1.2
Analytical methods

We shall now consider various ways to prove ergodicity of independent
operators. The main topic of Chapters 3 and 4 is the general case:
non-homogeneous operators on arbitrary graphs.

Chapter 3 treats the method first presented in [96] based on the estima-
tion of dependence of an automaton’s behaviour on its neighbours’ states;
here we give a modified version of this method, following [55].

Chapter 4 follows [97]; it presents a method that considers transitional
operators as they work in the functional space F(X).

Chapter 5 describes cluster expansions. Chapter 6 treats one-dimen-
sional operators belonging to the class %?;. Here we prove a sufficient
condition of their ergodicity which seems to us to be well on the way to
the necessary one.

In Chapter 7 we gain numerical concreteness at the price of generality.
We consider a very narrow class of one-dimensional homogeneous oper-
ators with two neighbours but examine in detail the domain of para-
meters’ values where ergodicity is provable by the methods we describe
here.



Chapter 3
The coupling method

Let us have a space X = 1__[ X, and a graph I'(V, %) of neighbours. To

heV
define an independent operator P it remains only to give transition
probabilities. We denote them here as 6, € .#(X),) where z € Xy,- (Of
course, 6. depends on h, which is omitted.) The measures 6, define
operator P in the following way: for any x € X
AP = };[VHIW.:'

There is a very simple case, in which every 6, does not depend on its
argument z at all. In this case, the measure xP does not depend on x,
whence P is obviously ergodic. There are cases, which are close to this
one, in which every €, ‘weakly’ depends on z; in this section we prove
that in some of these cases P is ergodic too.

First, we explain the idea of this proof for a very special case, in which
I' = I, all X, equal some Xj,. and P is homogeneous. Suppose that at
every point & the measure #, equals some mixture of two measures & and
7. € M(Xo):

0. = e& + (1 — e, (3.1)

where 0 = £ = 1 and the measure § € .#(X,) does not depend on z. We
shall prove that € > £* makes I crgodic (with any &, n.) where £* 1s the
critical value of Example 1.2.

To this end, let us represent behaviour of P in the following way. Let x;
be the state of the pointi € Z at the time r = 0, 1, 2, ..., as if we were
considering the evolution measure & on the evolution graph. But now x;
has three states: 0, 1 and * (which means uncertainty). Initially all the
automata are in the uncertain state *. After that the uncertain states
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become substituted by zeros and ones according to the following sequ-
ence of rules:

1 At first, every value of x} for all i € Z. t > 0 is changed to the value of
the random variable & (0 or 1) with probability £ and remains uncertain
with probability 1 — «.

2 Second, if x! is yet uncertain, but both x/~} and x{~' are certain now,
then x{ becomes equal the value of 5. where z = (x{_}, xj'). This is
repeated as long as there are points (i,r) where x} = * but x{™! # * and
¥ ook

3 Now we change the values of all x{' (which have been uncertain till
now) to zeros and ones arbitrarily, thus choosing the initial states.

4 Next, do the same as in rule 2.

1

These four rules result in all x; becoming zeros and ones, and their
distribution coincides with the measure i generated by P and the initial
measure (concentrated in the initial state). This is provable by induction.
Now note that the result of rules 1 and 2 does not depend on the initial
state, because it has got fixed when the initial state was yet uncertain.
Hence, if the certain states (0 and 1) resulting from rules 1 and 2 prevail
with r — =, the operator P is ergodic.

But our rules 1 and 2 are such that the distribution of uncertain states
depends only on & (not on & or #.) and equals the distribution of zeros in
Example 1.2 with the initial state ‘all zeros’.

Now let us have an operator and want to prove its ergodicity. For that
we present 1ts transition probabilities in the form of rule 1 above, and try
to make ¢ as large as possible. One can see that for a given P the largest
possible value of £ in rule 1 equals

&= ), min 62,

veX, Z€Xum
where 67 are the transition probabilities of P. If ¢, happens to exceed &£*
of Example 1.2, ergodicity of P is proved. This argument is generalisable
to treat non-homogeneous but independent operators. We shall do that
later, but for the present, following [96,55], proceed in other terms, less
explanative but formally more coherent. And we shall obtain a better
estimation.

Definition 3.1 Let u, and u, be measures on spaces X, and X, respec-
tively. A measure x4 on the product space X; X X, is termed a coupling of
wy and wy if u(Cy, X X5) = 1(Cy) and w(X,; X C;) = w-(C) for any
measurable C;, C X, and C; C X,. Of course, for most given X,, X,
w; and u> there are many couplings, including, say, the product measure
1y, X 1. But the following special coupling is particularly important for
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us. First assume that X, and X, are equal and finite:

Xi=X>=X and |X

< X

The coupling we need has the largest possible sum of its values at the
diagonal:
E plx,x).
YeEX
It can be defined explicitly in the following way. First we define it at the
diagonal:

p(x,x) = min (z,(x),42(x))

for all x € X. Then we define it at the rest of X X X by setting for all
X FYy

u(x,y) = S(u(x) = plr))wa(y) — u(y.y)),

where

1 1 -
vV = i‘v’ar(;sl — Us) = 5 E |#1(X) — pz(x)| =
=relX

= Y (ua(x) — u(x.x) = 2 (ua(x) — pe(x.x).

xelX xeX

Denote this coupling x#; © u>. The sum of its values at the diagonal equals

_
Yo 1 © pa(x,x) = 1 - > Var(uy = u).
reX

If u; = u,, the whole of our g; © w, coupling is concentrated at the
diagonal. Informally but importantly, if 4, = u-, the bulk of g; © u, is at
the diagonal.

Now let us proceed to operators. Let operator P, act from X to X, and
P> act from X, to X5.

Definition 3.2 An operator @ from X; X X5 to X; X X, is termed a
coupling of P, and P, if either of the two following equivalent assertions
holds:

1 For every x = (x;,x2) € X| X X, the measure x@ is a coupling of x,P,
and x,P>.

2 For every function ¢ € F(X, x X) which actually depends only on one
of its two arguments the following holds:

if @ e F(X,) then ®¢ = P,
if @ € F(X;) then @g¢ = P,p.
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Equivalence of assertions 1 and 2 can be checked immediately. Note
that assertion 2 implies that @' is a coupling of P{ and P5 for any
natural f.

Lemma 3.3 [55]. Let an operator P act from X to X. Suppose that there
is such a coupling @ of P with P that for any y € F(X,X) the condition
w(x.x) = 0 forall x

implies
lim @y = 0.
—»x

Then P has only one invariant measure. If the same condition implies
uniform convergence of @y to 0, then P is ergodic,

Proof. Take any ¢ € F(X) and put y(x,y) = ¢@(x) — @(y). The lemma’s
condition provides that for any x, y the difference

P'p(x) — P'o(y) = @y(x,y)

tends to 0 with t — oo, If u« is invariant for P, the difference
Plo(x) — ug = f (P'o(x) — P'o(y))du(y)

tends to 0 for any x. Hence, if v is invariant for P too, ugp = ve. But we
have taken ¢ arbitrarily, whence ¢ = v, and we have proved the unique-
ness of invariant measure.

Now suppose that @y uniformly tends to 0. Then the difference

P'p(x) — ug

tends to (0 uniformly too and P is ergodic according to Definition 2.7.
Now, to formulate a theorem, we return to the beginning of the sec-
tion: an independent operator P defined by parameters 6, for all h € V,
z € Xywuy. For the given P we define another operator Q e 21({0, l}V)
defined by parameters e

6, =1 — $maxVar(6, — 6,) [3.2)
where the maximum is taken over such v, w € X, for which
k € U(J{f] Ly = 1 :> Ve = We.

This Q is termed the minorant of P. It is monotone (in the sense 0 < 1).
Theorem 3.4 If the minorant of P is ergodic, P is ergodic too.

Proof. We use the notations
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x=[Ix,. v={01}"
heV
Of course, P acts from X to X and Q acts from Y to Y. We define a
mapping D: X X X — Y by the following rule:

D{IJ“I"} — —}’
where
11 4E w =43,
Ye =10 if x; # x}.
for all & € V. According to our convention, the same letter D stands for
the corresponding mapping from F(Y) to F(X X X).
Now we define an independent operator @ from X X X to X X X
which transforms any point (x',x”) into the product measure H S

heV

every factor &, of which is the special coupling defined as above:
gﬁr == ﬂz' © BZ"

where z' and z" are projections of x’ and x" to Xy,,. Evidently, @ is a
coupling of P with P. Based on Corollary 2.13, it is easy to prove that
DQ < @&D.

Now we suppose that Q is ergodic. This means that for any ¢ € F(Y)

lim Q'¢p(y) = ¢(1) (3.3)

uniformly in v € ¥, where 1 stands for the element ‘all ones’ of Y. Let
us prove that @ satisfies the condition of Lemma 3.3. Choose some 3 €
F(X x X) such that y(x,x) = 0 for any x € X. Denote

@1(y) = min p(x’,x"),
@2(y) = max y(x’,x"),

where the minimum and the maximum are taken over all (x',x") such that
y < D(x',x"). Both ¢; and ¢, are monotone and

@i1(1) = @2(1) = 0, D, < v < Dg,.
Using Proposition 2.14, this implies
DQ'¢, = @Dy, = @'y = &'Dg> = DQ'¢p>. (3.4)

Application of Lemma 3.3 to the leftmost and rightmost terms of (3.4)
proves that @y tends to 0 with ¢ — o uniformly in (x’, x") € X’ X X. Now
LLemma 3.3 proves our theorem.

In this proof the locality of P is not essential.

In [96], where coupling was introduced and Lemma 3.3 was proved, the
same method was used to prove ergodicity in the more general case:



38 Discrete local Markov systems

every automaton might have infinitely many neighbours but had to de-
pend on them weakly enough.

But the independence of P is essential in this proof as it enables us to
construct (. Let P be a homogeneous operator on the graph [, with X =
{0;1}. It has eight transition probabilities, of which four are independent;
denote the probabilities O(1|xyu,) by Boo, Go1, O10, 611 where the two
indices stand for xj,_; and xj,. Define an operator Q € 2, with the
corresponding probabilities:

0o =1 — max [0, — 6,,.|

KX ¥1.¥2

B =1 — max{lﬁu1_911|ﬁ|gﬂn_9m|}:,
fio=1-— max{lelﬂ_HHL|9{]{]_8ﬂl|}_r
811 = 1.

Corollary 3.5 Ergodicity of Q implies ergodicity of P. To prove it note
that

Var(y — ) = |p(1) — &(1)|

for any two measures #n, { on the set {0;1}. Hence @, are defined
according to (3.2).

When applying Theorem 3.4 and Corollary 3.5, Proposition 2.17 is
useful too. Let us show it in the homogeneous case. Put

Hizl_&z

forall i = 1, ..., R where z € Yy, has the ith component equal to 0
and all the other components equal to 1. Evidently, this satisfies all the
conditions of Proposition 2.17 except, possibly, the inequality 2z < 1.
Thus, assuming this inequality to be true too, i1s implied ergodicity of Q.

For example, consider the majority voting operator of Examples 1.1a
and 1.1b. The corresponding Q has parameters

6, =1- |1 — 2

for all z # 1. We know that ergodicity of O (and P) is guaranteed by
|1 — 2¢] < 4, that is, by

3];{5{

Ladltd

Various applications of the ‘coupling” method to continuous time sys-
tems are exposed thoroughly in [48]. In particular, this method may be
used to prove that the set of invariant measures of the monotone (i.e.
attractive) process on {0,1}° is the segment [v,,v,], where v, and v, are
the limit points of the process for initial states dy and 0, respectively.

Another method of proving ergodicity in the discrete time case has
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been developed in [6-8]. It is based on estimation of ‘lost information’
and is suitable for systems where automata weakly depend on each other.
The next chapter presents still another method of proving ergodicity,
which is especially good for numerical estimations.



Chapter 4
Characteristic polynomials

This chapter describes in a general way an algebraic method, which has
been illustrated by Example 1.3. We use it to prove ergodicity of some
operators. However, it mav be useful in answering some other questions,
including investigation of the set of invariant measures. In some cases this
method almost coincides with the dual process method; this interpretation
allows us to apply it to the continuous time case (see [31,35,48]).

For any ¢ € F(X) denote by w(g) = _SUPXW(X} — @(y)|, the
range of @. Remember that a semi-norm stands for a non-negative

homogeneous function which satisfies the triangle inequality.

Definition 4.1 A w-semi-norm is such a semi-norm [|.|| in F(x) that

lell = o(e).
Let P stand for a local operator from X to X.

Proposition 4.2 If P is contractive with respect to some @-semi-norm in
F(X), then P is ergodic.
Proof. For any ¢ € F(x) the sequence of ranges of P’ contracts:

[inf P""g: sup P"" '] C [inf P'p; sup P'e].

The assumption that P is contractive implies |[|[P'¢|| — 0 whence
w(P'¢) — 0 and P'@ uniformly converges to a constant. Thus, P is
ergodic according to Definition 2.7,

Proposition 4.3 An operator P is given. Suppose that there is such :
number » < 1 and such a subset F;, € F that F is the linear hull of F) and
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for any ¢ € F its image Pg is presentable as such a finite linear combina-
tion

R
Pp = ), a,p, where ¢, € F,, (4.1)
r=1
that
R
Z] |ar|m(@r} = HC&{(}E‘] (42}

Then P is ergodic.

Proof. For any ¢ € F put
i
|| = int E} la, | (g,)

R
where the infimum is taken over all presentations ¢ = E a,¢, (where

r=1
R is natural and all ¢, belong to F,). It is easy to prove that ||.|| thus
defined is an w-semi-norm in F and that P contracts it with the coefficient
K.
A similar assertion is proved in [47]. The following is its slight modifica-
tion.

Proposition 4.4 Let F; C F(X), the linear hull of F; be equal F, and
lgp(x)| < 1 for all ¢ € F;, x € X. Let there be:such » < 1 that for any
@ € F, there is a presentation

R
Pp = ), a,9,

r=1
K

where all ¢, € F, and E |a,| = #. Then P is ergodic.

r=1
Its proof goes on the same lines. However, Propositions 4.3 and 4.4 are
logically independent.
For the rest of this chapter we shall take X = {0;1}".
Let us denote for any K C V

yieley s {l if xp =1 forall h e K,
ke () otherwise,

and term it the characteristic function of K. Of course. yz(x) = 1.
In these terms independence of an operator P from X to X' means:

JNK=0=> Pluxx) = (Pr)(Pxx)

Hence Py; = HPZ;,.
hel
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Every Py, can be presented as a finite linear combination of some
characteristic functions

Pin = )3 QnkXx (4.3)

which will be termed the characteristic polynomial of P in the point A.
Knowing the characteristic polynomial, we can represent any Pyy as a
polynomial too by opening the brackets in

Pyx = 11 ZJ - (4.4)

heK

Since any ¢ € F can be presented as a linear combination of characteristic
functions, Pg is presentable in an analogous way:

Py = Z ex(Pxx) = E WK;II{ ?am}:’i (4.5)
(y=
Theorem 4.5 [47]. If
sup ), |anx| = % < 1, (4.6)
helV K

operator P 1s ergodic.

Proof. Let F; be the totality of all yx (including yz = 1). It is sufficient
to prove that our £ fits all the conditions of Proposition 4.3. Of course,
the linear hull of F, 1s F. Now, after opening the brackets in (4.4) for any
K # (J we obtain some linear combination with coefficients, the sum of
modulos of which does not exceed x.

Thus, for any K # J we have (4.1) satisfying (4.2). For K = J (4.1)
and (4.2) are evident, which ends the proof.

Functions which have other values than 0 or 1 are useful also to prove
ergodicity of some other operators. Let us denote

e ={H if x;, =0,
= b if x, =1

where @ # b and 75 = 1, i = H xn for K # (J. Consider the charac-
he K

teristic polynomial of an independent operator P again: Py, = E g A K-
K

Theorem 4.6 (A. M. Leontovitch). Let I" be non-homogeneous but

sup [U(h)| = R < =,
ins
Denote
Pn = o] + |d,.]

where ¢, and d,, are coefficients in the presentation
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LY

(Xh) = Cm + dmx.;r-

Denote
o = max {|a|,|b],1}.
y= max (5% pl)
l=m=R
If
JS;-I:[LJ!?ZR: lapx| =% < 1 (4.7)

then P is ergodic. ,
The proof is based on the fact that P contracts with the coefficient » the
w-semi-norm defined in the following way:

Izl = 0. ||xkll = 26'%! for K # @,

Eﬁh’}ﬂ‘( = E |ﬁf;|“}f}f” = 2 Z |ﬁK|U|K|'
K K

K+
Let us apply Theorem 4.6 to the majority voting systems of Examples
1.1a and 1.1b. Take @a = —1, b = 1. Then the characteristic polynomial is
PXL = (% = E](X;r—l T x.!:: + x;r+] Gty XT{.FI—].J':J:+H}'
In this case 6 = p,, = y = 1. The inequality (4.7) becomes
2]1 — 2¢] <1 or 1<e<73.
Thus, ergodicity of Examples 1.1a and 1.1b is proved in this range.
The characteristic functions are useful in another way: they help to

examine how the invariant measure (which is unique in the treatable
cases) of an operator depends on its parameters.

Proposition 4.7 In the conditions and notations of Theorem 4.5, in the
domain

Yl <1 (4.8)

K
the values of the P operator’s invariant measure analytically depend on
the transition probabilities.

Proof. Note that in the domain (4.8) P has only one invariant measure
according to Theorem 4.5. Denoting this sole invariant measure by up we
have

s f—re

where ¢’ stands for P'ys;. Now let us expand the formula (4.4) to the
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space of polynomials with complex coefficients. Let @y run over all

complex values satisfving E lag| < 1. This domain is the union of
T

open domains

). lak| < x (4.9)
~

over all » < 1. When proving Theorem 4.5 we in fact proved that in the
domain (4.9) the operator P contracts with the coefficient x the following
(-SEMI-NOTMm:

JE YrXK| = E ¢kl
|k K#@
But the same holds in the complex case too. Hence in the domain (4.9)
@' - ") = llg' = ¢"ll < Lo’ - ¢!l < ¢ X
F=f S=Tr

Thus, (4.9) assumed, ¢’ converges to ¢” uniformly in x and the value of
@'(0) for any ¢ is a polynomial of ak. So, according to the Weierstrass
theorem @™(0) depends on ay analytically in any domain (4.9) and
consequently in the domain (4.8) too. We have proved that (4.8) assumed
pup@ depends on ag analvtically for any ¢ € F. It remains to note that all
ax are linear combinations of transition probabilities. Proposition 4.7 is
proved.

In the same way analyticity of all upyk can be proved assuming that
(4.7) holds for any homogeneous operator. These results can be ex-
panded to non-homogeneous operators, understanding by analyticity of a
function of a countable set of arguments its representability as an abso-
lutely convergent series.

To conclude this chapter, we mention some elaborate estimations for the
dimension of the set of invariant measures of a homogeneous operator P
€ 9. Let I'(V,%) be a uniform graph with a transitive group G of
automorphisms and X = {0;1}".

Definition 4.8 Term a measure u € #(X) regular if

lim sup gy = 0.

I—= heV

Proposition 4.9 [47.55]. Let P € 2, be homogeneous and all the coef-
ficients of its characteristic polvnomial be non-negative. Let I” be G-
connected, which means that for any finite K € V and h € V there are
such g € G and £, > 0 that g(K) C U'(h) for all t > t,. Then:
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I For any regular measure u the sequence uP’ tends to up = lim 0P".

s

2 Any homogeneous invariant measure g is the mixture of up and dy:
u=aup + (1 — a)d;y where 0=a=1.

3 For any homogeneous measure u the sequence uP' converges.
4 If up # O, then u, is regular and moreover |“lilmr wupxx = 0.

The condition of G-connectedness is essential because without it the
totality of invariant measures can have dimension more than 1, as demon-
strated by the following example. Let V = Z, U(h) = {h—2,h}, 61, = 1,
O = Op1 = 619 = €. This means that automata at even places and
automata at odd places form two separated systems not interacting with
each other. The behaviour of each system is the same as in Example 1.2.
Thus each system with small values of ¢ has at least two mutually singular
invariant measures u, and x; = o; whence P has at least three mutually
singular homogeneous invariant measures:

Mo X Ho, 5(to X py + p1 X po), g X Hy.

Thus the dimension of the totality of homogeneous invariant measures of
P is not less than 2. The same holds for

U(h) = {h—1;h+1)}

which gives a connected but not G-connected graph.
There are analogous results for systems with continuous time [48].
Let us explain the similarity between the characteristic polynomials
method and the duality method first introduced by Harris [35]. Let us
restrict our attention to Example 1.2 and take the functions y;(x) = x; and
their products as the basis functions. The characteristic polynomial is

Pri(x) = € + (1 — &)xixi+1- (4.10)
Its iterations result in formulae
Py = X afixk (4.11)
for any finite / C 7, where all K are finite subsets of Z too. The af&r are
some positive coefficients (polynomials of £ and (1 — &) with positive
coefficients) subject to E af% = 1. In particular, with ¢ = 1
K
Py = Zafikux = (e + (1 = e)pz).

iel

Let us think of the numbers o)} as probabilities of transitions of a
Markov chain 5 on the set S of all finite subsets of £ ; this chain goes from
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any I € S to any K € S with probability a}'. Then ajy is this chain’s
probability of passing from / to K in ¢ steps of time. Let 5’ be the chain’s
state at time 1, the initial state being ”. Now we may consider the initial
Markov process & (having the transition operator P) as having the same
set S of states by representing any x € X by &§(x) = {j € Z; x; = 0}. Now
we may interpret (4.11) in the probabilistic sense, which yields

PE Ny’ =2) =P N & =0). (4.12)

This wonderful equality warrants the term ‘duality’: the processes 7 and §
are dual. Note that these two processes have axes of time directed in
opposite directions. In this particular example this opposition of times can
be expressed in the percolation terms (see Example 1.2 and Chapter 8).
One corollary of (4.12) is the following: for any_x” having &" finite:

limx*™ = au, + (1 — a)d,

where a = u.(x: x; = max {x?, x?_;}).

The duality method is very useful in the voter model on the lattices Z*
too; this is the operator on {0;1}*" having the linear characteristic poly-
nomial of the form

Pyp = ZagYn+k> ax = 0

It has dy and &, as invariant measures; in the cases d = 1 and d = 2 their
convex hull exhausts the set of homogeneous invariant measures, but with
any d = 3 the set has a continuum of different extreme points. This
difference can be explained as follows: the dual chain is a system of
coalescing random walks which are recurrent with d = 1, 2 but not with d
=3,

The notion of duality can be generalised so that to help to investigate
many systems with continuous time just as the characteristic polynomials
help to investigate systems with discrete time. These include the voter
model investigated in the continuous time case especially well [3,5,39.48];
the self-dual contact process which is the continuous time analogue of the
(4.10) operator; and many others (see [29,31,48]).



Chapter 5
Cluster expansions

This chapter is about some more ways (borrowed from statistical physics)
of proving ergodicity of independent operators. As before, the transition-
al probabilities

B(I;a |xlrl';(}:])

have to depend weakly on x{yh): 6(x}|xy) = n(xh). The present
method also allows us to present the invariani measure parameters as
power series in differences:

Ok | xugn) — n(xh) = Bxh,XGam)- (5.1)
As a preliminary illustration, let us apply this method to a finite
Markov chain having n states 1, 2, ..., n and positive transition probabi-
lities presented in a way analogous to (5.1):
p(lj) = n() + B(.)) (5.2)
where
Yin() =1, n@) = 0 (5.3)
i=1

and all g(i,j) are small. Clearly, :
2. BGi.j) = . (5.4)

Let x, stand for the state at time ¢. The conditional probability to get from
one state to another in ¢ steps is

P(x, = fr|-‘-'n = Ig) = E HP{fk[fk—-lj- (5.5)

Breenorbpy k=1
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We want to substitute (5.2) into (5.5). This complicates the formula. To
simplify it, we denote

Beli,j) = | E B(i.11)BU1,12) - .. Bljr=1,f)-
Fisaonilp

collect together members having & first factors of the same sort and use
(5.3) and (5.4). This results in

H

P(r = ilxo = i) = 1) + L L Biim() + liio)  (5.6)

=1
where only the last term depends on the initial state i;. We have said
informally that f are small. Let us formalise this as follows:

v;: E B < a <1
Then
|JBF-.(I.;)‘ = ak

and (5.6) in the limit + — = presents the invariant measure values as
absolutely convergent power series:

26 + 5 Y B, n) =

k=1 j=1

=00 + X Gil) (5.7)

(i)

where
Gi(i) = X Beli (i)

Preliminaries over, let us now do the same for our operators. The
method works for a variety of graphs including those having V = 7. But
we assume for simplicity V' = Z. We shall treat evolution measures /i on
evolution graphs having V = 7? as the set of vertices.

Let us term the set

B; = {(i.0)} U {(j.t—1),je UG))

the ‘branch’ with the root (i,f) € Z>. The points (j,t—1), j € U(i) are
termed ‘ends’ of this branch.

Definition 3.1

(1) A branch B;,_, is termed following a branch B,, if (j,i—1) is an end of
B.
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(2) A finite set of branches is termed a crown with one root (i,f) if it
includes B, and every one of its other branches follows another of its
branches.

The union of points of branches of a crown C is termed crown C
also. A single point (i,f) is also a crown with the root (i,s).

(3) A finite set of points is termed a crown with roots (i.f), (i2.1), ..,

(ig,t) if it is a union of k£ crowns with these roots.

To every state x- € X of a crown C we ascribe some value y(xc) based
on denotations of (5.1) by the following formula:

Y(xe) = Hﬁ(ﬂn-’fﬁ}:)]‘nﬂ(ﬂ:)

where the left-hand product is taken over all roots (4,f) of branches in C
and the right-hand product is taken over all free ends (h,r) of C.

Lemma 5.2 Suppose that the system’s initial measure is independent
and is the product of measures equal to # in every point (i,0). Then the
probability

i(x; = a)
equals the sum of y(x¢) over all x € X such that x{ = a where C runs

over all crowns having one root (7,f) in positive-time half-plane.

Proof. Just from definitions, ji(x; = a) equals
=1 i+r i+re
LI IT eeg=iv=) T1 nad 58)
s=0 j=i—rs j=i—rt

over all x;' where j and u run over the given ranges with the condition

x; = a. Substituting (5.1) here and opening the brackets we prove the

lemma.

Theorem 5.3 For any n, R there is such ¢ = a(n,R) > 0 that the

following holds. Let P be an independent homogeneous operator on
X = X§ where

ol = n, V= 2&; IRR) = {j: |j—h =r)
Assume (5.1) where all
|8(.;:)] =@
Then P is ergodic and any value of its invariant measure up:
pplx;=ay,. .. x;,=a;)

equals the sum of y(x-) over all x € X such that
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Xi = W)y sovp X =l
where C runs over all crowns with roots (i;,r), ..., (i;.f). Here the value
of r 1s arbitrary.

Proof. Denote |U(h)| = R and remember that |X,| = n. Note that:

I The number of crowns with one root (i,t) consisting of k branches does
not exceed 2%,

2 The number of x- € X for a given crown C with one root consisting of
k branches does not exceed n*®*!,

3 |y(xc)| = o where the crown C has k branches.

4 Any crown with the root (i,f) and an end (;,0) contains no less than ¢
branches.

5 The only factor in (5.8) which depends on the initial measure is the last
one.

Now let us write P(x; = a) as a series
G[J+GI+GQ+ (59)

where G, is the sum of inputs from all crowns having k branches. It
follows from notes 1, 2, 3 that

|G| =< const - &X

where ¢ = (2n)%a.

It follows from the note 4 that the values of G, for s < ¢ depend neither
on the initial measure nor on ¢. This allows us to take the limit in t — = of
every member in (5.9).

In the same way the limit

limgi(x; =ay,. ..,xi =ay)

e
can be proved to exist, and not to depend on the initial state (as it can be
represented as the sum over all crowns with &k roots (iy,¢), ... (ig,f)).

The necessary values of a do not depend on & and the convergence is
uniform in the initial state. The theorem is proved.

Let us show two applications of obtained expansions: a service system
and our Example 1.2.

In all the integer points of a line there are automata of which every one
has two states: 0 (free) or 1 (busy). If the automaton 7 is busy at time ¢,
then the next moment of the integer time it either fulfils the service with
probability (1 — £), or continues it, or transmits it to its right neighbour if
it is possible (i.e. right neighbour is free). Also, a flow of requests comes
to the system which results in free automata getting busy with probability
p. Thus we have a system with three neighbours: V = Z, U(h) =
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{h—1,h,h+1}, with the transition probabilities shown in Table 5.1, where
asterisks stand for unimportant values. We assume that ¢ is small. This
suggests that we take n(1) = p. n(0) = 1 — p. This results in the values of
$ as in Table 5.2. Of course. B(0]...) = —pB(1]...).

Now, applying the general Theorem 5.3 to this model gives.

Proposition 5.4 The cluster expansion converges provided & is small
(quick service) or (1 — p) is small (frequent requests).

The other application is to our Example 1.2 (Stavskaya’s problem),
where transition probabilities are as in Table 5.3. We put

n(1) = 6,7(0)=1-0.

Table 5.1
Xh £ - - 6(1]...)
0 0 o p
# 1 0 P
#* 1 1 E+ p—Ep
1 0 * £+ p—gp
Table 5.2
s X; Xi+1 <1 1 -
0 * 0
* 1 0 0
* 1 1 &1 — p)
1 0 # (1 — p)
Table 5.3
" o)
* 0 7]

{} % 8
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Table 5.4

Xiis X; Bl o)
# 0 ()

0 * 0

1 1 1 — 48

Then the values of § are as in Table 5.4. Of course,

BO]...) = =B(]|...).

One can see from the definition of 8(.) that only those x~ give non-
zero contributions to ji(x{ = 1) which consist of ones only, without zeros.
Thus non-zero summands in ji(x; = 1) correspond to crowns. In each of
them every branch gives a factor (1 — €) and every end gives a factor 6.

If 6 is large, that is (1 — @) is small, then § is small according to its
definition and Theorem 5.3 asserts ergodicity which is already known.

Now let @ be small.

In this case the transition probabilities strongly depend on their argu-
ments, which precludes straightforward application of the cluster method.
But in this special case there is a special method. Let fi, stand for the

evolution measure of the Stavskaya system with the initial measure ‘all
Zeros'.

Lemma 5.5 jig(x; = 1) equals the sum of y(1.) over all crowns with the
root (7,f) in the band (0;¢] filled with ones.
Proof of this lemma just repeats the proof of Lemma 5.2.

Theorem 5.6 [61]. The limit exists

lim gig(x; = 1)

f—o

and equals the sum of y(1.) over all crowns with the root (£,f). This limit
is analytical in some interval (0;6,) and can be analytically extended to
the complex domain

16: |0|<6,,|1-6]<1).
Prooft

1 If a crown has m branches and »n ends, then n = m + 1.
2 The number of crowns having one root (i,t) and n ends do not ex
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some €" (this follows from estimation of the number of boundaries of
Crowns).
3 A crown C with n ends and m branches has

};(l(_} — Hﬂ(l - H).ﬂ‘l _E_:E 8”.

4 Any crown with the root (i,f) having an end (j,1) has no less than ¢
ends.

Now we represent
pxi=1) =G, + G, +

where G, is the sum of ¥(.) from all crowns with n ends. Note 4 proves
that the values of G; with s < r do not depend on ¢. For a while let us
write

G, = E amnﬁnﬁm

m=n—1

where f is inserted instead of (1 — @), and allow 8 be independent of 6.
In fact this sum is finite because

— pi
Z Ay = E .
m

Hence the double series 2G,, converges in the polycircle
{(6,B): |0] = 6o, |B] = 1}

for any 6, < % uniformly in ¢ [69] and we may substitute everywhere its

member by its limit in f — . The limit series is an analytical function of 6
and f in the polycircle

1
(@.8): 101 < 1. 181 < 1)
which is continuous in the closed polycircle

{(6.B): 16] = 60, |B| <

for any 6, < %; The substitution § = 1 — @ turns it into an analytical

function of one argument @ in the domain

(5: |9|{:%,|1 —9|~::1)

which 1s continuous in the closed domain

{H: |8| = '9“1 |1 _ H| = i
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Just from its definition this function equals

lim ii(x; = 1)

f—se

for

With 6 — 0 it tends to 0 (from its continuity) which shows that our gy is
not concentrated in ‘all ones’ and the operator is not ergodic.

Now let 6 take any value from 0 to 1. In this general case, in spite of
the absence of estimations providing analyticity, we can still prove con-
vergence of the sum

Z: Z amna”(] - g)mu

n m=n—I1 :

existence of the limit

lim go(x; = 1)

e
and equality of this sum and this limit. The point is that members of the
sum are non-negative and for any finite ¢ the value of

fo(xi = 1)

equals some partial sum into which every member of the infinite sum gets
sooner or later.

As in Theorem 5.3, all the assertions of Theorem 5.6 can be extended
to probabilities

do(xi=1,...,x,=1).

Each of them has a limit in + — o which is representable as a cluster
expansion the sum of which is analytical in some interval (0;6,) and can
be analytically extended to the complex domain mentioned in the state-
ment of Theorem 5.6.

The initial condition ‘all zeros’ is not quite necessary in Theorem 5.6. A
homogeneous independent measure u with u(x; = 1) = ¢ will do too. See
also [98] where there are some stronger results.

Some other techniques including correlation equations for evolution mea-
sure prove analyticity of the g, invariant measure and existence of its
cluster expansion in some neighbourhood of ¢ = 0 [100].

The method of this chapter can be generalised in various ways. First, it
works with obvious alterations for the case when transitional probabilitics
depend on several previous times ¢t — 1, ¢t — 2, ..., t — T where T is fixed.

Second, this method can be generalised to some non-independent
operators too, namely the so-called Markov chains of automata [15]. As
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before, we speak of i where x; is the state of the i automaton at ¢ time.
We order points (i,f) € Z° by the rule: (j,s) < (i,1)if s < tors = ¢ and
j < i and let any state x| depend in a certain random way on some of
those x; for which (j,s) < (i,7). But this dependence is local in the sense
that x; depends only on a finite number of its predecessors, namely those
for which

max (|s—t|,|i—j|) =< const.
Another generalisation of cluster expansions is to use
O(ci|x ™Y = po(xilxi™") + Blxix™")

instead of (5.1), where po(.|.) is the matrix of some irreducible non-
periodic Markov chain. If || < a and a is small, this means weak
interdependence between automata. In this case a branch is defined as
before, but some definitions have to take new forms:

Definition 5.1'

(1) Branch By, is said to be following the point (j,t) if u =< ¢. Branch B,
is said to be following the branch Bj if it follows some of its ends, that
is, if u < tand|j — i|] = R.

(2) A crown with the root (i,r) is a finite set of branches one of which
follows (i,r) and each of the others follows some branch of the crown.
Ends of a crown are such ends of its branches for which all points
(j,v), where v < u, do not belong to the crown.

(3) A crown with several roots is defined analogously: it consists of a
finite number of branches iteratively following the points

Ciatle ooy ligsd)

As before, y(x¢) is the product of factors which include f§(.,.) corres-
ponding to the branches, and n(.) factors corresponding to the ends of
the crown C where n 1s now the stationary distribution of the Markov
chain with transition pr{)bdbllltle*-: po(x|y). But now there is a new factor

ps ) (x¥|x}) for every pair of points (j,v), (j,u) such that (j,u) and (j,v)
he[ong to the crown and (j,v+1), (j,u—1) do not belong to the
crown. Here pi”(x|y) is the prubability of transition from y to x in n
steps.

Lemma 5.2 literally fits here and a theorem like Theorem 5.3 is prov-
able.



Chapter 6
Random walk operators: ergodicity

Although our main concern is with independent operators, we use some
other operators as tools. Here we introduce and begin to examine non-
independent ‘random walk’ operators introduced by A. L. Toom.
Throughout this chapter we assume X = {0,1}" and 0 <1 and speak of
monotonicity in the sense of Chapter 2.

Proposition 6.1 Let W be a monotone operator from X to X and P € 2,
(which means that P is from X to X and conserves the measure 0,
concentrated in the state ‘all ones’). If W < P" with some 7 and V x € X:
r]inUn:PI«’if’r = &,

then P is ergodic.

Proof is easy.

We are going to use this proposition to prove ergodicity of some
independent operators P.

But first we have to define our tool: hence W stands for a random walk
operator. Let us term a segment of Z

(k.k+1,... k+s—1} C Z

a ‘massif’ of ones of the length § for a given x € X if ey = Xpye = 0, Xp
= Xps1 = ... = Xp,s—1 = 1. Infinite massifs of ones are defined in an
analogous way.

A random walk operator depends on some parameters; thus before its
definition we must choose two natural numbers r and s such that r = 2s.
We also need two probability distributions F and G on the set

{-s5,—s5+1,...5-1s}CZ
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Definition 6.2 [83]. W = W, W, where W, and W, are operators from X
to X.

First W, is performed; W, is deterministic and depends on the para-
meter r. In fact it eliminates all massifs of ones which are shorter than r.
In other words (xW,),, = 1 if and only if there is such i that h € [i.i+r—1]
and x; = ... = xj,,_; = L.

Now W, works. Informally. it moves all the left-hand ends of the
massifs of ones according to the distribution F and moves all the right-
hand ends of the massifs of ones according to G, and all these movements
are mutually independent.

Formally, let &, & ... and ny, ., ... be two countable families of
independent random variables distributed according to F and G respec-
tively. Let all massifs of ones in x be somehow enumerated and let [i;, ]
be the kth massif. W, transforms x into the random y € X by the rule:
v, = 1 1f and only if

Hk:l-k'i‘(__tk—ﬂhéjk—i_??k‘

Proposition 6.3 W is monotone.

Proof. Monotonicity of W, is evident. It remains to prove that W, is
monotone on the subset XW, of X

(x,ye XW, & x<y) = xW, < yW,.

This can be proved by the coupling technique. Let y have one massif of
ones [i,f]. Let [i1,ji], --., [ix.Ji] be those massifs of ones of x, which
belong to [i,j]. We may and shall identify that £ variable which moves i in
the application of W, to y with that £ variable which moves i; in the
application of W5 to x. Similarly we identify those » variables which move
Jj and j, in the application of W, to v and x. This being done, the
realisation of xW, is always no more than the realisation of yW,, whence

xW, < yW,

Note that the condition x. v € W, was essential here. Indeed, W, is
not monotone when applied to the whole of X.

For y having many massifs of ones, the proof is analogous.

The valves of EE and En are the most important determinants of W’s
behaviour. Indeed, in a long time ¢ the left-hand and right-hand ends of
long massifs of ones move at about ¢-E& and r-Exn. With this kept in
mind, we term W ‘extensive’ if E£ < Ep.

The next proposition is a simple corollary of the classical random walk
techniques. It treats results of iterative application of an extensive W to a
state having one massif of ones. All the resulting measures at times r = 1,
2, ... are concentrated in states having no more than one massit [i,,],].
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[If x* = 0 then i, and j, are undefined). Of course. i, and j, perform random
walks on Z with independent single steps distributed as & and 7.
Proposition 6.4 Let us have an extensive W and denote

c; = (3-EE + Ep)/4, c; = (EE + 3-En)/4.
Let ji be the evolution measure produced by W with the initial state x°

- 1 if iysh=j
- 0 otherwise
where jo — ip > 7.

There are such u, v (which depend on W, but not on g, jp) that for any
m., n such that r + m + n < j, — i, X' will never become 0 and the

following inequalities

f,ii{,+m+clf=f,*

6.1)
i=jo—ntct=jf
‘ t
—
I
&
§f
T /L_______ -
b e B
TL Yr_ JH,_J
= n

Fig. 6.1 Domain H. See Proposition 6.4.
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hold for all + = 0 with probability no less than 1 — «™ — v".
Informally this means that in the case E& < Ex long initial massifs of

ones will never die and will even grow with large probabilities, thus filling

the domain H of the evolution space, which 1s shown in Figure 6.1.
Proof directly follows from [19, ch. 14, 8].

Lemma 6.5 (A.L. Toom). Let W be extensive. Let the initial measure u
be such that for any € the probability to find in a segment [i,j] C Z some
segment of the length ¢ filled with ones tends to 1 with (j — i) — =
uniformly in 7 and j. Then

) lim uW' = 6,.

[

Proof. It is sufficient to prove that gi(xj, = 1) tends to 1 with t —
uniformly in & € 7.
Let us fix € > 0 and find such £, that

t=fh=>hlkx,=1)=1 - ¢
Proposition 6.4 provides

A = xg g =1 = 1w —v

for (0,f) € H where H is the infinite domain shown in Figure 6.1. Choose
m, n such that

u™ + v = gf2.

Now take d such that the probability of finding in any segment [i,i+d—1]

some segment of length € = r + m + n filled with ones exceeds 1 — %
Now denote
Hi gl = {(k0): i s k < j}} (6.2)

the domain in the evolution space Z x 7, filled with ones with large
probability according to Proposition 6.4, where i and j} are defined in
(6.1). The typical form of Hj; ;, is shown in Figure 6.1 as H. Simple
geometrical consideration shows that for any fixed €, i, d all H; ;, with
lio,ip+€—1] C [i.i+d—1] have a non-empty common part. Taking (h,f) in
this part proves the lemma.

Let us term an operator P € 2, on X = {0;1}* extensive if there is such 7
and such an extensive random walk operator W that W < P*. According
to Lemma 6.5 and Proposition 6.1 any extensive P is ergodic. The reverse
1s partly true too:
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Proposition 6.6 (A. M. Leontovitch). Let P be such an operator on
X = {0;1}” that for any a > 0 there is such ¢ that

uP'(x; = 0) < aft

uniformly in 4 € #(x) and i € Z. Then P is extensive. Proof is in [55].

Note 6.7 Assuming the conditions of Lemma 6.5 and the measure u #
d¢ being homogeneous and independent, uW' tends to d, exponentially.
Thus, 1n this case only two types of convergence are possible:

if P is extensive, doP'(x; = 1) tends to 1 exponentially;
if P is not, there is such a > ( that

V. @ﬂPr(x,- = U'J = alt.

Thus, if we want to prove ergodicity of a given P € 2, on {0;1}* we
should seek r and W such that W < P". This can be done by applying P*
to a state having one infinite massif of ones and reducing all the resulting
states to those having only one infinite massif of ones too by turning
into zeros those ones which do not belong to it. Doing this for operators

P € 2, on the graph I'| in the case r = 1 provides us with such a W,
which has

B0 010
EE=1- —%  [Fp=—129_
L=l © 1= B

So, this W is extensive if
ﬂ(]{_] + Bﬂl + Hlﬂ = T S

This inequality is sufficient for P to be ergodic. In particular, the
operator of Example 1.2 thus gets proved ergodic in the range ¢ > 1.
Taking larger 7 gives better estimations. In the special case of Example
1.2: taking v = 2 proves ergodicity for £ = 0.328 and taking r = 3 proves
ergodicity for £ > 0.324. Thus we have for the critical value in Example
1.2;

e* = 0.324.

In percolation theory some constructions have been used based on
ideas similar to our random walk operators [17]. In particular, J. Bishir
[91] proved the estimation ¢* < I for our Example 1.2.

Quite another way to prove uniqueness of invariant measure was ad-
vanced by A. M. Leontovitch. It has not yet been developed enough to
be treated in a separate chapter, and we thus consider here what 1s known
about it. Its key idea is to use the rule of contraries.

A homogeneous normed measure u on X = {0;1}° can be defined by
its values:
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M 2o = B{X: Xp1 =21, - S Xisk =2y} (6.3)
Moreover, even these values are not independent and just those of the
6.3) values in which z; = z;, = 0 define u. These are some of them:
k u
Hps Hoos Hooos Howos - - - (6.4)

For example,

1 =1 — py,
Ho1 = Hio = Mo — Moo,
H11 = Wy — Hor,

and so on.
Finally, u of the single state ‘all ones’ is

I — (o + poro + 260110 + 3to1110 + -..)-

Now let P be a homogeneous operator on X. Let P € 27, in which
case the measure d; concentrated in ‘all ones’ is invariant. Suppose P has
another measure u in which uo > 0. The equation 4 = uP can be
rewritten as a homogeneous system of equations for the values (6.4).

This system has a non-trivial non-negative solution, for which the series

to + Moo + 2uo110 + 3Mo1110 + - - (6.5)

converges, if and only if P has another homogeneous invariant measure u
as well as 0,. For P monotone, the uniqueness of d, as invariant measure
implies ergodicity.

Let us apply these considerations to our Example 1.2. These are the
first few equations of the infinite system equivalent to u = uP:

o = (1 —€)(2uo — noo), (6.6)
too = (1 — &)*(po + Hor0), (6.7)
tooo = (1 = €)*(seo + 21010), (6.8)
oo = &(1 — &)*(po0 + 2t010) + (1 — €)’sto110, (6.9)
tioooo = (1 = &)*(sooo + Horo + Hooro + Horo10), (6.10)
tooo = (1 — €)oo + €(1 — £)°(...), (6.11)

oo = 2e(1 - E}zﬁmm + L = f)zﬂmnu " 52(1. = E)z(- . ) {6-12)

and so on.
Making inferences from these equations results in reducing the range of
. Just the first equation gives

1 — 2¢

[X = 50— lpy.
i 1 — E#u
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But both w and w should be non-negative, which is impossible if ¢ = %
This proves &* = 1. Also ug, to10. o110 can be expressed in terms of g
using (6.6)—(6.9), which results in

e* = 0,42, * =< 0.38, £* =< 0.35

respectively. We cannot express other values of (6.4) in terms of .
However, better estimations for £* can be obtained. For example, (6.12)
yields

(1 = &)’morr10 = (1 — 2¢(1 — &)*)or10 —
— (1 = &)*(uoo0 + Ho1o + Moo + Moo t+ Hoio10)-

Substituting here our formulae for worrg, oo and wge and expressing
Hooro and Loypo in terms of sipoo, Moro, Ho110s Horo10 With (6.11) we obtain
Ho1110 < 0 for £ > 0.33.

Thus £* = 0.33. We see that this method gives about the same numeric-
al estimations for Example 1.2 as the random walk operators method.

Now let us discuss all the estimations of Example 1.2 operators we have
got. Random walk operators provide upper estimations of £* which as
T — = tend to some &), which is the infimum of those & with which the
operator in question is extensive. In the range ¢ > &, our operator is
ergodic and uP’ tends to ‘all ones’ exponentially. Clearly £* = &l If
they are not equal, our operator in the range ¢* < ¢ < ;. has only one
invariant measure d; but 0P’ tends to d; slowly: 0oP'(x; = 0) is not o(1/1).

We can also define &5, which is the infimum of those g4 .. With
which the infinite system has no non-trivial non-negative solution. Clearly
e* = g5,. If they are not equal, in the range * < ¢ < &g, the system
(6.6)... has a solution, but the series (6.5) diverges. However, it seems
most plausible that

B o a R
€ = Egalk T E.\;ysh



Chapter 7
Ergodicity at the simplest graph

This chapter applies all the methods described above to the particular
case of homogeneous independent operators on the graph I'; with X =
{0;1}*. This family of operators has four parameters

ﬂ('r;:-I = 1|x£:—]1x}r)
denoted here:
gma g{.l].'— g]{h 6ll

where the two indices stand for xj,_;, x},. For simplicity we reduce these
four to three by assuming 6y, = 0y.
First we apply the results of Chapter 4. The characteristic polynomial
of our operator P for the standard functions yy is
Pyi = o0 + (610 — 6o0)(xi-1 + x:) + (611 + Oo0 — 26010)xi-1%i
and the condition (4.5) takes the form
0o + 2|010 — ool + |611 + Bog — 260,0] < 1. (7.1)

In general an inequality

N
fov) + L 1Ll < €

where v € R and all fi,, f,. ..., f, are linear, is equivalent to the system
of 2V inequalities
N

fo?) + 3 ufuv) < C

=1



64 Discrete local Markov systems

where every 0, = *1. In our case (7.1) is equivalent to the system of four
inequalities

His

s T —
A By BB 1
2000 Oy L

A 01

et T TS —

|
—_

Fig. 7.1 Polygon §,.
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This is some polyhedron in the cube. Its section by the plane 6,5 = 0 is
the quadrilateral S, shown in Figure 7.1. For any 6,, fixed, the corres-
ponding section 1s the intersection of the square and the image of §,
under the homothety with centre (1,1) and coefficient 1 — 6.

But the functions yx chosen are no better than any arbitrary yx. Let us
take yx with a = —1 and b = 0 which is the opposite of the yx case. Now
the characteristic polynomial is

Pyi =1 — 611 + (610 — 011)(xi-1 + xi) + (2610 — 6011 — Bo0)Xi—1X:-
This leads us to the system
ﬂm = U‘, 2
Ooo + 26, < 46,

Oug + 46,; = 404,
em = 2811 ‘:: 0.

The section of this polyhedron by the side 6,4 = 1 is S] shown in Figure
7.2. Any section of it by the plane parallel to this side is the intersection
of the square with the image of S] under homothety with centre (0.0) and
coefficient 0.

Now let us take @ = —1, b = 1. In this case

Px: = E(gm + 811 + 28“] ™ 2) +
+ 5011 — B00)(xi-1 + 2i) + 5(600 + 611 — 2610)xi-1%i -
The condition (4.7) in this case is equivalent to the system

0 € G 1,
0<6,; <1,
600 — 611 <1 — |26, — 1].

The section of this polyhedron T by any plane #,; = const is a hexagon
like the one in Figure 7.3.

We have proved ergodicity in the union § U 8" U 7. Looking at the
typical sections in Figure 7.4 we see that our set has a triangular caverne
R defined by the inequalities

49{)@ + E"“ = 431{} + 1,
011 — Opo = 204,

However, using functions yx with —1 < ¢ < 0, b = 1 we can prove
ergodicity for every point of R too. We can do the same for the symmet-
ric triangle R’ defined by

8(” + 45“ “-'c:-- 49][11
0y, — Bgo = 2 — 204,
Boo > 0,

by takinga = -1, 0 < b < 1.
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foo

Fig. 7.2 Polygon §i.

Thus, the characteristic polynomials method proves ergodicity at least
in the polyhedron defined by the inequalities
” o H””.. !‘r}]“, 0” < !

Gl[ = H“U ol 20]”, (?2}
U:l > 8[](] = 2(1 - ﬁm),
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Fig. 7.4 Sections of S U §'" U T with planes 8, = 1/6 and 8, = 5/6.

Fig. 7.3 Section of T with plane 6,3 = 1/5 (and also 8,, = 4/5).
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Now let us apply the results of Chapter 3. Corollary 3.5 and results of
Chapter 6 prove ergodicity if

max {|0,, — 0.,|} + 2 max {|6;;—60l,|000—010|} < 2, (7.3)

where the left-hand maximum is over all x, vy, z, ¢t € {0;1} (see Fig. 7.5).

Thus we have proved ergodicity in the union of (7.2) and (7.3) which
occupies more than 0.9 of the cube’s volume. But the neighbourhoods of
two vertices

80[]:1,8”:0,8][]:001'1

do not belong to it and we have no means to prove or disprove ergedicity
there.

However, let us repeat the conjecture expressed in [14]: P is ergodic
in all inner points of the cube. Computer simulation supports this con-

I
l e
]
Fig. 7.5 Section of the polyhedron (7.3) with plane 6,, = (. For other values of

By this polygon must be shifted by vector (8,9, 8,0).



Ergodicity at the simplest graph 69

jecture. The paper [59] describes such simulation for many inner points of
the four-dimensional cube with various values of the four variables 6y,
Bo1, O10, 011. According to the results of computation, the limit t — =
values of ji(x; = 0) appear independent from the initial state and well
approximated by the ‘chaos method’ computations. (The ‘chaos method’
was described in Chapter 2.)

Note that (7.2) implies, in particular, that any non-degenerate mono-
tone operator on {0,1}% with symmetric dependence on two neighbours
is ergodic. (In the case of continuous time the analogous result has been
proved for three neighbours, see [28] and theorem 3.14 in [48, Ch. III].)



