presentable as
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h=u —v+iick.

This contradicts (17.1a). The lemma is proved.

Now reduce the general case to this one. Let us have P. Find some
reversible affine transformation f: Z¢ — Z“ to make all coordinates of all
the points in f(U(0)) non-negative and f(v) = 0 and denote P’ = f~'(P).
Then P’ is subject to the already examined case and ergodic. So is P.

Some generalisations of Theorem 17.1 are possible. Even if the map-
ping v: Z¢ — Z“ is not a shift and x is non-homogeneous, the homogene-
ity of P provides their ergodicity (whence their invariant measures have
to be homogeneous). '

We attempted to prove ergodicity in the case of general graphs, but
met difficulties with proving (17.4). Even in the case of v(h) = h we need
some more suppositions. Let us term a set K C V ‘passable’ if for any
sequence Ay, ..., h, € V where all hyy, € U(h;), the conditions h; € K
and h,, € K imply that all h, € K. For all passable sets, (17.4) can be
proved. So we can prove ergodicity for such V where any finite K is
contained in some passable finite set. But it is easy to present a graph
I' = (V,%) for which (17.1a) holds with v(h) = h, but passable sets
cannot be arbitrarily large. In fact we take V = 7, and

| {h—2,h—1,h} for h even,
Uth) = {{h,h+2} for h odd.
Then any finite set which includes an even point and an odd point is not

passable.

Unfortunately, Theorem 17.1 does not yield interesting examples of
non-ergodic non-degenerate operators, because any two pairs (v,u),
(v',u") satisfying all the conditions of the theorem with some non-
degenerate P, have u = u'.

The main results of this section belong to A. V. Vasilyev [97] (the
criterion of existence of a Bernoulli invariant measure) and to L. G.
Mityushin and I. I. Piatetski-Shapiro (proof of ergodicity).

The following theorem gives a necessary and sufficient condition for
a continuous-time homogeneous interaction Markov process to have a
Bernoulli invariant measure.

We restrict ourselves to the case when X, = {—1.1}. Our process on
{—1,1}*{‘r is defined by its transitional rates (flip-rates) A,(x,|x, k). A
point h € Z9 changes its state from x, to the other state —x;, with
probability

At Ay (xp | xp4 k) + 0(A1)

during 4¢. Homogeneity means that 4;, are the same for all h € Z“ and we
may write A(xg|xg). This value always has a unique expansion in the form
of a polynomial:
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Alxolxg) = Za:IIx; + Zbex, - Ix;.

Both sums are taken over all £ € K; both products are taken over all
i € £ Empty & are also include. the corresponding products being equal
to 1. We assume 0 ¢ K and denote K = K U {0}. Let us separate the set
of subsets of K into equivalence classes, two subsets of K being equiva-
lent if one is a translate of the other. In every class we choose one
representative, which contains the point 0, if one exists. If a class fails to
have an element containing 0, it has no representative according to our
rule. All the representatives chosen form a new set A". Let us have a
Bernoulli measure u, and assume

uxy =1)=p >0 ulx, = —1) = q > 0.
Of course, p + g = 1. Denote

Ciuo = (@ — plag — bg,
' Ce = (g — P)Cruo

for any £ C K.

Theorem 17.4 [77]. The Bernoulli measure u is invariant over the Mar-
kov process in question if and only if ZCy,, = 0 for all { € A". The sum is
taken over all i € Z¢ such that £ + i € K. All these equations are linearly
independent.



Chapter 18
Gibbs measures and reversible
Markov chains

In this chapter V is finite or countable, X, may differ from each other

(but each must remain finite), and X = H Xp. This chapter is about
heV

operators on X having Gibbs invariant measures. We start with intro-

ducing the necessary definitions which are much the same as in

[1,9,10,15,40,65,81]. We denote by 5 some family of finite subsets of V.

Forany KC V, ke V

H(K)y={Hezt: KN H#* J},
(k) = (H e #: k € H).

(k) is assumed to be finite for any point k € V, whence the union U(k)
of all Z7(k) is finite too; we term it the ‘neighbourhood’ of the point k.
The neighbourhood H € U(K) of any K C V is the union of all H €
FC(K); it is finite for any finite XK.

Definition 18.1 If for any H € 5# we have a positive function ay: X —
R., we term these a potential. A measure u € #(X) is termed Gibbs
with {ay, H € ¢} potential if for any x € X and K, I C V with U(K) C J
there is such a function y: X, x — R that

w(x, = Plxpg) H ap(Xir). (18
Hes#(K)

In other words, if xy & = yyp.x then
u(xy) o ap(x)
ul(yy) He(K) ap(ym)

Our potential is multiplicative; logarithms of a; form the corr
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ing additive potential, which is more usual in physics; the difference is not
important. But the finiteness of every H € # is essential. Infinite-range
potentials are interesting (even necessary if one wants to fit the real
physical world) but they are beyond the scope of this survey. The case
when some values of u(.) or a(.) may equal zero is interesting but Is
avoided in Chapters 18-20.

Another equivalent form of (18.1a) and (18.1b) is in terms of con-
ditional probabilities

wxk|xnk) = @(xpk) H ap(Xp) (18.1c)
Hez'(K)
where @(.) can be expressed as a ‘statistical sum’

Lo % (T antw). (18.2

P(xXpx) xy€ Xy \Hezw'(K)

To check (18.1a) or (18.1b) or (18.1c) (which are equivalent) one has
to do it for those K that consist of one point only. It is most obvious for
(18.1b). In fact, we take any x, y € X with xy\x = yp.x and build a
sequence

X = x XD =y

in which adjacent members x© and x*?) differ in just one point. Multi-
plying the (18.1b) for these one-point cases gives (18.1b) for x and y.

If V is finite, the formulae (18.1c) and (18.2) for K = V define the
unique Gibbs measure.

If V is infinite, there are only explicit expressions in potential of
conditional probabilities u(xg|x; k) but not of u(xx), and indeed for a
given potential there may be more than one measure which is essential in
the phase transition theory.

At least one Gibbs measure exists for any potential. Take such a
sequence K,, CV.m=1,2, ... that K,, C K,,,4+; and UK,,, = V. For any
K,, fix any state x" beyond it and define

(g [x)

by the formulae (18.1c) and (18.2). Thus for any m we have a measurc
on the whole X which is " in the K,, and concentrated in x" beyond
K,,. Since #(X) is a compact, the sequence u'™ contains a convergen
subsequence and its limit is a Gibbs measure with the same potential. (!
has been shown [11] that the boundary points of the convex set of Gibbs
measures corresponding to the given potential may be constructed in !
way.)

Of course, one and the same measure can be Gibbs with var
potentials and even various 2 families. This moves us to the follow
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Definitions 18.2 Two potentials ay;, H € # and a)p, H' € 5 are termed
equivalent if for all x € X, i € V the ratio

]._.[ 'fIH{-‘fH)/ H app(Xp) (18.3a)
H e (h) H' e ()
does not depend on x,,.

This condition has another form: for all K C V and x, y € X with

Xk = Yvik
ap(Xg) _ Hh’(xH')_ (18.3b)
Héwemn a(Yr)  meaeon i (Xe)
Of course, equivalent potentials have one and the same set of corres-
ponding Gibbs measures.

The notion of a Gibbs measure is proved to be equivalent to the notion
of a %-Markov field, where % = {U(h),heV} is a family of finite sets
U(h) C V, h € U(h). A measure u on X" is termed a %-Markov field if
for any finite K C U(K) C L C V, u(xg|xpx) = ulxx|xuxyk); the last
condition is equivalent (if u(x) is positive for all xg) to the following: u
is an 2#-Gibbs measure, where 5 is the set of cliques of the graph
(V,%), that is, H € 2 iff H C U(h) for all h € H.

To illustrate this definition take the set of homogeneous Markov mea-
sures on X = {1,...,n}%. One can check that any Markov measure ug
defined by matrix B (see (16.1)) is Gibbs measure with

# = {{h—1,h),heZ)

and

a{h—},h}(ﬂ,?) = ﬂpq- (]84)

The following proposition shows that there are no other Gibbs measures
with this V and 5 and a translation-invariant potential.

Proposition 18.3 An n X n positive matrix B = (f3,,) is given. Then any
Gibbs measure on {1,...,n}° with the potential defined by (18.4) is a
homogeneous Markov one.

Proof. First let us substitute the potential (18.4) by its equivalent having
a stochastic matrix B'. Due to (18.3a), this amounts to finding a diagonal
matrix 4 and a number 4 > 0 to make

B=AidB'47"

with B' stochastic. We take the number 4 equal to the greatest eigenvalue
of B and the diagonal elements o, of 4 equal to the components of the
corresponding eigenvector-column (which means that B4 = 44) and put
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B’ = 17 '47BA.

So let us assume that the initial B was stochastic. Let us prove that the
equalities (16.1) hold for u. First let us prove that

.'”(-xf]' = 5) = rgs

where b = (f;,...,B,) is the eigenvector-line of the matrix B, that is,
bB = b. For that let 87" stand for the elements of B” and note that
every ﬁ'[’“} tends to f, with m — . According to (18.1c)

H(Xo=$|X_m=D,Xm=q) =

l: :’E#ﬂﬁp'F—m+lﬁ'g—nl+1S' maz " 'ﬁS__l.tﬁ_'i'S1 t .ﬂjﬂf—z"'”’_lﬁj”'“lq
EAN:
E'Bps—m+l'65—m+i‘r—nr+". i .ﬁj 25 'Iﬁ'?nr ad

(s;)

ﬁ(m:l ‘g{frr)

 a(2m)
pq

nr

With m large enough the values of

#(‘xﬂzs |x—rﬂ=p‘!xﬂ’!={?)

approximate f,, whence

ulxo = 8) = D3 t(Xo=5|X- =P X =@)U(X =P Xn=0)
P.q
must equal f;.
In the same way (16.1) can be proved for any m.
Proposition 18.3 is now proved.

In the analogous way one can prove that any Gibbs measure on X = Xt
with a translation-invariant finite potential a; .4, ) 1S @ homogeneous
k-Markov measure. Hence different measures cannot conform to one
potential, which corresponds to the physical conviction that phase transi-
tions are impossible in one-dimensional systems.

With all d = 2 the phase transitions are possible. The mathematical
counterpart of this physical fact is the non- uniqueness of measure for a
given potential, which takes place with all d =

The notion of Gibbs measure has (lcvelopcd from nwexllgatmn of
equilibrium systems like the classical Ising model, where time 1s absent
from the model. Our survey’s theme is evolution systems where time Is
essential. But introducing the evolution spaces and measures makes time
just another coordinate in our systems. This makes it possible to interpret
our evolution measures as Gibbs measures:
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Note 18.4 P 1s an independent operator on a graph I'(V,%), having
transitional probabilities 6,(y|z) where y € X),, z € Xy, . Let @ be the
evolution space X* = {(x"),reZ}, its projection on any X' being a certain
invariant measure g. Then g is a Gibbs measure with 77 consisting of the
sets

Uh,t+1) = {(ht+1):(k,0),keUh)y, he V,teZ  (18.5)
and potential of the form

ﬂﬁ{h,rn;(ﬂrﬂrxbm)) = 9;;@5;“ |XIU{;:})- (1&6}

Thus the problem cof finding all the invariant measures of a given P is a
special case of the problem of describing all the Gibbs measures on X .

The main use of Gibbs measures in our work is to define such a
measure i on X ""'*1} the projections of which to the layers X" and X"
are one and the same invariant measure u. We shall use this construction
in some examples below. To do it in a more general way, we need the
following.

Definition 18.5 We shall say that a bipartite graph = [(V,5) is given
if its set of vertices V' consists of two disjoint sets ¥V and V' and a set of
pairs 7 = {(j,k)} is given where j € V, k € V' (see Fig. 18.1).
Denote for any j e V, k € V"
U(j) = {k: (j.k) € 22}, Ulk) = {j: (j,k) € 7}
and assume that all U(.) are finite. Denote also

U Utk) = U(S).

ke’ .

Proposition 18.6 We have a bipartite graph I'(VU V',2) and two spaces
= T = L] 2
jeV kel
We have a Gibbs measure i on their product X = X x X' with some
potential {a.(j,k)e’}.

O

AN

Fig. 18.1 Bipartite graph f’l corresponding to the simplest graph I} (Fig. 2.1).
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Then the projection of & to X is a Gibbs measure with the potential
defined on the U(k) sets:

UU(H(XL-'H:}} = Z ( H aj-fc(xjeyk])~ (18.7)

v, e X Velltk)

For any I C V, k € V' where U(k) C I the conditional probabilities of the
initial measure i can be expressed as

H e (xf*yk)

= je U(k)
x —
‘-‘.{(}’H f} LE{ JU{k}(xU(kj}

(18.8)

Proof. Evidently
ulx) = flx) = X AGLYL).

Y€ X

From the definition of a Gibbs measure (18.1a)

axp.ye) = w(xng) ;ﬂg (X Vi)
fEE'{S)
For any S C V' it is easy to check that
b ( I1 a,,-k(x,,-,yk)) = H( ) ( I1 a;k(xl,-jyk))), (18.9)
yse X5 Ve U(k) keS ‘yeX; YelU(k)
whence
p(xy) = ' (xng) H Ouey Xuky)
ke U(I)

where oy are defined by (18.7). The last two equalities and (18.1c)
prove (18.8).

Note that some Gibbs measures are not invariant under independent
operators. It is proved in [7] that there is no preserving operator for any
homogeneous measure on X = {0,1}" with the potential

Qi = aj-‘:(xjmyk) S a{xj:yk}? |.|F - k| = 13

provided this is not a Bernoulli measure.

Example 18.7 This is a non-ergodic non-degenerate operator on
{—1,1}* which is very like Example 1.4b.
First assume that elements of 2 are pairs of adjacent points

H={(k):j kel |j- k|l =1}.
The potential is

ef if X =i

e (Xj.y8) = {e‘ﬁ F =g (18.10)
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In fact this is the classical Ising model. It is known that § being large
enough, this model has two different Gibbs measures fi, and f_ where

Ao(xp=1) <3 < fi(x, =1).
More exactly, according to the Onsager—Young formulae
Aelrn = 1) = a_(xp = +1) = (1 + &)1 - &)7"*(1 — 62 + £)'°

with ¢ = e % < 3 — 2V2. Both measures are translation invariant and
are limits of measures on finite pieces of the space with opposite bound-
ary conditions: ‘all minus ones’ for fi_, ‘all ones’ for f,.

We shall use this well-known construction to build a non-degenerate
operator having two different invariant measures. To this end, we present
our Z? as a bipartite graph like a chessboard (as in Fig. 18.2):

V = {(hy,hy), where h; + h; is even},
V' = {(h;,h,), where h; + h, is odd}.

Now to define the operator P on X = {—1,1}",

If x;, j = (j1,/2) € V is the state of a point at time ¢, the same point’s
state at the next time ¢ + 1 is y,, where k = (j;+1,/) € V'. It remains to
define i on X“**1}; for that we use (18.10). From (18.8), this gives us an
operator which has transitional probabilities

CXP [ﬁ}’kg(«fum)] ] 11
e Fenl-fEe) S

Or (Vi | IU{k}) =

where
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Projections of i on Xy and X are translation invariant and mngruent
whence each of them is an invariant measure of our operator. Since fi
was not unique (it might be i, or f_), our operator has two invariant
measures g, and g_. The subsequent Theorem 18.13 proves that

= limdé_;P' and u, = limo;P’.

f—x —0

From Proposition 18.6, both x«, and u_ are Gibbs measures with one and
the same potential

UU{k)(IU{k)) = exp [BE(xuywy)] + exp[—BE(xuw)]- (18.12)

In the analogous way one can build a non-degenerate operator on
o n}2 whlch has n linearly independent invariant measures which
tend to 6,, ..., 0, with § — o,

Another example is also based on the construction of Proposition 18.6.
It uses a Markov measure on X§ which is invariant under the even
translation 4 — h + 2 to build the same class of operators having Markov
invariant measures, as in Lemma 16.2 and Proposition 16.6.

Example 18.8 The bipartite graph is V = Z, where V consists of even
numbers, V' consists of odd numbers. Take two n X n positive matrices
K = (%,4), A = (4,,) where p, g € Xy = {1,...,n} and KA = AK =B
where B is stochastic. We define i as the Gibbs measure with

a(Em "m+l]|(p S) ps:
a(Em—l,Zm}(S '?') - Asq

Then, due to Proposition 18.6, the projections 4 and " of & to Xy and
Xy are Gibbs measures with the potential

g(!',r'+2j(p!'Q) = ;Spq = E M i‘?‘.’

The conditional probabilities of the initial & are

ﬁ(ﬁu.;....,:m—l] |'1-{'[J,2~...~3m}) = H O(yaisi |«T:a X2i42)
O=i=m—1

where 6(s|p,q) = 0, are defined in (16.4). Thus, the Markov measure 1
is invariant under the operator on I'; which has @, transitional probabii:-
ties. As we have said in Chapter 16, this example shows that &7
non-empty for any B: in the case rang B = n, this example exhausts

In Examples 18.7 and 18.8 both transitions from ¢ to r + 1 and
t + 1 to ¢ were presentable as actions of some independent operator. -
following Theorem 18.10 describes all the operators which mak
backward step possible

But first we need a definition.
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Definition 18.9 A Markov chain with the initial measure 4 and operator
P is termed reversible if its combined measure at two adjacent times
it € M(X x X) is symmetric with respect to the permutation of argu-
ments (x,x') = (x',x) in X X X._

In other words the probability of being in some set A at time ¢ and
being in B at time ¢ + 1 equals that of being in B at ¢ and being in A
at t + 1. Of course, reversibility implies invariance of u. We also call
reversible the evolution measure of reversible Markov chain. "

Theorem 18.10 [49,75]. An independent operator P on [(V, %), X =

I1 X, has a reversible evolution measure if and only if its parameters
heV

0x(yn|z) can be expressed as

Br(y) H (Ijk(z,fr}’k)

je Uk)

7} = '
«(Vk|2) e (18.13)
where
ﬂ‘f.k: ‘1} X Xk - H+? )Sh: Xﬁ = H+!
Jj, k, h e V,je Uck)
are some functions, z € Xy, yx € Xy and
UU{k)(-‘—’U(kj] = E Br(yi) H i (X, Vi) (18.14)
Vi €Xy je U(k)
with the symmetry condition
i (X7, Y6) = Wui(Vie,X;5)- (18.15)

The corresponding invariant measure (projection of evolution measure on
any X') is a Gibbs one with the potential (18.14).

We shall not prove Theorem 18.10 here. Note only that in the assump-
tions of this theorem the graph of P may be treated as symmetric, that is,

j e Uk) © k € U(j).
Both Examples 18.7 and 18.8 are subject to the following theorem,
similar to Theorem 18.10.
Theorem 18.11 [9°]. We have a bipartite graph -
nvuv. )
and spaces
x=I1x and x =[] x:.

Jjev kel

A measure 4 on X X X' is #-Gibbs if and only if
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aklx) = [T aoelxow),

keK (18.6)
a(xly) = H.“(lﬂyum),

;E

foranyxe X,y e X', JCV, K C V.

This theorem can be interpreted as follows. Let us have such a measure
it on X X X' that both transitions from its projection u on X to its
projection #" on X' and back are presentable as performed by indepen-
dent operators: 4P = u' and #'P' = p. Then ji is a Gibbs measure with
some potential {a;} where j € U(k) C V, k € V".

Porposition 18.6 was about such measures. It implied that P had
transitional probabilities (18.13) and u was a Gibbs measure with the
potential (18.14), but the symmetry condition (18.15) was not necessary.

Example 18.12 Let
V=2, Uh) = {h-1,hh+1}, X, = {0,1}.

According to Theorem 18.10 the family of reversible operators on this
graph has three parameters, say a;, a,, f = 0 and

ﬁn.r 3{2|+23} }'21
1 + ‘Bazl+21 iz

Their invariant measures are 2-Markov. In the case

pd
€z|z3zq iz

a1=a1=%,ﬁ=1,

this example turns into Example 1.4a.

Finally we shall formulate two theorems about ergodicity or the set of
invariant measures of operators having reversible evolution measures.
They are proved in [49] and have continuous-time analogues in [37,38].

Theorem 18.13 Under the assumptions of Theorem 18.10 with X}, =
{-1,1} and P monotone
limé_P" and limd,P' (18.17)

[—22 f—e22

are the minimal and the maximal among the Gibbs measures with poten-
tial (18.14).

Due to this theorem the equality of these limits implies the ergodicity
of P.

Theorem 18.14 Under the assumptions of Theorem 18.10°with V = Z¢
and with homogeneity of the space, graph, potential and measure the
following holds. For any homogeneous v the sequence vP" weakly con-
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verges to the set of homogeneous Gibbs measures with potential (18.14).

Due to this theorem, the uniqueness of Gibbs measure implies ergodic-
ity of P in the space of homogeneous measures.

Of course, operators treated in this chapter (reversible or having a
Gibbs invariant measure with a finite potential) are rare among all inde-
pendent operators. But the reversible case has a special interest because
it seems to allow more complete investigation (as in Examples 18.7 and
18.8) and can be used as a start for further advances, as in the con-
tinuous-time case [81,82].

As stated at the end of Chapter 16, the class of asynchronous
(continuous-time) interacting Markov processes having an invariant Mar-
kov (or Gibbs) measure, is larger than that of the synchronous ones. This
class was used as a tool of investigation of equilibrium states of physical
models, such as the Ising system [13,74,81]. For asynchronous systems,
the following algebraic theorem has been proved by Olga Stavskaya.

Theorem 18.15 (published in a more general form in [76]). Let a %-
Markov field pu on Z% be invariant under a local interacting homogeneous
process on XU with % = {U(h),heZ%} and transition rates 1{x, | X+ x),
h € Z¢ where K = R N Z% and R is a convex set which is symmetric with
the centre 0. Then x 1s homogeneous too, and U(h) = U, + h, where U
K,



Chapter 19
Markov systems with refusals

This chapter is about systems where ‘refusals’ are possible. To make this
notion clearer, take a finite Markov chain with set of states X|,, transition-
al probabilities p(x|y) where x, y € Xj, and an initial measure ¢ on Xj.
Let Xo =Y U Wwhere Y N W = (J. We interpret Y as the set of
working states, W as the set of refusal states. Reading any of the states of
W means that the system’s behaviour terminates.

If the chain is known to have been in the working states at N first times
t =1, ..., N, the probability of having been at certain states x', ...,

xV e Y at these times is

PO t=1,....,N) = aGc)p(2| a2 oo pG™ [ VWIZy  (19:1)

where Zy is the probability of having been in Y during [1,N].

Now to consider interacting Markov systems. In every point of the
integer axis Z there is an automaton with the finite set X, of states. As
before, Xo = Y U W, where Y N W = (J, with the same meaning. Every
automaton’s state x;,"' at time 1 + 1 depends on its state x}, and its left
neighbour xj,_; at time ¢ (which is a special case, to begin with). All the
states of the automata at time ¢ are fixed, and their states at the next time
t + 1 are computed independently (however, this is not necessary — see
[15]). Thus, we have an operator at our standard graph I defined by
transitional probabilities @(x}"'|x}_,,x}), which are the same for all A
and ¢, making the system homogeneous in space and time. Now we are
interested in the behaviour of a finite segment of the system with A €

[—L+1,L—1] during a segment of time t € [—7T+1,T]. If the initial states
(x; T.—L<h<l)

and boundary conditions
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(xlp,—T=t<T)
are given, the sequence of the segment’s states
(xf,—L<h<D),t= =T+ 1. T

is a finite Markov chain. The standard approach in the theory of locally
interacting systems would be to go to limit L which would turn the finite
Markov chain into an operator on the infinite space X§. But in the‘_
present case of possible refusals this is preceded by the assumption that
during the time ¢ € [-T+1,T] there was no refusal in our segment
[-L+1,L-1]. After that we go to the limits T — o, L — o, Thus we
come to the following definitions.

Definition 19.1 P, r stands for the probability distribution of the states
(x5 —L<h<L.—T<i<T)
with the initial conditions
(xp T,—L<h<L)
and boundary conditions
(xLp,—Tst<T), (x,-T<t<T)
given by the formula

-1 i
Py r{th,—L<h<L~T<t<T) = JI II 64 |xt1,xi)/Zs,

t=—T h=—L+1

(19.2)
where Z; ; is the normalising factor.
It is essential that all x}, € Y in (19.2) (as in (19.1)).

Definition 19.2 The probability distribution P; of the states
(x},—L<h<L,teZ)

with the boundary conditions
(xLp.teZ), (xi,teZ)

stands for any limit point (in the sense of covergence on cylinde
the distribution P,  with T —

Note 19.3  Except for degenerate cases when some transition
ties equal 0, the distribution P, is unique because the limi
I'— o exists and does not depend on the initial state. (We shz
clearer below.)
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Definition 19.4 The limit probability distribution P of (xj,,heZ teZ) is
any limit point of the sequence P; with L — o and any boundary
conditions.

Note 19.5 The distribution P; + can be written as the Gibbs distribution
=1 L

Paw=ew(-L L Uw)zs 093

t=—T h==L+1

with the potential

U (x) = —In 6} xh_1,xh), (19.4)
- where '
x = (xpeY,—L<h<L,-T<t=T)..

Hence P, is a limit Gibbs distribution (as in [73]) in the band —L < h <
L with the boundary conditions '

(xLp,teZ), (x7.,tel).

The band being essentially one-dimension, for any boundary conditions
there is just one limit Gibbs distribution except for degenerate cases.

The distribution P as our definition 19.4 puts it, is a limit Gibbs
distribution on the integer plane Z* with the potential (19.3). It is non-
unique in the general case, and we shall present specific automata systems
which have P depending on the boundary conditions.

Example 19.6 The symmetric Stavskaya system with refusals. To the
former states 0 and 1 we add the new refusal state D: Xy, = Y U W,
where Y = {0,1}, W = {D}.

The transitional probabilities are given in Table 19.1, where 0 < ¢, 0,

Table 19.1

b Xl b 0
1 1 1 1-
0 0 0 1
0 1 1 £
1 0 0 £
D 1 0 1
D 0 1 '
0 1 0

1 0 1

1 1 0

0 0 1
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p.q=1andp + g = 1. If at least one of the xj,_, or one of the xj, equals
D, the value of ¢ does not matter, as we reject the entire system.

Theorem 19.7 1f € and ¢ are small enough in this system, the boundary
conditions x*_; = xy = 0 and x"_;, = x§ = 1 lead to limit distributions P,
and P, which are different.

Proof. Remember that the potential U equals "

U(xfr+11xi1—l }x;r) = _ll'l e(x}!+l r-’-’}:—l ,I;;). (19'5}

You can check that ¢ and 0 being small, U has the following three
properties:

(1) There are just two periodic ground (that is, having the minimal specific
energy) states, namely xj, = 0 and xj, = 1.

(2) U is symmetric with changing all automata states from 0 to 1 and
from 1 to 0.

(3) U satisfies the Peierls condition [73] with some Peierls constant, large
enough.

From these three properties one can prove in the well-known way (as
in [73] in particular) that P, and P, are different.

Example 19.8 The non-symmetric Stavskaya system with refusals. As in
the previous example Xy = Y U W, where Y = {0,1}, W = {D}, but the
transitional probabilities are non-symmetric as in Table 19.2, where
0 =< &, &1, 00, 01, Po, P1- 90, @1 < land po + go = p1 + ¢, = 1.

Theorem 19.9 1f &g, 6, and g, are small enough in this system, there is &,

such that the two boundary conditions x_; = x; = 0andx_;, =x; =1
lead to limit distributions P, and P, which are different.

Table 19.2

x;‘+l I;rml X;, U

1 1 1 Fisigpy
0 0 0 - 1 — g
0 1 1 £4

1 (0 0 £o

0 1 0 PoOo

1 0 1 P10,

1 | (0 G000
0 () | 1?1(31




Markov systems with refusals 163

Suppose that 0y, d; and & = ¢ are small enough. This makes U
possess two properties like those in the symmetric example: U has two
ground states xj, = 0 and xj, = | and satisfies the Peierls condition with
some Peierls constant p. large enough.

Now let us fix dy. ;. &, gy and g,, and see how &, influences U.
Introduce

b=In(l—¢g)—In(1-— g),

the parameter analogous to the external field in the Ising model. From
[63] (see equation (7) there) we know that

~ b = s(F)) — s(Fo) (19.5)

is that singular value of b which results in two different limit distributions.
But, in our case, unlike [63], the contour functionals F; and F;, which can
be found from some equations which are not written here but are analo-
gous to (6) in [63], depend on b because one value of U depends on b:

[5/(0,1,1) = —Ing,.
This dependence may not be assumed weak since the derivative is large:
U _ 1-¢

ab - £1

— 2 with £ —= 0

(unlike [60,62] where the field b entered the potential in the linear way).

Thus we need the following estimations which are more elaborate than
in [62,63]. The functionals @(I") defined as in [62,63] depend on b and
the derivative has the order of 1/¢; for any contour I" which contains some
site of the type (0,1,1) and is bounded if I" has no such site. Also we have
the Peierls condition

®(I) = p|I|
for any I" and the other condition
O(I') = p|I| + [Ing]

for I containing the site (0,1,1).

Introduce the space B(p,&;) of pairs Fy(I"), Fi(I') where both function-
als Fy(I') and Fi(I') depend on b and possess the properties mentioned
above. The equations (6) of [63] have the form

e+ T(H) (19.6)
where
F=(Fo.F). & = (90,9),

and T is a nonlinear operator which can be expressed in the logarithms
of contour statistical sums [62,63] and is contractive in the sense that its
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partial derivative aTiF]faF(F] has an estimator of the form exp (—F(I'))
(see [51,62,63]). If F € B(p,ée,), the value of

dT(F) y AT(F) dF(T)
db — FoFR(I) db

is bounded with a small constant (provided that p is large enough, as it
is). Hence the solution of (19.6), which can be found by the same method
of iterations as in [62,63], certainly belongs to B(p,&;). This makes

dS(F) _ y2 3S(F) dF(T) - ‘
db T aFI) db

small too, whence the equation (19.5) has a (unique) solution
b = b(éﬂ,él,fu)+

The original Stavskaya system without refusals (Example 1.2) had the
transitional probabilities '

1 if J:;;-‘l = x'i? = 1’
0(1|xh_1.xh) = {9 otherwise.

Remember that it had a phase transition in @ (6* = 0.3). The following
is its version with refusals which has not only phase transition in € but
another phase transition in p (at p = 0), probability of refusal. We
assume a refusal possible only if

" — | —
Xj—1 = x5 = 0.

So, Xo = YU W, Y = {0,1}, W = {D} now and the new transitional
probabilities are as in Table 19.3, the other being the same as without
refusals. Denote

b=In(l—p—0)
and consider the family of potentials with various b. In particular,
b =1In(1 - 8)

gives the original Stavskaya system and b = 0 gives a potential having two
ground states

Table 19.3

I}!-FI »Ti;—] X o( )

0 0 0 { =g
1 0 0 0
D 0 0 p
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|

Il

xp =0 and xj

which satisfy the Peierls condition with a large Peierls constant for @
small.

Theorem 19.10 For 6 small enough and p > 0 the limit distribution of
this system is unique and concentrated in the state ‘all ones’.

Proof. We need definitions as in [62]. Term a triplet
((h,f+1),(h_1,f),(h,f))

of points in the evolution space even if its state is (0,0,0) or (1,1,1) and
odd in the other cases. The oddness of a configuration x = (x},) is the
union of its odd triplets. The contours are the finite connected compon-
ents of the oddness. The Ising model [73] had two kinds of contours:
contours with ‘all zeros’ boundary conditions and contours with ‘all ones’
boundary conditions. But the present model has only one kind of con-
tours, namely those with boundary conditions ‘all zeros’, because any
configuration having ‘all ones’ at its contour contains a place where the
potential is infinite.

We are going to write down some statistical sums. As in [62,63], the
‘background’ configuration ‘all zeros’ will be assumed to have zero en-
ergy, serving the point of departure to calculate the other configurations’
energies. Thus a configuration having only one contour I (where the
mark 0 signifies the boundary conditions) has the relative energy

H(I'% = o(I'% + bV(I') (19.7)

where V(I'°) is the number of triplets having other states than (0,0,0) in
this configuration, and

&I’ = Ny|In@| + Ny|In(1 — 6)|, (19.8)

where N, is the total number of triplets having states (0,1,1), (1,0,1),
(0,0,1) and N, is the total number of triplets having states (0,1,0), (1,0,0)
in this configuration.

The following estimation is evident with 6 < 3:

lIng||r’l > o(r" > imeo||r, (19.9)

where [T°] = N, + No.
As in [62] a r-functional stands for such a functional & that

o’y > |,
Denote also

_ )
|2l = sup =
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and write ||@| < % to mean that ||®] is bounded.

Since the contours I'' are impossible in our system, any contour I
certainly is external, which means that it is filled with ones (see [62]).
Hence the definition 3.5 in [62] boils down to the formula:

E(I°|H) = exp (—H(I')). (19.10)

This allows us to formulate the following lemma.
Lemma 19.11 For 6 small enough and any b < In(1 — ) there are such
a > 0 and such a r-functional Fy with ||Fp|]| < = that

E(F°|H) = exp (aV(I')E(I | Fy). (19.11)
In other words, this lemma claims that the statistical sums Z(I"°| H) can

be described by a contour model with a parameter [60,62].

Proof. We are going to prove that the equation (19.11) has a (unique)
solution. For that we substitute the expansion of the logarithm of the
contour statistical sum [62]:

InE(I°|Fy) = S(F)V(I'®) — Fo(I'%) + V(I'°| Fp) (19.12)
and the definition of Z(I'°|H) into (19.11). This gives us:
—P(I'%) — V(I = aV(I'%) + S(Fo)V(I'®) — F(I'®) + V(I'°|Fy).

(19.13)

Separation of volume and boundary terms in this equation yields
—b = a + S(Fy), (19.14)
Fo(I'% = o(I'’) + V(I'°| Fy). (19.15)

The equation (19.15) has a (unique) solution F, with ||Fy|| < = in the
class of r-functionals [62,63] and (19.14) allows us to find a. Since a is a
monotone (in fact linear) function of b, it is sufficient to prove that a = 0
in the case of

b=1In(l— @)
which is the original Stavskaya system. (In fact @ = 0, as we shall
Assume the contrary, @ < 0, and prove the following lemma.
Lemma 19.12 If a < 0 and F, is a r-functional with [|Fy|| <
expression
exp (aV(I")Z(I'| Fy)
can be presented as

E(I°| Fg
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where F{ is a r-functional too, but ||[F§|| = =, and moreover F{ has a
positive volume part, that is,
FH(I) ]
lim V(o) = @(a) = 0 with V() — 0. (19.16)
Proof. The equality
exp (aV(I")E(I°| Fy) = E(I"| F§) (19.17)

can be written as
exp (aV(I'")E(I"°| Fo)
S exp (aV(T'Y)E(TY] Fo)

where the sum is taken over all combinations of external contours (I'y)
inside I'". Now the right-hand side of (19.18) does not exceed

E(I°| Fy)
SIE(TY| Fy)

exp (—F§(I'")) = (19.18)

= exp (—Fo(I')),

since a < 0 and.
EV(Y) = v(IrY).
Thus
§(1°°) = Fo(I),

whence F{ is a r-functional and its ‘volume part’ is non-negative.
Now to prove that @(a) is positive. In fact, if @(a) = 0, (19.17) infe

a + S(Fo) = S(FQ),
—Fo(I'") + V(I'°|Fy) = —F&Ir" + V(| Fg),

whence F; = F{j and a = 0, which contradicts the lemma’s assum;
Thus @(a) = 0. Lemma 19.12 is proved.

Now to finish the proof of Lemma 19.11, we assume
E(I°|H) = E(I'°|F§), ¢(a) > 0
for the original Stavskaya system and are going to come to a cor
tion. We know that for this system:
InE(I'°|H) _
virYy
Just from the definition
F§(r) _ l.n(In}:H.,, (F'p|H) InE(|H) )
V(r“) V(") v

lim

—b = —In(1 — B).

pla) = Irm
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So 1t i1s sufficient to show that

InZI=(r)| H)
v(r

But Z/IE(I'})| H) does not exceed the sum of statistical weights of all the
configurations in the volume V(I"’) normed in such a way that makes the
weight of the ‘all zeros’ configuration equal to 1.

Before norming, the sum of statistical weights (that is, the sum of
products of transitional probabilities) was equal to 1. After norming we
have the desired estimation

lim

= =In(l— @) (19.21)

1

= ()
SI=(ry|H) = 1= o)

(19.22)

Lemma 19.11 is proved.

Now to prove Theorem 19.10 we have only to repeat the argument of
[50]. From (19.11) we infer the ‘instability’ of the boundary condition ‘all
zeros'. Moreover, the only limit distribution is achieved with the bound-
ary condition ‘all ones’, whence it is ‘all ones’ too.



Chapter 20
From discrete to continuous time

This chapter is exceptional in our survey, for here we consider continuous
time. We cannot even mention all the papers that treat multicomponent
systems with continuous time. Just definitions of such systems are not
trivial in the continuous-time case — we require proofs and auxiliary
constructions [12]. .

The cluster expansions like those of Chapter 5 are among such con-
structions. Let us apply them here. We shall build the Markov process on
X = X (for simplicity we assume V = 7) with continuous time, having
built some Markov process with discrete time step At and tending A¢ — 0.
First fix A¢ > 0 and examine the interacting automata system with tran-
sitional probabilities

P(x), = a|x'=4) = 8(a,x54) + A,(a.x"")4t, (20.1)

where ¢ € {hAt,neZ}, o is the Kronecker symbol and A, are the ‘infinite-
simal transition probabilities” which depend on parameter a and on the
values of

x790]j = b < R
with

Zi;,{a.x*’d’) =],
i

Thus the following conditional probabilities are defined:
P(xi=a,.heK|x™2) = [] P} = a,| x4 (20.2)

he K

for any K C V. Hence the more general conditional probabilities

P(xi'=ay,h e K| x")
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are also defined by induction. It remains only to prove the existence of
the limit
lim P(xi4'=a,,he K|x") (20.3)

Ar—=l)
et —f

for any K C V. For simplicity let |K| = 1. The following definition suits
the discrete-time case A¢ > 0 and recalls definition 5.1,

f

Definition 20.1

(1) For any point (h,t) of the evolution space Z* there is a branch B,, C
prss

By = {(h,0);(j,t—A41): |j—h|<R).

The point (h.¢) is the root of B, the other points of By, are its ends.

(2) The branch B, is said to be following the point (j,f) if u =< t. The
branch B, is said to be following the branch B;, if it follows one of its

- ends.

(3) A crown with the root (i,r) stands for any finite set of branches which
is connected in the following sense: one of its branches follows the
point (i,t) and every other one of its branches follows another branch
of the crown. Ends of the crown are those ends (j,u) of its branches
for which no point (j.v), v < u belongs to a branch of the crown. Any
point (i,f) is the root and the only end of the corresponding void
crown without a branch.

(4) A crown with several roots (i;,1), ..., (i,,1) is a finite set of branches,
every one of which follows either one of the roots or another branch
of the crown.

(5) A filled crown or a diagram (C,x¢) is a state x € X where X¢ =
H Xy, and C is the union of the branches and roots.

e
Every diagram x. has a weight defined as follows:

(a) The state of a branch has a function A(.,.)Ar of this state.
(b) As about any vertical segment

(U.v), Govtdn, ..., (j.u)

where (j.v) belongs to a branch of the crown and (j.u) either
belongs to a branch or is the root of the crown and all the ot
points

(j.v+d41), (j,u—At)

belong to no branch of the crown, such a segment has the factor
O(x;,x;') which is the Kronecker symbol.
(c) I:verv end (j,u) of the diagram (C,xc) has the factor o(x;,x}).
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(d) The weight of the diagram is the product of all the factors
mentioned in the items (a), (b) and (c).

Lemma 20.2 The probability
U:D[.‘l'}:"]" = a|x”) [204}

is equal to the sum of the weights of all the filled crowns that have the
root (h,nAt), x4 = g and belongs to the evolution space band 1 €
[0,nA1].

Proof is obvious. It remains only to prove the convergence of these
sums of weights with Af — 0, n4r — t. For that we expand the sum (20.4)
into a series Gy + G; + G> + ... where Gy is the sum of weights of filled
crowns having k branches. Every G, has a limit with 4t — 0, ndr — 1,
because it is the Riemann sum of the n-fold integral of a constant. We
must estimate this constant. Let us have two filled diagrams whose bran-
ches have ends

(i=iur), (aetia)s s (st
and

(i=iur), (j212)s - oo (aalin)
We term these diagrams ‘combinatorial-equivalent’ if

fé = j} R f:z = fn

and the corresponding branches have equal states. The number of the
resulting equivalence classes is no more than A" where A = const. Since
every class corresponds to one item in the integrand (remember that the
integral is over the variables w;, ..., u,), this integrand does not exceed
A"C" where C = max |A(.,.)|. The integral being taken over the volume
t", the value of |G,| has en estimator of the order B" uniformly in At. So
the series converges uniformly for r small enough.

Thus the transitional function of the continuous-time Markov process is
the limit of transitional functions of the discrete-time processes and has a
simple cluster expansion which we are going to describe,

Let us double the r-axis:

t € {nAt.(n+3)Ar:neZ}

and define a branch in the new way:
Definition 20.3

(1) A branch is a set

By = {(h.t+3);(j.0:|j—h|<R},
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the point (h,r+%) being its root, the other points being its ends.
(2) A branch By, is termed following the point (j,7) if u < 1. A branch is
termed following another branch if it follows one of its ends.

State of a branch and state of a crown are the states of the correspond-
ing subsets of the evolution space.
Any state x of a crown C has a weight defined as follows:

(a) Every branch has a factor A(.,.) which is a function of its state.
(b) Every vertical segment

[(»).Gaw] or [(j,v+3),(.w)]

of which ends belong to C, (or (j,u) is the root) and the other points
do not, has a factor

d(x},x}) or 8(xy+12 xi).

(c) Every end (j,u) of the crown has a factor o(x;’.x}').
(d) The diagram’s weight is the product of the factors belonging to its
‘branches, vertical segments, and ends.

Now we are ready to describe the cluster expansion: P(xj, = a|x")
equals the sum of weights of all the filled crowns with the root (4,7) with
x!, = a, which belong to the band (0,f). Since u is continuous, the sun
over it means an integral.

The cluster expansion for

P(xh,=ay,. . x5, =a,|x")

is defined in the analogous way. The cluster expansion can be oo (o

check the semi-group property of the transitional function.
Unfortunately, our cluster expansion is not suitable to go

t — 2. But there is another cluster expansion which allows

t — o and hence to prove ergodicity of the system. This results

extra assumption about the infinitesimal transitional probabili

P(x}, = a|x"™4") = d(a,xj7 ") + Lilax 20409 wilax™

Here Aq is the matrix of the infinitesimal transitional probab
irreducible continuous-time Markov chain with X set of
wy(a,x ™) is some ‘small perturbation’ of these infinitesi
ties. It depends on the values of

™ |f— | |.R

and 1is subject to

E wy(a,.) = 0.

o
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The Markov chain having
(Po = exp (Aof))

as the matrix of the infinitesimal transitional probabilities is contractive in
the following sense:

1Pou — Pov|| < exp(=ro) ||lu = v| (20.6)

where Py is the chain’s transitional function, Adg, r > 0, u and v are any
normed measures on X,, and || .|| is the full variation. Hence Pju for any
initial ¢ tends to the chain’s invariant measure i, and

|Ph(x]y) — mo(x)| < 2exp(—rf), (20.7)

%. (20.8)

[lPB(I ly) — wolx)| =
0

Our cluster expansion converges if max |w(.,.)|/r is small.
Let us reword (20.5) as follows:

P, = a|x™) = P§a|x; ) + wy(a,x""4)At (20.9)

where |Ww — w| = O(4).

The last formula (20.9) allows us to formulate the following analogue
of Lemma 5.2. The corresponding diagrams are the same as in (20.1) but
their weights are different: the branches have factors w(.,.)4r instead of
A(.,.)At, the vertical segments have factors P§ *(.|.), the ends have
factors ug(.).

Lemma 20.4 Let the initial measure be independent with every auto-
maton distributed in uy. Then the probability P(x7“* = a) equals the sum
of weights of all the filled crowns with the root (h,ndt) with x4 = a
belonging to the band [0,7].

Proof is obvious.

Going to the limit A7 — 0 we obtain the corresponding expansion for the
continuous-time system. The diagrams remain as before (for the con-
tinuou: time) but now we can take w(.,.) as the branches’ factors (be-
cause the difference between w(.,.) and w(.,.) vanishes when Ar — 0).
The vertical segments have P;~ "(.,.) and ends have uy(.) as factors now.
To make the limit transitions { — <c it remains only to obtain an estima-
tion, uniform in ¢, for the members G,, of our cluster expansion. When ¢ is
finite, G, is an n-multiple integral (over the simplex 0 < u,, < ... < u, <
u; < f or the shifted one —r < u,, < ... < u> < u; < 0). Thus we have to
investigate the convergence of the corresponding improper integral. We



174 Discrete local Markov systems

can go to new variables u,, t» — uy, U3 — >, ..., u, — u,_,. Note that
the sub-integral expression includes the product

P§'(ai|x))PG" (y2]x2) - .. PG (ynlXn) (20.10)

which 1s due to the vertical segments starting from some ends of the
crown’s branches. This expression alone is not sufficient for the integral
to converge because Pg(.|.) does not tend to 0 as u — . But this
expression multiplies by the branches’ factors and is summed over'x,,

..., X,. Remember that E w(x,.) = 0. Thus the integral will not change

if we substract a constant not depending on xy, ..., x,, from every factor
of (20.10). Thus (20.10) equals

(P§'(al|x1) = uo@)) ... (PG '(yulxn) — po(yn))  (20.11)

where every factor tends to 0 in the exponential way with u; — o,
U — 1y — % and so on. Thus the improper integral converges and the n
factors of (20.11) provide an upper estimator of the integral:

Gl = () Stmax 1P (LoD, (20.12)

where all the factors of ends of branches and all the other vertical
segments are substituted by their maxima and the sum over all classes of
diagrams having n branches is taken. But all P* and g, do not exceed 1,
the number of branches is n, and the number of classes of diagrams does
not exceed A". Thus

2 H
1G,| = (?) Ang (20.13)

where C = max|w(.,.)|.

Thus, with C/r small enough, the cluster expansion converges absolute-
ly and uniformly in ¢. So we can go to the limit t — . To prove the
independence of the limit distribution of the initial one (which is ergodic-
ity) one has to examine how change of the initial distribution changes our
cluster expansion. It is sufficient to speak only of initial states x” € X. The
only change of the cluster expansion caused by it is the following: at any
end (j,u) of a diagram the new factor Pg(x}|x}) substitutes uy(xj). After
shift of time variable the new factor can be rewritten as (x| x}). The
new cluster expansion for t finite converges uniformly in r for the same
reasons as the former one and allows the limit transition t — = of every
member. But Pj(y|x) tends to ug(y) as r — ». So every member tends to
that one of the former cluster expansion. Thus we have proved the
following theorem.
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Theorem 20.5 With C/r small enough, the limits

]ml P(xj, =.a) and r111}} Pz} Sty %), =0y
exist, do not depend on the initial measure and equal the sum of weights
of all the filled crowns with the root (4,0) with x)) = a, and the roots
(h,0), ..., (h,,0) with x;, = a,, ..., x; = a, correspondingly.



