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1.3
Combinatorial methods

We shall now consider non-ergodic operators; in fact we construct oper-
ators that have more than one invariant measure. Our proofs (except for
those of Chapter 13) follow the same general lines that have been de-
veloped for Ising-like models of statistical physics and random fields. The
key part of such a proof is a combinatorial estimation of the number of
graphs of a particular sort. In Chapter 8 this is done for the Stavskaya
system which was described in Chapter 1 as Example 1.2 and for similar
systems. Chapter 9 is about deterministic operators. It investigates their
property of being ‘eroders’ which is relevant to ergodicity of those
stochastic operators which are compositions of these deterministic oper-
ators and the standard independent homogeneous random noise, and .this
relevance is the theme of Chapter 10. In Chapter 11 we prove non-
ergodicity of random walk operators (introduced in Chapter 6) with
random noise added. Chapter 12 presents two counter-examples which
show impossibility of some generalisations. Chapter 13 is a special one. It
is an introduction to the very interesting but difficult problem of whet"or
there are one-dimensional independent local homogeneous non-dege
ate non-ergodic operators.

In most cases X = {0;1}". Often we concentrate on the case when
measure 0; concentrated in the state ‘all ones’ is invariant for an ope:
P. In this case we consider the family of operators P, = PS, with
parameter £ € [0,1] where S, is the random noise defined in Chay
which turns any 0 into 1 with probability ¢ independently from other
course, d; is invariant for P, with all £. Thus, P, is ergodic if it co
X to d; in the limit r — ==

Of course, P, does it with ¢ = 1, and most quickly. If P 1s .
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geneous and independent. P, is ergodic with all e = 1 — j—{ where R =

|U(h)|. This just follows from Proposition 2.17 and will be proved here in
another way.

We shall construct such P for which P, are non-ergodic with some
¢ > 0. For every such P there exists some (at least one) critical value of ¢,
which separates those values of ¢ which make P, ergodic from those
values of ¢ which make P, non-ergodic. Example 11.1 presents a non-
monotone P having no less than two critical values of &.

For a monotone P it is easy to prove uniqueness of the critical value.
By definition, this is such value £* of & that operator P, is ergodic with all
e, ¢* < ¢ = 1 and non-ergodic with all &, 0 = ¢ < ¢*. If P is ergodic with
all ¢ > 0, we define ¢* = 0.

Obviously, ¢* = 0 if V is finite. In fact, in this case P, is an operator of
a finite Markov chain which is ergodic with £ > 0 and has the absorbing
state ‘all ones’.



Chapter 8
Percolation operators

Let us have a graph I'(V,%). Then Dy stands for the deterministic
operator on X = {0;1}" defined by the condition

1 lf IU{,J?) = .1,
0 otherwise.

(xDyg) = {

In other words, the Ath component of xDy is 1 if and only if all the
components of x in the neighbourhood U(h) are ones. Of course, on any
I'(V,%) there is just one D,. Note that Dy < P for any P € 2, on the
same [(V,%).

The operator Dy is always monotone, hence it always has just one
critical value which we denote ¢ € [0;1]. By definition of £}, the com-
position DS, is ergodic with all ¢ > ¢ and non-ergodic with all ¢ < &}.

This chapter 1s about compositions DyS, which we term ‘percolation
operators’. Remember that the evolution measure /i on the evolution
space (defined in Chapter 2) for the special case of DS, is representable
as induced by the Bernoulli measure on the auxiliary space 2 with the
mapping defined by the following formulae:

xit' = max {w},, min {x}}},heV,teZ,.
ke LI
This mapping defines any x5;, H € V, T € Z . as a function of a finite set
of arguments w},, xj,. The following proposition is about this function.

Proposition 8.1 For percolation operators x /i = 0 as a function of w},,
xp, h e V,teZ. if and only if there is such a sequence hy, hy, ..., hyof
elements of V for which the following three conditions hold:
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(a) hy = Hand h,_; € U(h,) for all t from 1 to T,
(b) wj, = 0 for all t from 1 to T.

(c) xp = 0.

Proof can be easily performed by induction. Instead of doing this, let us
describe a ‘physical’ interpretation of this proposition which warrants our
use of the term ‘percolation’. Imagine that all bonds of the evolution
graph (defined in Chapter 2) are semi-conducting pipes which can trans-
mit some fluid to any point (&,t+1) from the points (k,t), k € U(h). Any
point (k,f) is free for the fluid to pass it if wj, = 0 and is corked with a
stopper if wj, = 1. Initially the fluid comes to those points (.fz 0) where
%% = 0. Then the value of x/; (as a function of arguments x and w})
equals zero if and only if the fluid can percolate to the point (H,T) and
through it.

Percolation problems have been treated -in many works ([17,41,54] in
particular) and have led to the development of methods such as those to
be used in our proof of Theorem 8.4. But let us first prove two simple
Propositions 8.2 and 8.3, the former of which is a special case of Proposi-
tion 2.17.

Proposition 8.2 For any homogeneous graph I'(V, #/) its critical value & <
1 — é where R = |U(h)|. In other words, any percolation operator
1

DqS, is ergodic with ¢ > 1 — R

Proof. Lete > 1 — % It is sufficient to prove that

lim 0P(xo = 0) = 0.

The sub-limit expression is the probability that the fluid percolates to
the vertex (0,7) of the evolution graph where 0 stands for an arbitrary
element of V.

There are R” oriented paths from ¢ = 0 to the point (0,7) for the fluid
to percolate. The probability that a given path is free for flow is (1 — e)’,
Then the pl’DbeiliW that at least one path is free does not exceed

1
R(1 = - S R then this value tends to 0 with T — =. q.e.d.

[.lsing monotonicity mnsuier:mnnﬁ, one can infer from it the ergodicity

of PS,, withe > 1 — = for any P € 2.

R
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Note that this upper estimation for £} cannot in general be improved

because ¢ = 1 — }13:- for the tree-like graphs (see Chapter 2).

Proposition 8.3 Let two graphs I, and I'> have the common set of
vertices V' and their neighbourhood systems be %/, and %/,. Let

Yh e V: Ul(h) € Ush).
Then

E_r“1 = E.t':.

Proof. Let D§S, and D§S, stand for percolation operators on graphs I’
and I;. From percolation considerations

0(DyS.)" > 0(DGS.)',

which proves the proposition.
The following is the main result of the present chapter.

Theorem 8.4 [71,85]. Let I'(V,%/) be a homogeneous graph where V =
G = 7 the neighbourhood system % being translation invariant, and
\U(h)| = 1. Then &} > 0. In other words, percolation operators are
non-ergodic on such a graph with ¢ small enough.

Proof. Proposition 8.3 provides
Ep.# EF:

where [ is the simplest one-dimensional graph with V = 7 and U(h) =
{h—1,h}. In fact, eliminating from I" some bonds in such a way as to
conserve homogeneity we can ensure that |U(h)| = 2 and the value &} will
not increase with this. Now, in the case |U(h)| = 2, all the connected
components of the evolution graph are isomorphic to the evolution graph
of I} which makes ¢} = ér,. Thus it is sufficient to prove our theorem for
the special case of I'}.

Two quite different proofs have been proposed for this case. One of
them, described in [71], is cumbersome and we shall not describe it. The
other [85] is based on a combinatorial estimation. It is simple enough and
gives a better estimation for & (although it is very far from precision).
Let us describe the latter proof.

Due to Proposition 8.1 we have to estimate the probability that the
fluid cannot percolate to the point (0.7). We are going to show that to
prevent the fluid from reaching (0.7), the stoppers must form at least one
‘fence’ in a certain sense (as we have mentioned in describing Example
1.2). It is most convenient to fix the ideas in terms of dual graphs.
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First let us describe the necessary notions in general. A planar graph is
a graph placed in a certain way in a plane without intersections. Let 4
stand for a planar graph with two marked vertices A and B. We say that a
state of the graph 4 1s given. if it has been said about every K. bond of it
whether it passes (the fluid) from K to L and whether it passes from L to
K. Let A stand for the dual planar graph of 4. (This means that vertices
of A are the domains into which A cuts the plane and vice versa; bonds of
A and A cross each other in the one-one correspondence.) For any state
of the graph A4 we define the corresponding state of A by the following
rule. Let the bond MN of A cross the bond KL of 4 and M be on the left
side (N being on the right side) of KL when moving along KL from K to
L. Then MN passes from M to N if and only if KL does not pass from K
to L.

The following is true for all planar graphs: the graph A4 does not pass
(allow the fluid to percolate) from A to B if and only if in the graph 4
‘there is a circular oriented open (for the flow of the fluid) path separating
domain A from domain B and oriented clockwise around A. This can be
proved by induction over the number of bonds.

Now let us apply this general statement to our case. Luckily, the
evolution graph of I'} is planar - it is a square lattice. We need only a
finite triangular part of it, namely the part which the fluid can use to
reach (0,7). (Fig. 8.1. shows this part for T" = 4; to make the picture
symmetric we inclined the lines i = const.) Now we substitute every
vertex (i,f) by a vertical bond and keep the same notation (i,f) for it.
Thus we have turned our triangular piece of square lattice into another
planar graph which we denote 44+. It is a homogeneous lattice with
hexagonal cells shown in Figure 8.1 by unbroken lines. Let us merge all
the lower ends of bonds (i,0) into one vertex A which 1s one pole of our
graph. The upper end of the bond (0,7") will be the opposite pole B. As
before, the inclined bonds of this hexagonal lattice always pass the fluid
upward and never downward. Any vertical bond (i,r) passes upward if
and only if w; = 0. As a result of all this, our graph A passes the fluid
from A to B just in those cases in which xJ = 0.

For technical reasons we assume that vertical bonds always pass (allow
to flow) downward; in fact, this changes nothing because inclined bonds
never pass downward and prevent the fluid from moving downward.

Thus we have the planar graph A+ and rules for its bonds to pass. This
defines uniquely the dual graph A4 and its bonds’ passing behaviour.
After minor amendments, A, becomes a piece of homogeneous lattice
with triangular cells. It 1s shown by dotted lines in Figure 8.1. According
to the general rule, the former graph 44 does not pass from A to B if an
only if the amended A passes from EE to FF. (Essentially the way fr
EE to FF is circular because £E and FF are in one domain and ougl
be identified.)
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Fig. 8.1 Percolation graph and its dual.

Thus our aim, expressed in the new terms, is to estimate the probability
that 47 does pass from EE to FF. The main point is that this probability
does not exceed the sum of the probabilities of all the events ‘the way
passes from EE to FF'. Let us estimate this sum.

The inclined bonds of 44 are dual to the inclined bonds of A,. Hence
they always pass leftward and never pass rightward. The horizontal bonds
of A are dual to the vertical bonds of A7, Hence they pass rightward
with a probability ¢ independently from each other. As we have ens !
that the vertical bonds of A4+ always pass downward, the horizontal !
of A7 never pass leftward.

Thus any path in A7 from EE to FF that can ever pass, consists o
three types of steps, shown by arrows in Figure 8.1. These steps are
of three vectors, the sum of which is 0. We may consider only thos:
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which never pass the same point twice. For these paths the probability of
being pass-free is ¢¥ where & is the number of horizontal bonds in the
path. Thus

Al =1) = ;E Nk, (8.1)
=1

where N is the number of different paths from EE to FF of the kind
we consider having k horizontal bonds. It remains to estimate Ny. It is
convenient to continue every path beyond its ends along EE and FF as
far as the point where EE meets FF. Then every path will have equal
numbers of steps of all the three directions. Thus it has 3k steps and
moving along it we have no more than three choices at every point.
Hence N, < 3°*. Thus ¢ < Z; makes the sum (8.1) less than 1. g.e.d.
Theorem 8.4 is proved.
Thus ¢}, = s7. Let us discuss how to get a better estimation.

Proposition 8.5 [85]. The value of &, is no less than the radius of
convergence of the series (8.1).

Proof. Proof is based on the following generalisation of (8.1):

™M

AT =xT = ... =L =1) = ), Nyev. (8.2)
k=1

First let us prove (8.2). That part of the supergraph (evolution graph)
which the fluid uses to reach our points

(L.T); oy {00 T)

is an equilateral trapezoid. Hence we turn all vertices (i,f) into vertical
bonds (i,f) too and introduce pole A as before. But now we identify all
the upper ends of the vertical bonds (1,7'), ..., (m,T) into the other pole
B. The resulting graph does not pass the fluid from A to B if and only if
x{ = ... = x}, = 1. So the dual graph does pass in the same case. This
dual graph is also a piece of triangular lattice, but truncated. The shortest
relevant path in it contains m horizontal bonds. Thus (8.2) holds.

Now let us prove our Proposition 8.5. Let £ be less than the radius
of convergence of the series (8.1). Then (8.1) converges. Then we can
choose such a large m that the sum on the right-hand side of (8.2) will be
less than 1. Since this estimation does not depend on 7, we can apply
Corollary 2.8, where C; is the totality of those u € .#(X) in which the
probability of x{ = ... = x] = 1 does not exceed the right-hand side of
(8.2), to prove existence of invariant 4 € C; which differs from 0.

Proposition 8.5 is proved. This yields ef, = 5+ at once. But we can do
better. Let us code paths from EE to FF by sequences of signs 1, 2, 3
where 1 denotes a left-down-directed bond, 2 denotes a right-directed
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bond, 3 denotes a left-up-directed bond. Now we take into consideration
the fact that codes with 13 or 31 entries need not be considered (because
in those cases the path can be shortened without including any new
horizontal bond). This leads to a better estimation:

er, > 0.09.

Let us explain the estimation in detail to show cur method which will
be used in a more complicated form to prove Theorem 11.1 below.

We introduce a coordinate system (i,7) in Figure 8.1. Let the left-upper
corner of the trapezoid be the origin 0. The i-axis goes to the right, the
t-axis goes up., We choose the scale to make vectors corresponding to the
three kinds of steps in our paths have coordinates (—1,—1) for type 1,
(2,0) for type 2, (—1,1) for type 3. Let a ‘correct path’ be a path starting
at the origin, passing several bonds in the direction of the arrows, loop-
less and avoiding 13 and 31 entries. (Note that we have not yet specified
the end location.)

Every correct path has a ‘weight’ ¢* where k is the number of type-2
bonds in this path. We have g;/(i,7) standing for the sum of weights of all
the correct paths with n bonds which end in the point (i,) and have the
last bond of the type ¢ € {1,2,3}. Of course

o 3
Al = ... =xh=1)< ), ), o82m0). (8.3)
n=1 g=1
The sums o7l(i,r) satisfy the following recurrent inequalities:
Opi1(ist) < op(i+1,1+1) + on(i+1,t+1),
Onr1(ist) < e[on(i—2,0) + 07(i=2,1) + o(i—2,1)], (8.4)
api1(i,0) < oi(i+1,0=1) + ol(i+1,t-1).
Now we introduce some new sums:
Sia.B) = N N dBlol.o,
= —20 f== —o0
where a and f are positive parameters. Equation (8.3) implies

Al = ... =xp=1)<a" E E Zi(a,p), (8.5)

n=1 g=1

forall @ > 0, 8 > 0.

The relations (8.4) provide relations for the new values:
Zha(a,pf) = a”'B7[Z0(a.p) + Zi(a.B)),
Zra(a,p) < ea®(Zy(a,p) + Zi(a,B) + Z(a.B)],
Zaei(a,B) < a”'B[Z5(a,B) + Z5(0,B)]-

Let M stand for the matrix of coefficients of the right-hand sides:
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M= ea ca? ea”
0 Ay O

We want to make all the eigenvalues of M less than 1 in modulo
because this makes the series on the right-hand side of (8.5) convergent.
If @ = 1 too, there exists such m that the right-hand side of (8.5) is less
than 1, which allows us to refer to Corollary 2.8 to prove non-ergodicity
of P.

According to a well-known criterion (see [26]) all the eigenvalues of
M are less than 1 in modulo if all the main corner minors of the matrix
E — M are positive. This condition leads to the following system (in
transformations it is convenient to transpose the second line and column
with the third ones):

ﬂ'_lﬁ_l a—lﬁ—l 0 )

o > 1,
ot B
- (1-a'p7H - ﬂ"lﬁ)b

a’ — 1

To obtain from this the best possible estimation for &*, we should
choose a and § so as to maximise the right-hand side of the last inequal-
ity, namely a = %(1 + V2) > 1 and § = 1. They make the right-hand side
in question equal to

1(5V5 — 11) = 0.09017.
Thus
er, = 0.09

Analogously one can take into consideration the impossibility of some
longer entries in the codes of the paths. For example, we may ignore all
codes where 123, 321 and so on occur. But such computations, even in
the limit, certainly will not lead us to the exact computation of ¢f,. The
point is that various events of the type ‘this path from EFE to FF is free to
pass’ are compatible. One can show that the probability of the dual graph
passing from EE to FF equals the sum of probabilities of events of the
type ‘this path passes from EE to FF, and there is no free path which is
at least partially above it’. We cannot see a way of estimating the sum of
probabilities of these events which would provide lower estimations for
er, tending to &7 in the limit.

To end this chapter let us survey some other results about percolation
operators.

Let & be the evolution measure on Z X Z, produced by the percolation
operator P, = DS, on the standard graph I'; and such initial measure u
that (1) = 0 (where 1 is the single state ‘all ones’). The percolation
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interpretation of & (our Proposition 8.1) allows an upper estimation of
probability & of a two-dimensional ‘island’ of ones surrounded by zeros: it
does not exceed Ae™#L where A and B are positive constants and L is
the length of the boundary. This estimation is used in [100] to work out a
system of correlation equations for the probabilities of islands which is
similar to systems of correlation equations in models of lattice gas [49,73]
and to prove uniqueness of its solution for small values of & (say, ¢ <
0.001). Hence P, has just one invariant measure with #(1) = 0 for small ¢
and this unique measure u, depends analytically on ¢. (Uniquenes of &,
among homogeneous measures is proved for all ¢ < & by another
method; see [47] and our Proposition 4.9.)

Symmetry of percolation allows us to prove for small values of & that
any homogeneous initial measure with x«(1) = 0 produces u, in the limit:
Eim uP, = imO0P; = u,

a0 f—
and in general this symmetry allows us to describe limxP% for all initial
states x [98].
Let I'; stand for the d-dimensional graph with V = Z¢ and

U(h) = {h,h—fl,. . .,h_ﬁ'd},

where e, ..., ¢4 are unitary coordinate vectors. Due to Proposition 8.3,
the sequence &, is non-decreasing. In [53] it is proved that this sequence
tends to 1 in the following way:

ep, = 1 —%+a(}f),
where @ = 1 is a constant; but we do not know the value of a.

It seems in general that there are many graphs for which &} > 0, that is,
on which the percolation operators are non-ergodic for small values of ¢.
Perhaps this is true for all infinite connected (in the sense defined in
Chapter 2) homogeneous graphs with |U(k)| > 1. Now &} > 0 is proved in
the following cases:

(a) If h € U(h) for all h € V. See proof in [55, pp. 28-9]. This is based on
er. > 0.

(b) If I has a commutative transitive group of automorphisms. This
follows easily from (a). |

(c) If for any h € V there are such {h,,h;} C U”(h) that U"(hy) N
U™ (hy) = . For example, this is true for a tree-like graph. See proof
in [55, pp. 26-8].

As has been said in Chapter 1, the non-ergodicity of percolation oper-
ators on [ with small values of ¢ was first discovered in [78] by computer
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simulation. In fact, a finite system was simulated with various boundary
conditions. In a series of computer experiments this finite system was a
circular chain of automata: the right-hand end automaton was made the
left-hand neighbour of the left-hand end one. Applied to these finite
systems, our combinatorial method shows that they behave for small &
in a special way too. To give exact formulations let us denote V =
{1,...,m} and
_ [{h—1;R} for 2 =h=m,
) = {{m;l} for h =1

For finite V, all percolation operators on this graph are ergodic for all m, &
> (). Thus, to discern differences in their behaviour we have to introduce a
parameter relevant to the speed of their inevitable convergence to 1. Let
7.(m) stand for the mean time ¢-at which the system reaches the state

| S— — | S—
X1 = e _xm_l

if it has started from the state

0
e e e &40

Then:

(a) If ¢ > 1 then

2¢
e — 1

7.(m) =log { m+ 5

2(1=—¢)
(b) If & < 5% then
1 —2e
{38)"1 i

The estimation (a) was first proved in [78]. It is deducible from our proof
of Proposition 2.17.

To prove the estimation (b) (see [85]) note that the evolution graph in
this case is planar too. You may imagine it drawn on a cylinder. Thus the
job boils down to estimation of the number of paths around this cylinder.

The comparision of estimations (a) and (b) shows that in the limit m — =
the finite systems behave in qualitatively different ways for dif-
ferent . So let £, stand for the supremum of those & for which 7.(m)
grows exponentially with m — . Let &, stand for the infimum of those &
for which z.(m) grows logarithmically. Clearly ¢, = &,,. From estima-
tions (a) and (b),

.(m) =

U <z Ecxp = Elr.}g < ],

In the computer simulation we assumed similarity between the finite and
infinite cases, and this assumption is very common. But to prove is better
than to assume. The following proposition is a step in this direction.
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Proposition 8.6 (L. G. Mityushin).

(a) &f = e, where g, is the infimum of those & with which 7,.(m) =
o(m).
(b) &10p = earx Where &, has been defined in Chapter 6.

Proof. Let us prove (a). Let fi,, and .. stand for the evolution measure
in the finite and infinite cases. Note that for r = m

Am(xy, = 0) = ji(x}, = 0).

Hence

G B
e

T.(m) = mi{x: x' # 1} =

_._
I
=

; .l'&'ﬂi'{x: x;f e U} =

10

= M, {x: xf = 0} = mi{x: xj! = 0}.

Multiplying this by 1/m and proceeding to the limit m — =, we obtain the
required estimation.
Let us prove (b). Let ¢ > &}.x. Then (see Note 6.7),

ﬂx{x: x;r = U} — G(e*cunst-;)r

On the other side

14

.(m) = i, {x:x # 1} =

AU (= 0) <

heV

-
Il
-
=

Il
15
=

,,
I
=

s

= 2, min(1,mi,,{x: xj, = 0}).

_.‘
II
=]

From the results of the paper [54],
ﬁm{x: XE, — []} = ,acr,{-r: X;, = 0}
for all m, t. Thus
T.(m) = E min (1,0(me™""™""")) = o(Inr)
=l

gLeid,

Finally, let us resume all the inequalities between the various in
duced critical values of &, all of which refer to percolation operators «
and its finite analogues (see end of Chapter 6):
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However, it seems most plausible to us that all these critical value
equal. It remains to prove it.



Chapter 9
Eroders

In Chapters 3—5 we proved that operators having approximately equal
transition probabilities 6% are ergodic. As we look for non-ergodic oper-
ators here, we should do it among those having sharply different 6%. Best
of all would be for some of these parameters to be near 0 the others being
near 1. In this case, it pays to treat a stochastic operator as a perturbed
deterministic one, as we shall do. So we have something to say about
deterministic operators first. The letter D will now stand for a determinis-
tic operator on X.

Definition 9.1 Let x = {0;1}". In this case I(x) stands for the set of
those h € V where x;, = 1:

I(x) = {heV:x, =1}.

A state x € X is termed an ‘island’ if I(x) is finite. A deterministic
operator D: X — X is said to ‘erode’ a state x € X if after a finite number
(1) of iterations the state x is turned into the state ‘all zeros’, that is, if

3t: I(xD*) = &.

A deterministic operator D: X — X is an eroder if it erodes all islands in
X.

For example, the percolation operators Dy introduced in Chapter 8
certainly are eroders in the case most interesting for us: when [ is infinite,
connected, homogeneous, and |U(h)| = 1. In particular, the deterministic
part of the Example 1.2 operator is an eroder, the deterministic part of
the Example 1.1b operator is an eroder, but that of the Example 1.lc
operator is not.

We are interested in these chapters not just in D’s being eroder or
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non-eroder as such but rather in the behaviour of random perturbations
of D. Often we shall consider the behaviour of DS, where S, is the
random noise introduced in Chapter 2. (Remember that S, changes all
zeros into ones with probability ¢ independently from each other, and
leaves ones unchanged.)

Proposition 9.2 [88]. Let D: X — X be homogeneous, monotone (in the
sense of Chapter 2) and a non-eroder. Then DS, are ergodic and have 6,
as the invariant measure with all £ > (.

Proof. Let i be the evolution measure produced by DS, and the initial
measure dg concentrated in the state 0 ‘all zeros’. The value of xJ (where
0 stands for an arbitrary element of V) is a deterministic function of
auxiliary variables wj,, h € V, 0 = t = T (which were introduced in
Chapter 2). Since D is a non-eroder, there is an island y, which D does
not erode. This implies that for any natural ¢ there is such k, € V that

(J’Dr}k‘ =1

Let g, € G be such an automorphism of V that g,(k,) = 0.
The value of x{ is certainly 1 if there issuch ar, 0 <t = T, that w}, = 1
for all

h € gr-(1(y)). (.1)

The probability of (9.1) being true for a given ¢ is £/, As the events
(9.1) with different values of ¢ are independent, the probability of (9.1)
being true for at least one t, 0 < ¢t < T is

1-(1- Elf(}'ll}T_

This value tends to 1 with T'— . The value of ji(x] = 1) is no less than
this value; hence it tends to 1 too. Thus

;i_ﬂn(ﬂsf)?" = i
g.2.d,

The question of ergodicity of DS, with D eroders is more complicated.
Some of them have DS, ergodic with all £ = 0, some have not. Our main
theorem proves that some eroders have DS, non-ergodic with ¢ > () small
enough. Before formulating it. we have to classify homogeneous mono-
tone eroders on {U:l}z'd, and before that we need Theorem © 4 and
Proposition 9.5. Theorem 9.4 allows us to know whether any given
homogeneous monotone D on {[]:1}3” 1S an eroder or not.

Remember that any D is defined by functions f;,: Xy — X In the
homogeneous case all these functions are one and the same, provided we
have enumerated their arguments in the coherent way. Let us use the
following notation:
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Vh e 7% U(h) = {(h+u,,... h+ug) = h + U(0)
where uy, ..., ug are fixed in Z¢ and 0 is the origin in Z“.

{"-ﬂ)h = f{xh+u|v i »-‘-h-i-uk]

where the function fis one and the same for ali & € Z¢. We have that D is
monotone if and only if f is monotone, that is.

ay < by, ....arp = bgr = f(a,,...,ag) = f(by,...,bg).

Definition 9.3 Let us have a monotone homogeneous D: X — X where
X = {01}V and V = Z°.

(a) We-term a subset K C U(0) a zero-set if the condition ‘x;, = 0 for all
h € K’ guarantees

(xD), = 0.

We assume that function f does not constantly equal 1, whence at
least one zero-set exists.

(b) We think of Z% as a subset of the real space R?. Let g, C R? stand
for the intersection of convex hulls (in RY) of all zero-sets of D.

Theorem 9.4 [87]. A monotone homogeneous D: X — X where X =
{0;1}*" is an eroder if and only if oy is empty.

Note. Since U(0) is finite, it has a finite number of subsets. Thus, for
any given D with not too many elements in U(0) it is quite possible to
actually construct g, and check if it is empty or not. You can do it for the
deterministic parts of Examples 1.1, 1.2 and 1.5 and see the theorem’s
correctness in those cases. To prove the theorem in general we need the
following.

Proposition 9.5 [87]. The set o, is empty if and only if there are m + 1

such non-homogeneous linear functionals L, ..., L,, on Z¢ where 1 = m
= d, that
M
Y Fp=—pt ' (9.3)
k=0

where € is some positive number, and

ax L.(h) = max L.(h) + L.(( :
e EVE) = Moetalin)y Lall) 22

tor all k = 0, ..., m and all islands x, provided I(xD) # 0.
This proposition ¢nables us to formulate the following:
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Definition 9.6 Every monotone eroder D on x = {{];1}‘"4'”I has a range
which is defined as the minimal value of m for which there are m + 1
functionals Ly, ..., L,, with the conditions (9.3) and (9.4).

The two following examples illustrate the geometrical interpretation of
Proposition 9.5 and Definition 9.6. In both examples V = 7Z°, and ele-
ments of V are denoted h = (h',h?) where h', I’ are integers.

Example 9.7 (This is the deterministic part of Example 1.5.) Let
R = |U(h)| = 4,

u(0) = {(0,1),(1,0),(0,1),(1,1)},

f(x1,x2,X3,%4) = X1x2 V X3x4

where '/ is logical disjunction (which coincides with maximum). Note that
the order in which the elements of U(0) are enumerated corresponds to
the order of x;, x5, x3, x4. |

You can check that o, is empty. The range of D is 1. This means that
(9.3) and (9.4) hold with m = 1. In fact,

Lo(h) = —h', Ly(k) = k' — 1
will do. The condition (9.4) becomes

min k' = min A
hellxD)) hel(x)

max h' = max h' — 1
hel(xD) hel(x)

Geometrically this means that evolution of any island x (that is, be-
haviour of the sequence x, xD, xD? ...) is subject to the following
condition: the set I(xD') is contained between two vertical lines of which
the left one remains immovable and the right one moves left by one unit
of the lattice in one unit of time. When the right line reaches the left one,
the island certainly gets eroded.

In general, an eroder D of range 1 erodes islands in a special way: it
squeezes them between two parallel hyperplanes which move uniformly

so that the distance between them diminishes by a constant every unit of
time.

Example 9.8 (Determiristic part of Example 1.1b). Let R = |u(h)| = 3,
U(0) = {(0:0),(0;1),(1;0)},

flx,x2,%3) = x1x2 V x1x3 V X2x3.

You can check that o, is empty. The range of D is 2. The three
functionals may be taken in the form:

Lo(h) = —h', Li(h) = —h*, Ly(h) = h' + h* — 1.
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This operator erodes in another way: for any island x the set /(xD’) is
enclosed between three lines of which two remain immovable and the
third one at every step of time moves a constant distance towards the
intersection of the two immovable lines.

Now let us look at the main points of the proofs of Theorem 9.4 and
Proposition 9.5. In fact, instead of 9.4 and 9.5 we prove the following
three assertions:

(1) If op, is empty, then there exist functionals subject to conditions (9.3)
and (9.4).

(2) If there are functionals subject to (9.3) and (9.4), then D is an
eroder.

(3) If op is non-empty, then D is a non-eroder.

Let us prove (1). Let a halfspace mean a closed part of R bounded by
a hyperplane. Let a zero-halfspace mean such a halfspace that contains
a zero-set. The set op is an intersection of a finite number of zero-
halfspaces. In fact, let K be a zero-set. Its convex hull can be represented
as an intersection of several halfspaces which clearly are zero-halfspaces.
Now op, is the intersection of all these zero-halfspaces over all zero-sets.

Let my, ..., 7, stand for those zero-halfspaces whose common part is
just op. To each m; of them a normed linear functional L, corresponds
which is non-negative just at ;. We have supposed that o is empty.
Then by the theorem 21.3 in [66] (which is a version of Helly’s theorem),
among Ly, ..., L, there are m + 1 such, hence denoted Loy, ..., L,,,
such that

m

¥ A b D (9.5)
k=0
where Ay, ..., 4,,, £ are positive numbers and

2=m+1=d+ 1.

The functionals A,L;, 0 = k = m, are taken as those in Proposition 9.5.
The truth of (9.3) for them follows from (9.5). The formula (9.4) can
be inferred from the fact that all the halfspaces defined by inequalities
L, = 0 are zero-halfspaces.

Proof of (2) is obvious.

Now to prove (3). Let us say that an island x fills a set M C R? if

I(x) 2 (M N Z%),

that 1s, if x has ones in all the integer points of M. We can construct a set
M C R“ having the following property: if x fills M then xD fills M + v,
which is a shift of M. Clearly this proves (3), provided this set M is so
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large that any its shift meets Z¢. It remains to find M.
Let us term a set A C B ‘obtuse’ for a set B C RY if

Yce R((A+c)NB =@ => (A + c) N conv(B) = @),

where conv(B) is the convex hull of B and A + ¢ = {a + c|la € A}.
Let Z,, ..., Zy be all the zero-sets. Suppose that for every Z,,
1 = g = Q, we have found a bounded set Z, which is obtuse for Z,. Then

M=Z+...+Z,+C

will do, where the unit cube C is added to guarantee that any shift of M
meets 79,

Indeed, for any set Z C R? the set —d conv(Z) is obtuse for Z. So we
may take Z, = —d conv(Z,). (See details in [90].) Further, if A is obtuse
for B, any A + A’ is obtuse for B -too. Thus our M is obtuse for all
zero-sets. Hence M can be proved to have the claimed property: if x fills
M then xD fills M + v where v is any point of op.

Finally, we still need to explain the importance of o, for the behaviour
of non-eroders. Informally, for any large enough initial island the set of
ones after time ¢ is something like —¢o, which 1s the image of homothety
of op with coefficient —t. To be precise, the following holds.

Proposition 9.9 [87]. Let op be non-empty. Define an island x by
I{z) = Sph(r) N 27
where Sph(r) is the ball with centre 0 and radius r > ry. Then
(—top) N Z% C I(xD") C (—top) + Sph(kr)

for all natural t where ry and k are constants depending only on D.

This proposition answers many natural questions about behaviour of
operators: islands growing infinitely exist if op consists of more than one
point; islands expanding to fill the whole lattice exist if 0 is the inner point
of op, and so on.

But some other no less natural questions cannot be solved algorith-
mically even in the minimal dimension d = 1. There is such a monotone
homogeneous D on {0;1} for which there is no algorithm to say for any
island whether D erodes it or not [92]. There is an island x in {0;1}* for
which there is no algorithm to say for any monotone homogeneous
operator whether it erodes x or not [92]. Both results are proved by
making operators simulate Turing machines. And there is no algorithm to
sayv for any homogeneous operator whether it is an eroder or not [57].

Analogous problems about eroding may be examined for X, =
{0:1,...,m} too. For the one-dimensional case this is done in [23-25].



Chapter 10
Non-ergodic non-degenerate operators

The main aim of this chapter is to present homogeneous non-degenerate
non-ergodic operators. We can do it for d = 2. The following is a key
theorem. A more general theorem is published in [90] as theorem 1.

Theorem 10.1 This theorem concerns eroders with noise. For any mono-
tone eroder D: X — X where X = {[]:1}?‘r the operator DS, has an
mvariant measure which tends to 0 with ¢ — 0.

The proof is not simple — it takes more than half of this chapter. So
let us first explain its idea informally. In this proof ji will stand for the
evolution measure produced by DS, with the initial measure &y, ‘all
zeros’. We shall estimate the probability j(xf, = 1):

Axo = 1) = y(e)

where 1(e) does not depend on ¢ and tends to () with &. Due to Corollary
2.8, this guarantees that DS, has an invariant measure u, such that

te(xo = 1) = y(e) - 0,

whence i, — 9y with ¢ — 0.
To achieve this, we present j as induced by the Bernoulli measure 5 on
€2 (see Chapter 2) with the mapping

Y= max (wit, f(xban)), t = 0.

xp =0, xj*

Every wj, equals 1 with probability ¢ and equals 0 with probability

(1 - &) independently from the others, according to the measure 3. So we
have to estimate the value of the measure 8 of the set

{we £2: x5 =1} C L.
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We cover it by a system of cylinder sets, the number of which we
estimate. The most cumbersome part of the proof is the construction of
special combinatorial objects for all the cvlinder sets in question which
enable us to estimate their number. The range of D plays an essential role
in this construction. If the range equals 1, these combinatorial objects
turn into contours like those we used to prove non-ergodicity of Example
1.2,

Now we start to introduce these constructions. Let D have the range
m. Let Ly, ..., L,, be the linear functionals on Z¢ satisfying (9.3) and
(9.4) whose existence is provided by Proposition 9.5. Denote M =
$0. 1050500}

Let us reword the condition (9.4) as follows: if f(x,u)) = 1, then for
any k € M there is such a € U(h) that x, = 1 and Ly(a) = L(h) — L(0).
Now we denote

t

"M 1 (L)

and introduce functionals on the evolution space Z¢ X 7.:
Li(h,t) = Li(h) + (Le(0) = )t + 1
for k € M Clearly,

Y, Zu(ht) = 0.
k=0

Also, if f(x,x)) = 1 then for any k € M there is such a point a € U(h) that
x, = 1 and £y(a,t) = £ (h,t+1) + r. Denote also
p = ueuﬁii&whﬁ(a,r} x £(0,t+1)]. (10.2)

The further proof consists of four parts using the notations introduced
here.

Part [

Remember that M = {0;1;...,m}. Let a polar 7w on a set A stand for any
mapping m: M — A, and the kth pole of 7 stand for z(k) for any k € M.
Let (M) stand for the range of 7 and more generally m(M') = {n(k), k €
M’} for any M'" € M. A polar 7 on the set of vertices of a graph g is
termed a bonder on g if w(M) consists of two ends of a bond. In any
graph throughout this proof two ends of a bond are always different from
each other, and any two vertices a and b are connected with not more
than one bond denoted as (a,b). In that special case where two vertices
may be connected with more than one bond we speak of a multigraph
instead of a graph.
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First we need polars on our evolution space Z¢ x Z. of the two
following special types.

A k-arrow (or just arrow if we are not interested in the value of k)
stands for a polar ¥ on Z¢ x 7 where

a(k) = (a,1), (M\k) = (b,t+1), a € U(b),
Lila,t) — Ly(bt+1) = r.

A fork stands for a polar & on 7 x 7., for which

:F(M) = {(ﬂ,f),(b,f)}

where a # b and :
de: {a;b} C U(c);

clearly, an arrow cannot be a fork. It is convenient to introduce a new
graph y with Z? x 7, as the set of vertices; its two vertices (a.f) and
(a',t') are connected with a bond if

(1) eithera e U(a') and t = ¢' — 1,
(2) ora’ e Ua)and ¢’ =1t — 1,
(3) or t = ¢ and there is such b that {a;a’} C U(b).

Clearly, y is defined so as to make all arrows and forks bonders on y.

We assume two finite sequences of polars to be equivalent if some
permutation turns one of them into the other. Thus all finite sequences of
polars separate into equivalence classes which will be termed frusses. A
truss o will be written down as a sequence:

IT = (:-‘T],, . ,,Jﬁ‘:).

There is an empty truss which contains no polar. For any truss [T =
(7y,. . .,7m;) we denote
k

(M) = {l_Jlm-(M).

11, = [II, stands for the concatenation of /7, and /1, (just writing one
sequence after the other).

A truss [T = (my,...,7) on some set A will be termed p-even (or just
even if we are not interested in the value of p) on some B C A if for every
€ € M just p members of the sequence m;(€), ..., 7.(f) belong to B. A
truss /7 on the set A i1s termed overall even on B € A if it is even on every
single element b € B (which implies IT being even on every B' € B).

For any truss IT = (x,,...,m;) on Z¢ X Z, consisting only of bonders
on y we introduce the multigraph y(I7) as follows. [I(M) is its set of
vertices. For every my, 1 = € = k there is the corresponding bond of y(I7)
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which connects those two vertices of y that are poles of the bonder m,.
We term [T connected if y(IT) is connected.

Lemma 10.2 Let an overall even truss on Z¢ X Z, consist of k arrows
and € forks. Then

rk = 2mp¢t
where r and p are defined in (10.1) and (10.2).

Proof. For any polar  on Z X 7 the value of

kgﬂ Zi(nu(k))

will be termed the span of 7. One can check that if a truss on Z¢ X 7, is
overall even, then the sum of spans of its polars equals zero.

Thus the sum of spans of our k arrows and € forks equals zero.

It is easy to estimate that the span of any arrow is no less than r. The
span of any fork is no more than 2mp in modulo. Hence the sum of spans
of our truss’s polars is no less than rk — 2mp€. The resulting inequality 0
= rk — 2mp¢ proves the lemma.

Lemma 10.3 Consider all connected trusses I7 on Z¢ X Z . consisting of
n bonders on graph y whose IT(M) contain a given point. Their number is
no more than C" where C depends only on m and R. One may take

C = (2;::+1(R2 2 2R}}2

Proof. Remember that any truss /7 in question has its own connected
multigraph. It is known that in any connected multigraph there is a closed
path which passes every bond twice. In our case this path has 2n steps.
For every IT we choose such a path that begins and ends in the given
point and use it to code our truss by a sequence of 2n symbols, one for
each step. Each symbol codes one polar, and their order coincides with
the order of steps in the path. Now to estimate how many values each
symbol must have. Suppose we have gone through our path up to a point
(h.r). To define the next polar we need to know:

(1) Along which bond of y starting from (4,f) we make the next step.
This makes no more than R° + 2R variants. In fact, just from
definition of ¥ one can see that every vertex of y meets no more than
R* + 2R bonds.

(2) At which end of this bond is every pole of the next polar. This makes
less than 2*! variants.
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Thus, every symbol having 2"*'(R* + 2R) variants, we can code our
truss by a sequence of 2n svmbols, which proves the lemma.

Lemma 10.4 For any polar m, on the set of vertices of a connected
graph g there is such a truss (my,...,7¢) of bonders on g that the truss

(J'[.[],JT] Al ,H'g)

is either 0-even or l-even on every vertex of g.

Substitute g by g', some minimal connected subgraph of g whose set of
vertices still contains o(M). Clearly g’ is a tree. For every bond (a,b) of
the tree g' we define a bonder 7, 5y on g as follows: its pole 7, 4 (k) is
that element of {a;b} which would no longer be connected with my(k) if
bond (a,b) were rejected from tree g’; and this is done for all k € M. So
My, ..., e are thus defined bonders for all bonds of the tree g’ and the
assertion of the lemma can be proved.

Part 1T

Fix a natural number 7. The value of x{ is a certain function of argu-
ments wj,, where

(h,t) € U*(0,T).

These are the only points we need and only these will be called “points’
till the end of the proof. Often we shall denote a point by one letter, say
a = (h,t), in which case we shall write t(a) = ¢, x, = X}, W, = ©},.

Now we fix some @ € £ such that it makes x{, = 1. All the construc-
tions of Parts II and III of our proof are made for the fixed T, w. That is,
in Parts IT and IIT we shall build some truss corresponding to the fixed w.
In Part IV T will remain fixed and we shall estimate the number of
different trusses built.

For every point (h,t) where xj, = 1 but w}, = 0 we do the following. In
this case

fimn) = 1,

that is, the value 1 of x}, is not spontaneous but inherited. This implies, as
we noted just after introducing the functionals £, that for every k € M
there is a point

ac(h,t) € Ulh,t)
in which
Xa g = 1
and

,Z{/;‘{HI;_{IE?.,I)} - _ﬂzk(h,r} =r.
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We fix these @i (h,t) and denote
Uh.t) = {ug(h,t),keM}.
If xj, = 0 or wj, = 0, the set U(h,t) is empty by definition. Now we denote

u4) = U Ua),

aeA

Uri(Aa) = U(U~A)),
where U%(A) = A, and,

L= =

0=A) = | JU*A).

i k=0
Denote also
0= {(h,t) € {?“(O,T): U(h,t) = J}.

For all (h,f) € U, =1 and o, = 1. Informally speaking, elements of U
are some of those points where ones first appeared spontaneously (that 1s,
due to wj, = 1, not to f(x,u.n) = 1) which after the iterative process
resulted in xJ = 1.

This iterative process goes along the set U™(0,t). Hence we concentrate
on this set and a point will mean a point of this set.

Let us define an equivalence relation ~ between some points (of
U™(0,T), of course) by the following three rules:

(1) If {a) = #(b) and
U”(a) N U*(b) # &

then a ~ b.

(2) If a—~ band b ~ cthen a ~ c.

(3) Only those points are equivalent which are made so by the two
former conditions.

The resulting equivalence classes will be called just classes. Now we
define an oriented graph v whose vertices are all these classes. In this
graph an oriented bond goes from class A to class B if and only if there
are such points @ € A and b € B that a € U(b). Let U,(A) stand for the
set of those classes whence oriented bonds go to this class A. For any set
S of classes we definc

U($) = U Ui(a),
AcS

then
UrT(S) = U (UKS)).
where U;(S) = S and
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uz(s) = U Us(s).
k=0
Of course, our point (0.7) is not equivalent to any other point because
it has the greatest value of r. So (0,T) forms its own class {(0,7)}. Also
any point a € U is not equivalent to any other because its U™(a) is empty.
Let us prove that 7 is a tree. In fact, let A, B and C be such classes that

AeU(C), Be U(C) and A # B.
Then
Ur(4) N U7 (B)

is empty because otherwise A and B would be included into one class. So,
starting from {(0,7")} and moving against the direction of bonds, we shall
never come to one class by two different ways, and moving in the
direction of bonds of T we never have more than one way. So 7 1s a tree,
all bonds of which are so directed that moving in this direction we come
to {(0;7)}.

For every class A which has non-empty U,(A) we define a non-oriented
graph g(A) as follows. Its set of vertices is U,(A). Two classes B,

D € U,(A) are connected with a bond in g(A) if and only if B # D and
there are such points a, b, d that

be (BN UG)) and de (D N Ula)).
Lemma 10.5 Every graph g(A) is connected.

Proof. Let B and B' be two different vertices of g(A). Let us construct
a path from B to B’ in g(a). Since B, B' € U,(A), there are such b € B,
b' € B', a, a’ € A that

b e Ua), b € Ua).
If a = a', then B and B' are connected with some bond which is what we

want. So let @ # a'. But a ~ a' since they have got into one class A. This
means by definition of equivalence ~ that there is such a sequence

r

ap = a, ay, dz, ..., 4, 1,48, = d

of elements of A (all of which we may and shall assume different) such
that every intersection

U(ae_)) N U(ae), 1 = € s n
is non-empty. Hence there are such
de_y € U(ae_y) and d; € U(ae)

that
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U*(de—1) N U™(de)

is non-empty. Hence d,_; ~ d; and belong to one class which we denote
D¢, 1 = { = n. Now let us consider the sequence of classes B, D,, D,
..., D,, B"). In this sequence every two next classes either coincide or
are connected with a bond of g(A). g.e.d.

Part 111

Here ¢ is an integer parameter which grows from 0 to Q; the value of Q
will be chosen later. For every g in this range we shall construct two
trusses I1; and 117 on U™(0,T), a set S, of classes and a non-oriented
graph G, which depends on 11, IT;, S, in the following way. Denote

I, = N°+ M. +112

where 77° is the truss consisting of one polar, all poles of which are in the
point (0;7). The set of vertices of G, is I1,(M). Two different vertices
of G, are connected with a bond if at least one of the two following
conditions holds:

(1) Either both of them belong to some (M) where 7 is a polar in I1,;
(2) or both of them belong to one class which enters §,,.

We shall build 77}, I3, S, (and consequently G, too) in the inductive
way with g growing from 0 to Q. Having just constructed 11}, I1;, S, and
G,, we shall prove the following seven properties of them:

1 The truss II; consists only of arrows; the truss I, consists only of
forks.

2 If two different classes A and B belong to S, then A does not belong
to Ur(B).

3 For any point a € IT,(M) there is such a class A € S, that U"(a) N A #
%

4 The truss I1, is overall even on the set

H"’(ﬂ,T}Rﬁ”( UJ A).

AeSg

5 The truss 11, is 1-even on every class belonging to §,,. _

6 The number of elements of S, equals the number of forks in I7; plus
one.

7 The graph G, is connected.

These properties, as soon as they get proved, warrant the next step of

construction of .-'I-’fr, 3 3..1, Sq+1 and G .. Thus the induction steps of

construction and proof alternate. However, the proofs are obvious and
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we omit them. Let us describe the construction induction step in the
following three items.

1 In the initial case ¢ = 0 the trusses [} and ITj are empty. The set S,
consists of one class {(0;T)} Clearly, all the seven properties hold in
this case.

2 When the induction stops. Suppose that at some construction step we
have got such §, that

VA e S;: U(A) = O

Then this step is the last one and the present value of g is Q. ~

3 The induction step. Suppose that /7, IT, S, and G, have been built
and possess the seven properties. Suppose also that there is such a class
A € §,, for which U.(A) is non-empty.

Then we build 7,4, Hffﬂ and S, in the following way. We make
Hqﬂ mo;+M" and m,, = Hﬁ*ﬂz

where it remains to define 77' and I7>. Remember that A is fixed.
Property 5 claims that for any k € M just one polar of 771, has its kth pole
in A. Let @, € A stand for this kth pole. We form an arrow s, by the
following rule: its kth pole is @, () and all its other poles are in the point
a. The truss I1, consists of these m + 1 arrows:

Hl = ("T[ﬂa- . '.'r:'rm)-

Note that the truss [1g # IT" is overall even on A and 1-even on the union
of all elements of

AR,

The last assertion allows us to define a polar m,; on U, (A) by the following
rule: 7o(k) = B where B is that element of U,(A) for which the union of
all elements of U™(B) contains the kth pole of some polar in I1, *IT;.
Having thus formed polar 7, we use Lemmas 10.5 and 10.4 to obtain
such a truss (7,,. . .,7;) of bonders on g(A) that the truss (7,71, . . 3 TTk)
is either 0-even or 1l-even at every vertex of g(A). Having got bonders
my, ..., 1 we form the corresponding forks 7, ..., &; by the following
rule. Let 7,(M) = {B,B"" C U.(A). Since B and B’ are connected with a
bond in g(A), there are such pmnta a, b, b’ that b € B N U(a) and b’ €

B’ N U(a). These define furL 7. in the following way: if w,(k) = B then

i¢(k) = b and if me(k) = B then 7,(k) = b’ for all k € M. The sequence
of forks 7,. ..., 7, thus defined presents the truss I1°.
Now define the set S,.. It results from S5, by excluding A and includ-

ing those classes B € U.(A) on which the truss Il,,,is 1-even (instead of
being 0-even).



Non-ergodic non-degenerate operators 99

The construction induction step is described. It is easy to prove that if
., IT;, S, and G, possess the seven properties, then T}, ,, IT5 .\, S,
and G, do too.

Note that every construction induction step diminishes the number of
classes in U;(S,). This guarantees that the induction will terminate. After
that we shall have the trusses [1{ and 15 and the set Sy,. Clearly, every
class entering S, consists of one point. This allows us to define

S = {a: {a} € Sp}.

Clearly, S C U. Denote also IT = I+ IT,. Applying our seven prop-
erties to the case ¢ = Q we see that IT is connected, overall even, and
consists of arrows and forks, the number of forks in I7 being |S| — 1.

Informally, elements of § are some of those points where ones first
emerged spontaneously (that is, due to w-influence, not to inheritance).
Of course, the probability of spontaneous emergence of ones in all
elements of S is /. Summing these probabilities over all S gives us an
upper estimate for ji(x/ = 1). This summing is based on a combinatorial
estimation which is made using the corresponding /7.

Part IV

The point (0,7) remains fixed. But @ is no longer fixed; instead we
consider all @ which make x! = 1. For every such @ we have constructed
the truss /7 and the set S which we now denote [1(w) and S(w). It is
important that /7(w) determines S(w), that is,

(I(w) = (")) = (S(0) = S(w')). (10.3)

In fact, applying our properties 3 and 5 to the case g = Q proves that S
may be defined as the set of those points a € IT(M) for which there is no
such arrow o in [7 that

a(M) = {a;b} where b € U(a).

Now let W, stand for the set of different sets S(w) consisting of k + 1
points. We are going to estimate W,

Since H%. contains k forks, I1(«) contains no less than k& and no more
than k(1 + 2mp/r) polars due to Lemma 10.2. This and Lemma 10.3
allow us to estimate the number of different IT(w) in this case. Due to
(10.3) the same estimation holds for W,: :

K(1+2mpfr)
Wes ), (2™R®+ 2R))*.
E=k
Now we are ready to estimate @(x; = 1). For any @ which makes xj = 1,
we introduce the cylinder set C,,:

Cp ={w':w, =1 forall ace S(w)}.
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Every w enters its C,, due to Lemma 10.5. Hence
{w: xf}" =1} C UC,

where the union on the right-hand side is over such w that xJ = 1. Of
course, different w’s have equal C,, in a lot of instances. So

Alxg = 1) = Za(C,)

where the sum on the right-hand side is taken over all different C,,.
According to the definition of W, this turns into

Al = 1) = ), Week*L,
k=0
Substituting here our estimation for Wi we see that the series on the
right-hand side converges for small enough ¢ > 0 and its sum tends to
zero with . This proves our main theorem about eroders with noise.

The main job of the present chapter was to prove this theorem. Since it
is proved, it is easy to construct non-ergodic non-degenerate operators on
{0;1}%.

Remember, first, our Examples 1.1a and 1.5. Their non-ergodicity with
small € = 0 just follows from our theorem. In fact, both can be presented
as DS; where corresponding D are described in Examples 9.7 and 9.8
and §; is defined in Chapter 2. In both cases D is an eroder and DS, has
an invariant measure which tends to 0 with ¢ — () due to our theorem.
But §;” < S, whence DS < DS,. So DS; has an invariant measure which
tends to 0 too.

On the other hand we can rename zeros as ones and ones as zeros in
X = {0;1} and follow the same argument. Our D’s are chosen in such a
way that they are eroders in this case too. So DS, have invariant mea-
sures which tend to 1 with ¢ — 0 too. Of course, measures which tend to
0 and measures which tend to 1 are different with small enough ¢ = 0,
and our operators are non-ergodic.

A larger variety of examples can be constructed with any d = 2. The
following example shows one way to do this in the case d = 2.

Example 10.6 [90]. Let x = {0;1}", where V = Z*. Choose any natural
n. We are going to construct a non-degenerate P, which has invariant
measures tending to different states y', ..., y" with ¢ — 0. Of course,
with € = () small enough these measures have to be different and P will
have no less than n different invariant measures.

We term x € X a translate of y € X if there is such a € Z* that x;, =
Viea for all h € Z*. Define a periodic state as having only a finite nun!
of different translates. So we choose our y', ..., y" to be peri
Without loss of generality we assume that all translates of y', ..., v are
among these y', ..., y" too. Now we choose p large enough to ensus
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following: for any circle C of radius p and any k, € there exists h € C N Z°
such that y5 # y},. Then we choose three homogencous linear functionals
L,, L,, Ly: Z* — R such that any two of them are independent and

Ll I .!I.: + L_ﬂ, = ().

Finally, we choose three circles C,, 3, C; of radius p in the plane so that

h e C] = (.n'r_.-z{-h) =1 and L;(h) ]
h e CZ :> {Lg(h) =1 and L (h} = 1}
he C3=>(Li(h) =1 and Ly(h) = 1).

Now we define our neighbourhood system:
U(0) = (CL U G U C3) N Z% Uh) = U(0) + A

So we have a graph I' = (V,%). To define a deterministic operator D it
remains only to define a function

[ Xuwy — Xo.

This we do as follows:

flxu) = Y6 if at least two of the following three conditions hold for
some k € {1,...,n}:

(1) Yh e (C, N Z3): x;, = y§,

() Vh e (CoNZ?: x), = vE;
(3) Vh e (G5 N 12)3 Xg = }’ﬁ,

and f(xo)) defined arbitrarily if the previous condition holds for no
ke {1,...,n}.

You can check that this definition is consistent, whence D is defined; y;,
.., Yp are its invariant states. D is defined in such a way that any small
independent stochastic perturbation of it has measures which tend to y,
.., v, when this perturbation vanishes. To express this in a rigorous
way we can formulate the following theorem. But first we introduce the
random noise operator S, where v is the noise matrix:

Vv = ”V:'; H

where
lsisnl=sj=snv;=0, E_v,-}- = 1
I

. y ) ; . :
Action of S, at any state x € X = {1,....n}" consists in the following:
any x,, changes its state from i to j with probability v; independently.
Denote

|S.| = maxwv;.
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Theorem 10.7 (A. L. Toom). We have a homogeneous deterministic
operator D: X — X where X = {1,....n}V, V = 79, defined in the
standard way:

(Dx), = flxuu)

where f: {1.....n}/V" 5 (1. . .n}, U(h) = UQ0) + h. We have a state
y € X which is invariant for D. There are m linear functionals L,, ...,
S 7% — R with

L1+,,.+Lm50

and a number r > 0. For any v € Z% any k € {1,...,m} and any Xy,
such that f(xy,)) # y, there is such a point a € U(v) that x, # y, and

Lk(ﬂ) =~ Lk(l)} = F.,

Then the composition DS, has an invariant measure which tends to the
state y with |[§,| — 0. To deduce this theorem from our main Theorem
10.1 is mere technicality, and the theorem proves our assertion about
Example 10.6.



Chapter 11
Random walk operators: non-ergodicity

The task of this chapter is twofold. First, we shall prove a theorem about
non-ergodicity of randorm walk operators composed with the standard
random noise 5,. Second, we shall apply this theorem to prove non-
ergodicity of some more independent operators on {0;1}*.

Random walk operators have been defined in Chapter 6. Throughout
the present chapter, W stands for any random walk operator in question.
We shall use the following notation for the random variables that control
the action of W:

Eiv12> Miz12 Where i€ Z.

The value of &, determines the distance at which will move (right if
Eiv1n = 0, left if &> < 0) the left-hand end of the massif of ones if its
leftmost 1 was in the point i + 1. The value of #;.,, determines the
distance at which will move (in the same sense) the right-hand end of
the massif of ones if its rightmost 1 was in the point i. All &;,,» have
equal distributions and E& stands for its mean, as does E#n for all ;..
If EE < En the massifs grow in the mean; if EE > E# the massifs diminish
in the mean.

Since any W is monotone, it has a critical value &y defined as follows:
W5, is cogodic with all € > €y and WS, is non-ergodic with all ¢ < ey
Lemma 6.5 proves that E§ < En makes &3 = 0. This is not unexpected,
because in this case interactions of W alone (without S, ) contract ‘almost
all’ M(x) into 1.

Theorem 11.1 [83]. E£ > En makes & > 0.
The formula (11.5) gives estimation for &}y in this case. The theorem
just follows from the formula



104 Discrete local Markov systems

lim lim (WS, ) = 0.

=] T

To prove it, we shall estimate
ey =2l = ,.o=5 s 1} (11.1)

where ji is the evolution measure generated by WS, and d,. Let &Y,
niiyz and of, stand for the auxiliary variables which control the tth
application of our operators W and S, where t = 1, 2, .... Then any x/; is
a function (in the usual deterministic sense) of a finite set of these
arguments. To estimate (11.1), we shall cover the set of those (&,n7,w)
which make
B N e BT

with a countable family of cylinder sets up to a set of measure 0. Then
we shall estimate (11.1) by the sum of measures of these cylinder sets.
Assuming ¢ < 1, as we shall do, guarantees that infinite massifs of ones
at any time have the measure 0. Hence (11.1) equals the probability of
having such £ = 0 and £ = n that

g e T s W g T s
X1 =0, % = X1 = ... =Xy =x¢ = 1, x¢4, = 0. (11.2)

So let us estimate the sum of probabilities of (11.2) over all k = 0, € = n.
For that we shall build a polygonal line which is a contour of a sort
surrounding the two-dimensional cluster of ones which contains the seg-
ment {(h,T): k = h = €}. To every step of such a polygonal line there
corresponds a certain auxiliary variable &, 12, #},+1/2, Or @}, which must
have a certain value. Let us describe in detail which steps may occur. All
steps begin and end in points (h+3,f) where h and ¢ are integers. Any
step will be written down as

(hﬁ%,ﬁ) = (hz"'%af:)
where (hﬁ%,rlj s its starting point and (A +,l_,,r2) 1s its final point. There
are four types of steps:
Type 1 step is
(h—1,0) — (h+1,0).

The corresponding restriction is wy, = 1.
Type 2 step is

(h+3+j,t+1) — (h+3,0) where -S=j<3.

The corresponding restriction is &), 12 = /.
Type 3 step 1s

(J’z-l—%ﬁf) — (h+i+j.1+1) where —-S=j=&.
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The corresponding restriction is )}, ;> = J.
Type 4 step is

(h+3,1) = (h+3+j.0) where 1 <j=<r

There i1s no corresponding restriction.

It is essential that type 2 and type 3 steps should not be next to each
other, and any type 4 step demands that there be type 1 steps just before
and just after it. The polygonal line begins in the point (k—%,T] and ends
in the point (£+3,7T).

You can guess the reasons for such definitions. In fact, type 1 restric-
tions reflect the spontaneous emergence of ones due to §,. Type 4 steps
reflect the action of W, which blots out short sequences of zeros (turning
all their zeros into ones). Type 2 and type 3 steps reflect the action of W,.
They imitate the movement of left-hand (type 2) and right-hand (type 3)
ends of massifs of ones.

Now we are going to estimate the sum of measures of all resulting
cylinder sets over all polygonal lines allowed by us and all kK = 0 and
€ = n. To this end, let us for a while allow the polygonal lines to end
in all points (h +%,:), h,t € Z. For every polygonal line with correspond-
ing restrictions we define a weight which is the measure of the cylinder
set resulting from all the restrictions corresponding to its steps. Let
o5(h+3,1) where h,t e Z, N € Z, A € {1,2,3,4} stand for the sum of
weights of all the polygonal lines which have N steps. begin in any point
(i+5,T) where i < 0, end in the point (h+3,r), and have the type 4 last
step. Of course,

Al = ... =xT=1) = E Z E a(h+1.T). (11.3)
N=1 A=1 h=n

It remains only to estimate the right-hand side. Introducing special vari-
ables a > 1, f > 0, we may claim that the right-hand side of (11.3) does
not exceed the fn]lﬂwing value:

3 % L L ot -

=1 d=1 h=—= [=—x

- ‘"E y ¥ D

=1 A=1

where E , stand for the sums over ¢ and A. The four-dimensional vector
N N N N N
- (2,.2,.2..1,)
N '

results from the vector E by multiplication by the matrix
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£ Ea £ £
B4 A4 Q0 74

BB 0 BB 0

5 0 (¢ i)

where A, B and C stand for

5 5 Ia
A= E q;"a", B = E g, C = Z a'.
i=1

M =

i==3x i=—x

Our proof will be completed if we find such @ > 1 and § > 0 that the
series in the right-hand side of (11.4) converge. Indeed, in this case we
can take n so large that (11.4) will be less than 1, whence our operator
will have an invariant measure which differs from 8, due to Corollary 2.8.

The series in the right-hand side of (11.4) will certainly converge if all
the eigenvalues of M are less than 1 in modulo. According to a corollary
of the Frobenius theorem [26] the necessary and sufficient condition of it
is positiveness of all the main corner minors of the matrix £ — M. It is
convenient to start from the lower right angle of the matrix when calculat-
ing them; this results in the following three conditions:

i o
BB < 1,
|[E — M| = 0.

We have to choose a > 1 and # > 0 to fulfil these conditions, ¢ being
positive and as large as possible. The best is to put § = VA/B. Then
the conditions turn into

AB < 1,
{ (1 — VAB)?
a(l + C — AB)’

The denominator in the last expression is certainly positive. Note that
a = 1 makes

AB =1 and (AB), = En — EE < 0.

Hence there is such a > 0 which makes AB < 1. This proves Theorem
11.1. Along with that we have obtained the estimation

W = sup { Som ﬂﬁ}z 3)
e R LA
AB=1

The remaining part of this chapter applies Theorem 11.1 to p
ergodicity of some one-dimensional operators P € £°,. We sha

a method (which is not claimed to be the best one) to majorisc
P e @, with a composition WS§,:
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P WS,

If this W5, happens to be non-ergodic, the non-ergodicity of the P in
question gets proved. Without loss of generality we assume that P is
defined on the graph I'(V, %) where V = 7 and

Ulh) = {h—s,... ,h+s}.

First of all we majorise P with a composition PS, where P € 2, too. In
addition the measure d, must be invariant for P because later P will be
majorised by some W. First we put

=05 . 0 (11.6)
and define the transitional probabilities of P as follows:
Or.,. . . =max{0,(1=8)" (0, . .—#)} (11.7)

It is easy to check that this P makes P < ﬁgj. But for technical reasons
we have to introduce yet another operator P which has rather different
transitional probabilities:

5 0. . N if x,=x=0
i { N -
e ki g i otherwise. (11:8)
Of course, we define
80, =1 —=8 . (11.9)
Now we introduce
Q.f?+l = II'llﬂ Hﬁg S | B [ et
WYi =0
ko (11.10)
Qfﬂ = min 9?,,...,y,1,0,...,n-
Fives oo i=0
forallk =0, ..., 2s — 1, and
1 — O for k=u;
gh ={Ql_t— Qh_ysq1 for ke[-s+1s-1], (11.11)
O, for k = —s.

Here j stands for L (left) or R (right). The values (11.11) define the
operator W,:

ff}\-' = P(&+12 = k),
f}'{-{ = P(Ni+12 = k).

Putting r = 25 we define W,. Thus we have defined the random walk
operator

Hf; — Wl WE.
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Proposition 11.2 [83]. Let ¢ and ¢} be defined by the formulae (11.6)-
(11.11). Then P < WS,.
The proof is cumbersome and we omit it (see [83]). We note only that

_vﬁ < yW

holds for any state y in which all the massifs of ones have length no less
than 2§. However, this does not hold for all states. But, due to the
difference between P and P

yﬁ = W
holds for all y € X. Thus P < W whence
P < PS. < WS,

g-e.d.

The following simple example shows that the results of this chapter
really have extended the range of provable non-ergodicity as compared
with results which had been available before.

Example 11.3 A homogeneous independent operator P on {0;1}* with
U(h) = {h—1,h,h+1}

has transitional probabilities

'1-3 if x 1 =x=0,x=1,
1 . : — —
g.r__“.rw.r-_ =31 1f X_1 = X = ]-.-

0 in the other cases.

This operator P is majorable with the random walk operator W with s = 1
and

which has

Thus any composition PS, with sufficiently small ¢ > 0 (say £ < 107%) is
non-ergodic.



Chapter 12
Some counter-examples

After reading the preceding chapters, a usual question naturally arises:
what generalisations of the results presented are possible through weaken-
ing of their conditions. This chapter gives three counter-examples which
show that some generalisations are impossible. Proposition 9.2 and
Theorem 11.1 suggest certain connections between an operator P’s being
an eroder and non-ergodicity of PS, with some ¢ > 0. The following
examples breach this connection in various ways. The first example pre-
sents a non-eroder P that has nevertheless an ¢ > 0 that makes PS,
non-ergodic. The same example shows the possibility of non-uniqueness
of critical value.

The second example is an analogue of the third one but every auto-
maton has three states which allows us to use the simplest case V = 7.

The third example presents an eroder P on {0;1}" such that PS, are
ergodic with all € = 0. This does not contradict Theorem 11.1 because the
graph of the third example is not 7,

Example 12.1 (I. I. Piatetski-Shapiro, L. G. Mityushin and A. L.
Toom). There is a one-dimensional non-monotone deterministic operator
D on x = {0;1}* which has the following properties. First, D is a
non-eroder but has some ¢ > 0 (for example, ¢ = 5) which makes DS,
non-ergodic. This shows that the condition of monotonicity is essential in
Proposition 9.2. Second, D has no less than two critical values of £. This
is because DS, is non-ergodic with |e — 3| small enough and is ergodic
with & near 0 or 1. So the uniqueness of critical value which has been
proved for monotone operators does not hold in general.

The main idea is the following. The function f equals 1 if the sequence
of values of its arguments is sufficiently ordered in some sense. That is
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why D? turns any state into the state ‘all ones’. Almost the same occurs

in the ‘approximately deterministic’ cases. In the contrary case ¢ = 1
‘ordered’ sequences are rare and always remain rare.
Now for exact definitions. Take a finite sequence x,, ..., x,, of zeros

and ones; we term it a ‘chaos’ if there are such a, b, cthatl = a<b < ¢
=nandx, =1, x, = 0, x. = 1. In other words, a sequence is a chaos if it
has at least two massifs of ones.

Now put

Uh) = {h—2m+1,... h+m—1}

where m is some natural number. The exact value of m will be chosen
later. Define f: xyg) — x5, as follows:

0 if there is such i € [—2m+1,0]
f(X—2m+15- - -2Xm—1) = {that the sequence x;, ..., X;+m—1 18 @ chaos,
1 otherwise.

Thus D is defined.

Note that f(1,...,1) = 1, whence 1D = 1 and the measure &, is
invariant for DS, with any &. Proposition 2.17 proves ergodicity of DS,
with

Lo oo f am ol o
N 1770 B &

You can check that D is a non-eroder.

Let us prove that , |¢ — %] being small enough, DS, has another
invariant measure besides d;. This needs m large enough. In this proof we
take m = 10. We separate Z into segments:

[10k+1:;10k+10], k € Z

of length 10, which we shall term ‘blocks’. Let Q stand for the percola-
tion operator on I';. We have proved its non-ergodicity with small enough
¢ = 0 in Theorem 8.4. Now we are going to use it to prove that the
proportion of blocks being in the state of a ‘chaos’ does not tend to 0 as ¢
— . For that we define a mapping F: X — X as follows:

0 if xy05.1, ..., 10i + 10 is a chaos,
(IF:I; i { 1':]!1 1
1 otherwise.
First take £ = 3 for simplicity. Suppose that at least one of the blocks
Y10G—1)+1s « - » Y10(i—1)+10 O Yj0i+1, - -5 YVioi+10 1S @ chaos in some state

y € X. Then yD certainly has zeros at places 10i + 1, ..., 10i + 10. Then
the measure yDS,,» makes all the 2'” states at these places equiprobable.
Direct counting shows that only 65 of these 2'” states are not chaoses.
Note that
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65/2'° < 0.07 < Ef,.
In fact we have proved
DS nF < FQy 7.

Hence 1t follows, using Proposition 2.14, that any initial state y, in which
all blocks are chaoses, generates measures

Y(DSyp2)f
in which the proportion of chaoses is not less than
0(Q0.07)'(x; = 0) : (12.1)

which is known to exceed a positive constant ¢ at all times t € Z. . Hence,
according to Corollary 2.8, DS, has an invariant measure g in which

Ju(xlﬂ:#lf- . -2 X10i+10 is a ChB{}S} = ,

Thus 4 # 6;. q.e.d. With |e — 1| small enough the same argument works.

Now let us prove that DS, is ergodic with & small enough. Note that
all sequences of zeros in any x[DD are not shorter than 2m. Hence any
sequence

(XD)y, - .., (XD)psm—1

is a non-chaos, whence xD* = 1. Now we consider the evolution measure
generated by DS, and any initial state x”. As before, we introduce
auxiliary variables wj, which control the action of S, at time ¢, and f is
induced by their independent distribution.

Lemma 12.2 Let us have an w € 2 which makes x{, = 0. Then there is
some h in the range

=Z2m+1<hsm-—1,

where
=0 and &= 1.
Proof. Assume the contrary:

1 1

wy,  =xp forall he[-2m+1,m—1].

Then

=1 —1 _ -1
X III"-"! wy, = Xh
in the same range of h. Then

x:] = f{xlr—_ﬁi.ru-‘-lﬂ =i sxin—il} \"'Ilr C{J{}
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which 1s no less than
(xr—EDl}“

which equals 1 as we know.

Lemma 12.3 Let us have an w € 2 which makes x; = 0. Then there is a
sequence of integers hy, ..., hy, where hy = 0, such that

hoy —2m+1=h <=sh,,+m-—1

and

foi dlll = 1 s = L

Proof is made by induction with Lemma 12.2 serving as the induction
step.

Now we are ready to prove ergodicity of DS, with small e. In fact, we
shall prove

;Lim i(x§ = 0) = 0.
Lemma 12.3 helps us to estimate ji(xy = 0). In fact, the sequence Ay, ...,
hr being fixed, the probability of
Wh = ...=wj =1

is £771. There are (3m — 1)"! such sequences. Thus

a( = 0) < [Bm — )™ ™.

With ¢ < the right-hand side tends to 0. g.e.d.

1
3m — 1

Example 12.4 [88]. Every automaton has three states 0, 1, 2. They form
a line Z and

X = {0;1;2)~.
To define a deterministic operator D: X — X we put
Uh) = {h—1:h;h+1}
and f: {0,1,2}® — {0,1,2,}, which is

0 if x=0,y=z=1,
1 if x=y=2,z=1, 3
2 if x+y=z=2, (12.2)
the nearest integer to (x + y + z)/3 in the other cases.

flx.y,z) =

Let us mention some properties of this function. First. f 1s monotone in
the sense
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xsx',ysy,z=2z = fxy2) = fix'y,2).

Second. D is an eroder, in the sense that every state having only a finite
set of non-zero components is turned into ‘all zeros’ by some degree of D.
Let us prove it. Due to monotonicity we need only to apply degrees of D
to

... 0001222 ... 2221000 ...

The second line in the right-hand side of (12.2) turns ‘twos’ into ‘ones’
one after the other from right to left, which results in

cos 000111 . 111000 ...

Now the first line in the right-hand side of (12.2) turns ‘ones’ into ‘zeros’
one after the other from left to right, which results in 0.

The noise operator S, s . which is appropriate here transforms states of
single automata independently with the probabilities shown in Table 12.1.
We assume that y + 6 > 0 and ¢ > 0. Then the composition DS, s . 1s
ergodic and its only invariant measure is concentrated in the state ‘all
twos’. Thus the direct generalisation of our Theorem 10.1 to the three-
states automata is not true.

Let us try to explain informally why DS, ; , is ergodic. Suppose we are
iterating this operator with the initial state having a finite but large
segment filled with ‘twos’, the other components being zeros. As we have
said, D turns ‘twos’ into ‘ones’ one after the other from right to left. But
S, 5. turns a few of them back into ‘twos’. Due to the third line in the
right-hand side of (12.2) these ‘twos’ move one place left at every unit of
time. Now S, s . continues to work and the ‘twos’ get thicker. Near the
left end the probability of 1 is about (1 — ¢)" where n is the length of the
non-zero blot. Moreover, n grows linearly with ¢ because the left end of
the blot drifts to the left due to S, s .. Estimation shows that no 1 will
reach the left end of the blot with some positive probability. Moreover,
this probability tends to 1 with the growing of the initial blot. Thus such a
blot is a stochastic analogue of a non-erodable island.

Table 12.1

to 0 I 2
from
0 1—-y—20 y 0
1 0 1 — ¢ £

2 0 0 1
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Example 12.5 [88]. Unlike typical constructions in our survey, V' is not
an integer lattice here. Instead

V=AhY, h =0 ). e Z ke {-1]1)

You may imagine V as two parallel integer lines. But our graph I and
operator D will be homogeneous under the transitive group G of auto-
morphisms which consists of shifts

g: (h',h*) — (h'+const,h?)
and ‘inverted shifts’
g: (h',h?*) — (—h'+const,—h?%).

As we presented in Chapter 9, this G is not commutative; this is essential
because the case of commutative G boils down t6 the Z9 case which is
exhausted (assuming {0.1} and monotony) by our Theorem 10.1.

Now we define D. For any h = (h',h?) '

U(h) = {Ui(h),Ux(h).Us(h)}
where
Ui(h) = h, Us(h) = (h',—h?), Us(h) = (h'—h*h).
Finally, X, = {0;1} for any k& and
f,y,2) = x Vy) Az,

which you may take as f(x,y,z) = min(max(x,y),z).
Evidently, f is monotone and

f(1,1,1) = 1.

So D is monotone and 1D = 1.
To see that D is an eroder it is sufficient to examine what D' makes out

of the state

s OIOILL. oo T1IROEY ...
e OIRMATL .. TEIEICE).. ..

or

_ _{1 if a=<h'=bh,
Y = 10 otherwise.

This island is eroded in b — @ + 1 units of time. But DS, is ergodic with
any positive ¢ which is proved along the same lines as in Example 12.4.



Chapter 13
Quasi-non-ergodicity in
the one-dimensional case

In Chapter 10 we have constructed simple enough non-ergodic non-
degenerate homogeneous independent operators with V' = 79, where d
was any natural number other than 1. It has been and remains a very
intriguing question whether these are possible in the one-dimensional
case.

In [14] it was conjectured that all non-degenerate homogeneous inde-
pendent operators with X = Xy where X, is finite and V = Z, are
ergodic. The computer simulation of one-dimensional voting operators
(our Example 1.1) was an attempt to refute this conjecture, but it failed.

Later, Tsirelson constructed a hierarchical system of unreliable ele-
ments which did not forget its initial state [94,95]. However, this system
was non-homogeneous both in space and time, and neither did it refute
the conjecture.

Later, Kurdyumov published a paper [43] in which he claimed to have
constructed a suitable non-ergodic operator thus having refuted the con-
jecture. But his description and proof were informal and never achieved a
formal status.

Later Gdcs published a very complicated construction [21] which he
claimed to be a non-ergodic operator refuting the conjecture. We have
not yet examined Gadcs’s construction sufficiently to subscribe to its valid-
ness, which is due partly to its excessive complication and partly to soiue
unclear points in his description. Thus we shall not attempt to present it
here.

Our task is more modest. All the constructions we present here are
simple enough. They probably do not refute the conjecture, after all. But
we think they are provocative.

First we are going to describe three one-dimensional deterministic
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operators having the common property of being eroders and remaining
eroders after renaming 0 into 1 and 1 into 0 in X, = {0;1}. So these
operators blot out anyv finite perturbation of the states 0 and 1. These
operators with small independent noise 5, added were computer simu-
lated. It is interesting that within the computer time available they be-
haved as if they were non-ergodic. This does not imply that they actually
are non-ergodic. It is quite plausible (but not proved) that they are
ergodic with any € € (0;1).

In fact, multi-processing has shown their convergence. But unusually
slow convergence is interesting as such too. It may have applications,
including_biological ones.

Now for exact definitions. As before, our state space is X = X§ where
Xy is the finite set of every single automaton’s states. A deterministic
operator is a mapping D: X — X. A state x is termed stationary for D if
xD = x. A stationary state is termed attractive if for any y which differs
from x only in a finite set of components there is such ¢ that

yD' = x.

In particular, D is an eroder if 0 is attractive for D. Following [22], a
conservator is an operator which has at least two different periodic attrac-
tive states. It is convenient here to use more mnemonic symbols to denote
elements of Xj,. In all cases we call a finite perturbation of a stationary
state ‘an island’. The subset of Z where components differ from the
stationary state components will be called an island too, the rest of Z
being called ‘the sea’. We shall also speak about the two boundaries of
an island (its leftmost and rightmost perturbated points), and about the
length of an island (which is the distance between the boundaries).

Example 13.1 We consider an operator, D+;. [22]. Let

X[] = {+:_!"_>r“_"_:[}:{:]}s
Uh) = {h—1,hh+1).

The function f: Xy — X, is defined by Table 13.1 where y and z are
arbitrary elements of X,,. Numbering of the lines 1s essential in this table
because some lines contradict each other; in these cases the lower num-
bered line prevails. .

Under this operator the states ‘all pluses’ and ‘all minuses’ are attrac-
tive.

Note the way in which Dy, erodes a finite sequence of n minuses
surrounded by pluses. The first moments at the islands’ ends appear as >
and < directed from plus to minus. They turn into — and < every of
which proliferates to both sides with the speed 1. After n units of time, —
and < massifs meet in the middle and produce a + there which prolifer-
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Table 13.1
EILEI':[T:?'I{: Df tir—l xi’r -‘-.IF:+I x51+l
1 y z y y
2 .7 z - >
5 = = 5 <
4 y > z —
3 y <] Z «—
6 — z — -
_ 7 — z — +
8 — — z >
Q z — «— <]
10 — + Z <]
11 Z 4 o= [>
12 — —5 z =
13 z s - -
14 z — + +
15 -+ “— Z +

ates to both sides with the speed 1, thus catching up with the arrows. The
total time of erosion of this island is 2.5n units of time.

Example 13.2 Operator Dy [22]. It has
Xo = {+,——.,}, Uh) = {h—1,h,h+1}.

Its function is given by Table 13.1 without the lines which contain two
omitted symbols « and <.

Proposition 13.3 The states ‘all pluses’ and ‘all minuses’ are attractive
for Dy and Dy, of Examples 13.2 and 13.1.

The proofs are analogous for the two operators. Let us prove that “all
pluses’ is attractive for Dyy. Take any finite perturbation x” of it with
length n. For any island x (finite perturbation of ‘all pluses’) L(x) and
R(x) will stand for the leftmost and rightmost points of Z whose states are
not pluses. Thus '

n = R(Xx") — L(x").

Let us show that already x°D$ is “all pluses’. Let M(x") stand for the
leftmost point of Z occupied with a minus (if such a point exists). One can
check the following:
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(1) R(xDyy) = R(x).
This means that the island never expands to the right.

(2) L(xD#,) = L(x) — 1.
This means that the island expands to the left with a speed not higher
than 1/2.

(3) M(xDfy) = M(x) + 1, if these are defined.

This means that the minuses retreat on their left-hand end with a
speed not less than 1/2. So after 2n units of time there will be no
more minuses.

(4) If there are no minuses,

R(ID[V:I = F(X).

This means that the right-hand end of the island moves left with a
speed not less than 1.

So the erosion process goes as follows: first minuses die out in 2n units
of time. The island is not longer than 2x by this time. Then the island’s
right-hand end catches up with the left end in no more than 4n units of
time. The total time of erosion is no more than 6n. q.e.d.

Example 13.4 Operator Dy [22]. Here
Xﬂ = {_:"s(_}:
Uh) = {h=3,h—1,h,h+1,h+3).

The function f is defined as follows. If xj, = —, the value of xj,
with the value of the majority of

t+1 coincides

xj:-:"m xf’t—l: XL.
If x} = <« then the value of x}, coincides with the value of the majority of

f ) )
Xhs Xns1s Xh+3-

Here ‘all =’ and ‘all < are attractive too, which is proved along the
same lines.

Now we introduce the noise. Let N, stand for the independent oper-
ator which acts upon every automaton independently. Every automaton
either keeps its state with probability 1 — a, or goes into all othcr ~iates
with equal pmbdbllltres Behaviour of D“Nm DN, DyiN, was
ter simulated in [22].

In fact, a finite number (2000-5000) of automata, which forme
functioned during 1000-2000 units of model time (that is, applc:
the operator in question). The usual pseudo-random numbers
The proportions of states were outputed from the computer.

Figure 13.1 shows plots of O, and Q_ which are proportion
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s S T | 3=Q+

— —

_____//\4 . 4, 5:‘
| |
0 500 1000 1500t

Fig. 13.1 Proportions of automata (0, and Q_ being in the state + or —
depending on time ¢,

and minuses in the action of DyN, with various values of parameters
given in Table 13.2. Due to the symmetry of Dy; and N, the ergodicity
needs the equality of limits of O, and Q_ as r — =. So, during the
simulation, they are expected to approach each other. In fact they be-
haved quite differently (see Table 13.2).

In experiments 1 and 2, the initial state was ‘all pluses’. All values of
Q. output (which was done after every 100 units of time) exceeded 0.85.
The difference in the number of automata seemed not to influence the
data.
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Table 13.2 Parameters of DyN, simulation.

Number of the Number of Initial “

experiment automata state

1 5000 0, =1 0.01

2 2000 0, =1 0.03

3 2000 (=i 13 0.03

Q_ =23

4 5000 Q. =1 When ¢t = 1000

a = 0.05
when t = 1000

a = 0.01

In experiment 3, the initial state was a random realisation of the
Bernoulli measure with proportion of pluses 1 and proportion of minuses
2. Here, Q_ grew in the first 300 units of time and remained more than
[}.8 all the subsequent time. But in this case Q_ was less than O, was in
experiment 2. This seems to be due to some large island which happened
to occur in the initial random sequence and was hard to erode.

In experiment 4 the initial state ‘all pluses’ was first deliberately spmit
by action of Dy;N, with a = 0.05 during 1000 units of time. In this period
of time Q. clearly decreased, which may be interpreted as an argument
for the ergodicity of DyNygs. But when the value of a was made 0.01
the Q. sharply increased. We see in this a hint that DN, possesses
some property of ‘quasi-non-ergodicity’.

The DN, with a = 0.15 was also simulated with the initial state ‘all
pluses’. In this case Q. and Q_ were almost equal after only 100 units of
time and in the subsequent simulation their plots crossed each other many
times.

Thus the results of simulation suggest that DyN, behaves differently
with different values of a. With a = 0.5 it converges quickly but with a =
0.03 it converges (if it does) so slowly that our computer simulation did
not show it.

It is natural to think that large islands, once having randomly emerged,
play an important part in the process of convergence. This has led us to
simulate DvNy o3 with the following initial state:

{— for h e [10;1000]

Y5 = 14+ for all other h.

In spite of many local distortions, this island remained of about the same
length for the whole 1000 time units of its simulation.
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The operators DN, and DN, were simulated too and showed the
same properties still more. The DNy s was simulated with the initial
state ‘all =’ during 2000 units of time. All this time Q_, was no less than
0.78 and had already stopped decreasing at t = 100. In the simulation of
DNy oz the initial 1sland of length 100 was eroded in the first 450 units of
time, after which the values of O_, remained more than 0.95 all the time.

All the simulations mentioned above used symmetric noise. We restrict
our conjecture of the quasi-non-ergodicity to this case. Plausible reason-
ing suggests that in the presence of a non-symmetric noise the converg-
ence of our operators is the usual quick one.

Note that the deterministic part of our Example 1.1a is not a conserva-
tor; so it is not surprising that this example converged in the usual quick
way.

But let us consider the following example which is a generalisation of
the voting operator of Example 1.1a.

Example 13.5 Operator I1,, where a and y are non-negative para-
meters, a + y = 1. It has

Xo = {0,1}, V = Z, Uh) = {h—=1,h,h+1).

Instead of directly writing down the transitional probabilities we shall use
independent auxiliary variables w,, each of which has the following
distribution:

-1 with probability a/2,
2 with probability a/2,
o — 4 3 with probability 1y,
*‘ 4 with probability (1 — a — y)/3,
5 with probability (1 — a — y)/3,

* 6 with probability (1 — a — y)/3.
These control the action of 17, ,, in the following way:

P i o=

0 if w, =2,

the nearest integer to (y;_, + y; + yiu )3 if w, = 3,
yi-1 if w, = 4,

i if w, =23,

Viqr It w, = 6.

LTHH,]').F: =

In other words, the projection of y/I, ., to the space X, is a mixture of six
measures, three of which are arguments, two others are constants, and
the sixth one is the corresponding measure of the voting operator. In the
case a + y = 1 our [, , turns into this voting operator (Example 1.1a)
with ¢ = a/2.
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This operator was computer simulated in the following three cases:

(1) a =01, .y = 0.6,

(2) a = 0.05, y = 0.35,

(3) a = 0.01, y = 0.06,

with a ring of 2000 automata up to 1 = 2100. In all these cases converg-
ence was quick and evident.



