1.4
Algorithmic methods

Throughout Chapters 14 and 15 we treat homogeneous one-dimensional
independent operators. The number of states of a single automaton will
be large but always finite. All the results of these chapters can be
generalised trivially to the larger dimensions. All the results of these
chapters have been published in [44,45] in slightly different formulations.
One of these results has produced more interest than the others; it is
the algorithmic unsolvability of the problem whether a homogeneous one-
dimensional independent operator is ergodic, even if all the transitional
probabilities are 0, 1, or % We discuss it in Chapter 14. The other results
are in Chapter 15. One of them is the possibility of recognition of any
formal language with some specific one-dimensional homogeneous sys-
tem.

All the proofs of these chapters use theoretical simulation of some
Turing machines with our systems. A ‘Turing machine’ is a deterministic
or stochastic (see [46]) one-tape machine.

Chapter 14

Algorithmic unsolvability of
the ergodicity problem

The main result of this chapter, Theorem 14.1, can be formulated in
various ways. We might take

Uh) = {h—1,h,h+1}

and any finite X},. But it is more in line with our survey to take X = {0,1}
but any homogeneous neighbourhood system U. So we do.

Theorem 14.1 [44,45]. Consider the totality T of one-dimensional
homogeneous independent operators with X, = {0,1},

U = e poonilighs 8 &,

and transitional probabilities

5'(xi:rl|l'ifm}) € {0315%}'

There is no algorithm which would say whether any operator of T is
ergodic or not.

Proof. Let K stand for the set of those Turing machines tha
restore the void symbol 4 on the tape and place special marks ~n the
leftmost and rightmost cells where they have been. It is known 1
problem of recognizing those Turing machines of K which ever
unsolvable. We shall use this fact. For any Turing machine M .
shall build in a constructive way some operator Py, € T which !
and only if M stops. This will prove our theorem.

So it remains to carry out the construction process. It start
construction of a deterministic operator D, having

Algorithmic unsolvability of the ergodicity problem 125

Uth) = {h—1,hh+1}.

Let {1,pg,- - ..p,) stand for M’s set of symbols on the tape (where 4 is the
void symbol) and {g.4,.. . .,q,,} stand for M’s set of inner states (where
go is the initial state). Then the corresponding D,, has

Xo = {A,po,. - -.Pn.(4,9;),0=j=M,(p;,q;),0<i=n,0<j=m,+,—}.

Here 4, po, ..., p, imitate the tape cell without the head, (4,g;) and
(pj,q;) imitate the tape cell with the head, and ‘+’ and ‘-’ are special
extra symbols. The state ‘+’ emerges if and only if the machine stops.
This state is expansive: it remains and always turns its neighbours nto
~ pluses. In the absence of ‘+’ the transitions of D, imitate the work of M.

Note that the initial state may have many ‘heads’ (automata in the
states imitating presence of a head). So the functioning of D), imitates
the work of many heads on the tape. But we take care against their
interference: since the imitated Turing machine marks the leftmost and
rightmost cells of its working zone, every head can register when it
attempts to breach another head’s zone. Having once done this, it blots
out (that is, turns into 4) all the signs it has written (what the special sign
‘=" 1s used for), and after that it disappears.

We need another deterministic operator D}, which has the same X and
U but other transition function:

+ 1f there is a ‘“+’ among x,_1, X, Xpt1,
(XD;W);: = ('Juf}u} if xp_q=x, =254 =24,
A in all other cases.

Both deterministic operators D,, and Dj, may be considered as
stochastic operators whose transitional probabilities equal 0 or 1 in the
usual way. This allows us to introduce an operator W,, which has the
same X and U and whose transitional probabilities are arithmetic means
of those of D,, and Dj),. This W,, is ergodic if and only if M stops.
Indeed, the measure concentrated in the state ‘all pluses’ is invariant for
Wy

Now let M stop. Note that Dj, generates heads spontaneously. These
heads work and some of them will survive to stop with probability 1.
Then + appears and expands to both sides, which means that the prob-
ability of + tends to 1.

Now let M wucver stop. Then the initial measure concentrated in the
state ‘all A” will produce measures having no +. So, according to Corol-
lary 2.8, there is an invariant measure in which the proportion of + is
zero. So Wy, has at least two different invariant measures. q.e.d.

But our theorem is not yet proved because we promised to restrict
ourselves to the case X;, = {0:1}. So denote

126 Discrete local Markov systems

We code all elements of X, with words a,, ..., a; where a; € {0;1}.
Every a € (Xo\{+}) gets a code ¢(a) of the length 2¢ + 7:

a,a,a-a, ... agag,0000010

where aja, ... a; is the word corresponding to a. The code of + consists
of 2¢ + 7 zeros.

Now we define a mapping
&: X¥T — {0,1}7
by the rule
O v X XX pis o) = sanpplXigle @O0 PEEL), wwoes

Let @ stand for the corresponding mapping of measures too.
The operator Py, will have

\U(h)| = 8¢ + 25.

We do not write down its transitional probabilities in full, but just claim
the following:

(a) D(uWy) = P(u)Piy
for any measure 4 on X .
(b) If a state y € {0,1} has no @ '(y), then P, turns it into ‘all zeros’.

Thus P3, imitates W,,. If u is invariant for W,,, then @() is invariant
for Pys; hence non-ergodicity of W), implies non-ergodicity of Py, If Wy,
is ergodic, it converges to ‘all +* and P,, converges to ‘all 0’. Thus P,y is
ergodic if and only if Wy, is ergodic. q.e.d.

Note that the number 1/2 in the formulation of the theorem is not
essential; it may be substituted by any pair @, 1 — a where 0 < a < 3.

Of course, many questions remain unsolved. These include:

(1) May 1/2 be omitted from the formulation of the theorem?
(2) Does a similar theorem hold for non-degenerate operators?

Chapter 15
Recognition of formal languages

As usual, an alphabet A is a finite non-empty set of symbols. We also
have the void symbol A, which is not an element of A. A word in A is a
finite (perhaps, empty) sequence of symbols of A. Let A* stand for the
set of words in A. Any subset of A* is a language in A.

Systems in this chapter are homogeneous in space as in the other
chapters, but are not homogeneous in time. Transional probabilities here
have a parameter which runs through the given alphabet A:

ﬁ(xf,+1|xfr_;(m,a), ae A. (15+1)
Of course, the resulting operator P, depends on a € A too and P, with
different a € A may be applied at different times r = 1, 2, The initial

measure is always concentrated in a certain initial state x; = xp where
xo € Xp. The resulting evolution measure /& is regarded as a function of

the input sequence a,, a,, as, ..., members of which are those elements
of A which served as parameters at times t = 1, 2, 3, We say that a
word ay, a> ..., a,, is fed into the system if the input sequence 18 a;, a>
.., @y, A, A, A, Elements of some proper subset X, C X, are
termed yes-states, and a function ¢: X, — {0,1} is introduced:
. 1 if Xp € X_._
q(Xo) = {0 otherwise.

Let
x={x3), h e &, te &

stand for a realisation (or trajectorv) of the system at all times. Introduce
the yes-function

128 Discrete local Markov systems

0() = lim), q(x}).
n—m fi=—n
It is easy to prove that this limit exists in our cases and equals ji(x;, € X)
which does not depend on i € Z. We are interested in dependence of
Q(¢) on the input word W. So we shall write

(1) = Owl(D).

We shall speak of language recognition. First take a finite automaton R
with input that has input alphabet A U {4} with the fixed initial state and
another fixed ‘signal’ state. Any word a; ... a,, of A™ is said to be fed
into R if the input state sequence is ay, ... @y, 4, 4, 4, A language '
I C A* is said to be recognized by R if R gets into the signal state in
those and only those cases when a word of L is fed into it. A language -
L. C A* is said to be finite-automatic if some R recognizes L.

The following definition is an application of the same idea to the -
multicomponent case.

Definition 15.1 A system recognizes some language L © A" with para-
meters a and 8, where 0 = a = # = 1 if the two following conditions
hold:

(1) For any word W of L there is such ¢ that Qw(f) > g or Qw(?) = 1.
(2) For any word W in A which is not of L

Ow() <= a and QOw() <1

at all times.

We term a language L a/f-recognizable if there is such X, and such
transitional probabilities (15.1) that the resulting system recognizes L.

Proposition 15.2 There is a system which 0/1-recognizes the given lan-
guage L and has all the transitional probabilities (15.1) equal to 0 or 1, if
and only if the given language L is a finite-automatic language.

Proof is evident because in this deterministic case the automata cannot be
in different states at one time, so the functioning of the system boils down
to the functioning of one finite automaton with input. What we really
want to say is stronger:

Theorem 15.3 A language is 0/l-recognizable if and only if it is a
finite-automatic language [44.45]

Proof is based on Proposition 15.2.

Recognition of formal languages 129

The two following theorems use the notion of enumerability of a lan-
guage, which is known in the theory of algorithms. Briefly, a language is
termed enumerable if it is recursively enumerable when considered as a
set, or if it is recognizable by some deterministic Turing machine. A
Turing machine recognizes a language L € A* if, having started with any
input word W € A*, it stops if and only if W € L.

Theorem 15.4 A language is 0/8-recognizable if and only if it is enumer-
able [44,45].

Sketch of a proof. For any enumerable language L we build a system
which imitates the work of infinitely many copies of that Turing machine
which recognizes L (like we built D in proving Theorem 14.1). The points
imitating heads are chosen at random at t = 0. Those heads that do not
have enough place to work destroy both their writings and themselves (if
an emulation of a Turing machine does not stop, every head will ultimate-
ly destroy itself with probability 1). The only source of randomness in
the system is the initial state. But the randomness of the initial state is
essential.

For any 0/8-recognizable language we prove its enumerability by look-
ing through all possible (that is, having positive probability) variants of
work of a segment of the system of length 2T + 1 during T first steps of
time, which i1s done for all natural 7.

Theorem 15.5 1If a > 0, a language is a/f-recognizable if and only if it is
enumerable [44,45].

Proof is like the proof of Theorem 15.4.
Of all the results of this chapter the following one was the most
unexpected.

Theorem 15.6 There is a natural K (which is an absolute constant not
exceeding a million) such that for any « and 8, where 0 < a = < 1 and
for any alphabet A any language L C A™ is a/f-recognized by some
system in which every single automaton has K states [44,45].

Proof uses some ideas of [46]. It is cumbersome and we only sketch
it here. It includes simulation by our systems of probabilistic Turin
machines (about which see [46] in particular). Since |A| may exceed
the input word is remembered by the system in a statistical sense,
Elements of A have as counterparts not elements of K but differc

probabilities of writing 1 which moves in a certain direction (say, ri
with speed 1. Thus the input word W is ‘remembered’ by a sequen
zeros and ones of the same length. Of course, one such sequence rem:

130 Discrete local Markov systems

of the input word only very slightly. But, since the word is ‘written’ in
infinitely many places, the system as a whole ‘knows’ the word with
probability 1. The language is ‘known’ by the system in the statistical
sense too, and checking whether one belongs to the other is done in a
statistical way.

Theorem 15.6 is possible because the segment (0,1) has the same
continual cardinality as the set of all languages in a given alphabet. This is
highlighted by the following.

Proposition 15.7 Let 0 < f — a < 1. A language L is a/ff-recognized
by some system which has rational transitional probabilities (15.1) if and
only if L is enumerable.

Proof. Let 8 — a < 1 and L be enumerable. Then its being a/f-
recognized by some system with rational (15.1) parameters follows from
Theorems 15.4 and 15.5.

Now let L be a/S-recognized by some system with rational (15.1) with
a < 1. In this system any i(x}, = ¢) is a rational number which is defined
as soon as the input word W is given.

Remember that a language L is called enumerable if there is such a
Turing machine with input that stops if and only if the word fed into it
belongs to L. _

Now assume that a language L is a/-recognizable. So there is a system
with rational transitional probabilities which a/f-recognizes L. Take any
rational r € (a,8). The probability that some element of the system is in
the yes-state at some moment, is a rational number which can be com-
puted. Let us arrange such a Turing machine that computes this probabil-
ity for all moments of time and stops if and only if this probability ever
exceeds r. This Turing machine recognizes L.

Note that the functioning of the system constructed in the proof of
Theorem 15.6 depends heavily on the exact values of its parameters and
gets spoiled by arbitrarily small changing of them. To highlight this
fragility we introduce the following definition and theorem.

Definition 15.8 A system a/fi-recognizes a language L in the stable way
if it a/f-recognizes it and still does so even if those of its transitional
probabilities (15.1) that differ from 0 and 1 are modified withi
non-zero range.

Theorem 15.9 Let0 < f§ — a < 1. A language is a/f-recognized |

system in the stable way if and only if it is enumerable [44.45].
If 0 < f — a < 1 and a language is enumerable, its be

recognizable in the stable way can be proved along with our

Recognition of formal languages 131

Theorems 15.4 and 15.5. The inverse statement follows from Proposition
15.7 and the fact that rational numbers are dense on (0,1).

Of course, our conceptions are not the only possible ones. Some other
definitions of a language’s being recognized by a system seem interesting
too. For example, the value or existence of limgi(x}, € X_.) in the place of

f—x

the inequalities of Definition 15.1 leads to something analogous to limit
computability [20].

It seems appropriate to investigate the amount of time needed by a
system to recognize a language in a stable way as depending on the lan-
guage’s complexity (see [79]). Shnirman has suggested making states of
~automata dependent on some parameter of i at time ¢ [72]. The very idea
of combining the local interdependence, which is the main theme of this
survey, with all elements’ dependence on some global input has analogues
in computer science, polymer chemistry, and even sociology.

