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Foreword

A new trend is under intense development in mathematics, both theore-
tical and applied. It relates to large systems consisting of many com-
ponents which interact with each other locally. These systems may be
deterministic or stochastic. From the probabilistic point of view, such
systems are a special case of multidimensional Markov processes. Systems
of this kind are designed to describe many forms of collective behaviour:
physical, biological, and others.

Some specific processes of this kind were first considered in statistical
physics, where they were used to model the dynamics of crystalline
substances, their components being single spins of atoms. On the other
hand, multicomponent systems appeared (perhaps, independently) in the
course of attempts to develop models of biological processes, their com-
ponents being formal neurons.

In the USSR, a powerful impetus to the study of such systems was
given by I. M. Gelfand and especially by his student M. L. Tsetlin whose
reflections on the nature and problems of collective behaviour influenced
all of us. In fact, we should speak of a “Tsetlin movement’ which existed
for many years, and our work is much indebted to this movement. Also,
about two decades ago it became clear to mathematicians that multi-
component stochastic systems with local interaction should be investi-
gated as abstract mathematical entities without taking into account any
applied interpretation. This does not prevent one from thinking of them
in the context of applications; on the contrary, abstract examination
seems to have promoted many new applications. Indeed, every year we
read about some new topics where multicomponent systems have become
useful. Methods of multicomponent stochastic systems theory are being
applied in many parts of biology, on the molecular, cellular, genetic and
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population levels: in computer science; in polymer chemistry; in seismol-
ogy; in economics, and other sciences. Similar mathematical construc-
tions are now widely investigated under various names, including homo-
geneous random media, cellular automata, tessellations, and honeycomb
structures.

It seems that all or many of the studies related to our topic have
common features. Let us formulate our three main principles, which
define the scope of the present volume: all systems treated here are
multicomponent (that is, consist of many or infinitely many components),
homogeneous (all components have similar rules of behaviour), and local
(every component’s behaviour is a random function of its nearest neigh-
bours’ states only). :

The problems we try to solve have much in common too. From the
models of statistical physics we have .inherited interest in phase transi-
tions, that is, discontinuous changes of the system’s parameters as a result
of continuously changing parameters of a single component. The phe-
nomenon of metastability is typical of our systems too: this in particular
means that a system behaves for a long time as if it had reached the
proper equilibrium state, but then the system jumps to another quasi-
ergodic mode of behaviour.

Bearing in mind the importance of developing contacts between mathe-
maticians and biologists, of mutual enrichment in ideas and promoting
biologically oriented mathematical investigations, we would mention the
seminars on the theory of multicomponent random systems and its ap-
plications to biology which are regularly organized in the Centre of
Biological Researches in Pushchino by two Academic Institutes: the Re-
search Computing Centre (Pushchino) and the Institute for Problems of
Information Transmission (Moscow). The first seminar was held in 1976,
“and its works were published as Vzaimodeistvuyushchie Markovskie
prozessy v biologii, Pushchino, 1977 (in Russian) and later as volume
653 in the Springer series ‘Lecture Notes in Mathematics’ under the title
Locally Interacting Systems and their Application in Biology, 1978. Furth-
er seminars were held in 1978, 1981 and 1984. Their publications were
special volumes in Russian, some of which were later translated into
English. Recently A. V. Holden of the Centre for Nonlinear Studies at
Leeds University has offered us the publication of the present volume to
present the main developments of our seminars in the vein of the pre-
vious Springer work. '

This volume is based on lectures and reports of all the four seminars.
Regrettably we failed in our initial project of presenting all the ideas,
methods and applications in a coherent form in a single monograph. It
seems difficult to achieve at the present stage of our work, when the parts
are still separated and one can only dream of compiling them into a
harmonious whole. Instead, each group of authors describe their work in
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detail, hoping that the sensible reader will hit on the general principles
that unite us.

The mathematical theory of interacting Markov processes, which is
closely associated with the general theory of Gibbs random fields, seems
to be the most elaborate of our developments. These processes may have
discrete or continuous time coordinate. Of course, these two cases have
much in common, and the general framework, which subsumes both,
has been developed both in the USSR and abroad; but every case has
its own peculiarities. Further, the continuous-time case has been elabor-
ated in Western studies and is well covered by a number of surveys and
monographs, the latest of which is the well-thought-out Interacting Parti-
cle Systems, Springer, 1985 by T. M. Liggett. Many (perhaps, most)
results on the discrete-time interacting Markov processes belong to Soviet
workers. This line of thought emerged earlier than the continuous-time
one, but for a long time remained unsummed up and insufficiently known
abroad; the present volume’s first part is the survey of the theory of
discrete-time interactive random processes. The authors have tried to
condense the bulk of the work into a few chapters. In this way Part I
contains four major sections on proofs of ergodicity, proofs of non-
ergodicity, Bernoulli and Markov invariant measures, and algorithmic
methods.

The second part is the first survey on the topic which is a bridge
between multicomponent random systems and the theory of queues. The
components here are processors which receive and exchange requests to
be served, while unserved requests form queues. Here the field of ap-
plication is quite different, but the mathematical apparatus is nevertheless
analogous to that developed in the other parts of the volume.

The third part is devoted to the application of the theory of locally
interacting Markov processes to the modelling of collective effects in the
brain. Similar development is well known in modern computational
neurobiology as the Hopfield (spin glass) paradigm. But there are some
essential differences, other than geographical or historical particularities.
First, the commonly accepted assumption that the nerve cell can be
described by a formal neuron analogue is too narrow for us to account for
a large body of neurophysiological data. Secondly, the phase transitions
and corresponding loss of stability in neuronal nets is here considered as a
quite usual, though very important part of the nervous system mechanism,
rather than as a source of catastrophe. Thirdly, the i..ain principle of both
local and global integration in neuronal nets is assumed to be not the
famous principle of hierarchy but the metastability principle discovered
by the Russian physiologist A. A. Ukhtomskii and known as the principle
of the dominant.

The fourth and last part of our volume pertains to mathematical
modelling of morphogenesis; this work also has not yet been surveyed
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systematically. The idea of modelling morphogenesis is popular among
mathematicians: recall the works of R. Thom and C. Zeeman among
others. But the present approach is quite different, as it is based on the
idea of local homogeneous interaction, and this descends from the Tsetlin
movement. Our models of morphogenesis take advantage of the hypoth-
esis (which is confirmed by a lot of data) that the actual biological
morphogenesis often depends on some local homogeneous interactions
between cells; therefore in our models every cell moves depending on a
few neighbour cells (locality) and this dependence is defined by one and
the same rule for all (or almost all) cells (homogeneity). Unlike systems
in the other parts of this volume. the present systems are deterministic;
but they conform to our main principles: they are multicomponent,
homogeneous and local. Homogeneity is their key property, as it enables
" us to apply representation theory. which is the main mathematicai tool in
- this work. Part IV treats circle and sphere formation as mathematical
models of an important biological process — blastula formation. These
models have led to two new interesting structures on graphs. One struc-
ture, which we call the ‘graph with atlas’, is induced by the rules accord-
ing to which the graph’s vertices move. The other structure, called the
‘graph with rotation’, is connected with the presentation of a biological
tissue in the shape of a two-dimensional net, which lies on a surface in
three-dimensional space R”: this structure is induced by the orientation of
this surface. We found it interesting to learn that graphs with rotation had
been previously applied in an elegant manner to the map colouring
problem in the works of Ringel and Youngs; however, our definition of
graphs with rotation is more general than theirs.

I. I. Piatetski-Shapiro has considerably influenced the first and last
parts of this volume. Many of us are greatly indebted to him.

We thank the Pushchino Research Computing Centre, the Institute for
Problems of Information Transmission and the Belozerski Laboratory of
Moscow State University for supporting our work.
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Part I
Discrete local Markov systems

A. L. Toom, N. B. Vasilvev, O. N. Stavskaya, L. G. Mityushin,
G. L. Kurdyumov, S. A. Pirogov



I.1
Introduction

This survey is based on a vast cluster of papers by Soviet workers on
multicomponent random systems. Objects of this kind are widely investi-
gated in the USSR and many other countries, but we mention only those
papers which are most relevant to the problems we concentrate on here.
The results are grouped thematically to make our survey coherent; from
the Introduction the reader may skip to Chapter 3, 8, 14, or 16.

Our main concern is the case when space and time are discrete, the set
of states of a single site (automaton) is finite, and their interdependence
during a unit of time is finite; we make only a few remarks about ex-
tensions to continuous time. The pioneer work for our school was [78].
We are deeply grateful to all who helped us to work on this survey, of
whom A. M. Leontovitch should be singled out for special mention.



Chapter 1
Examples and ideas

In this introductory chapter we describe in informal terms some examples
of ‘automata’, our interest in which guided the work, and show using
these examples what kind of results were obtained.

Mainly we treat the homogeneous case where all automata in a system
are identical and have a finite set of states. Unless otherwise specified,
assume that every automaton has two states: (0 and 1. The state of the
whole system is defined if states of all the automata are defined. Auto-
mata are placed at the vertices of an integer lattice (say, one- or two-
dimensional) and are enumerated by one index i € Z or by two indices
(i,j) € Z>. The time is discrete. For simplicity, we first explain the
functioning of a homogeneous automata system, placed at the vertices of
a one-dimensional lattice.

Every automaton having index i € Z has a finite set of neighbours
indexed by

e VO B B T e i

(The automaton may or may not be its own neighbour.) The next mo-
ment of time ¢ + 1 the ith automaton is in the state 1 with probability 6
which is a function of the states of its neighbours at time

i s ' r
5 o Q(li+u1: "Tf+|:'r33 LR | x!'-!-u.h.)'

The automaton 1s in state (0 with the complementary probability 1 — 6.
Let us add the basic condition that for any given states of all the automata
at time ¢ the states of all the automata at time ¢t + 1 are chosen indepen-
dently of each other. We term @ the transition function, its values are
transition probabilities. It is important that the set of automata is
infinite or very large, while the number R of every automaton’s neigh-
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bours is restricted; this is what is meant by locality of interaction.

Behaviour of such a system can be described in terms of the P operator
which transforms the probability distribution at time (¢ into the probability
distribution at time f + 1. Due to the independence condition, our
function 6 defines P uniquely. If all the transition probabilities are equal
to 0 or 1, we have a system of deterministic automata. In this case P is a
map of the system into itself. If some values of 6 equal 0 or 1, we call P
degenerate, otherwise P is non-degenerate.

A general problem about systems of random automata consists in
predicting their behaviour a long time after their functioning starts. The
roughest, qualitative aspect of this problem is the ergodicity problem of
such systems, which is our mdin concern here. We term a system ergodic
if it ‘forgets’ its initial state, i.e. in the limit 1 — < tends to some
probability distribution, which does not depend on the initial state. It can
be proved (it follows from the fixed point theorem, in particular) that
every one of our automata systems has at least one invariant measure,
that is, such a probability distribution which turns into itself during one
unit of time. Any ergodic system has just one invariant measure. Most
results surveyed here are about ergodicity and invariant measures. More
concretely, the survey presents:

A. General methods to prove ergodicity, which are applicable if the ¢
function depends on its arguments sufficiently weakly in one sense or
another. Two ideas of such proofs will be explained in the application
to Examples 1.1a and 1.3.

B. Combinatorial-geometrical proofs of non-ergodicity, which are similar
to the contour method in lattice models of statistical physics. An idea
of such a proof will be applied to Example 1.2.

C. Algorithmic methods. Even for a rather narrow class of systems the
problem of recognising ergodic ones among them has been proved to
be unsolvable. The proof includes simulation of Turing machines by
such systems.

In some cases it is possible to present explicit description of invariant
measures as they are Markov (in the one-dimension case) and Gibbs (in
the two-dimension case) invariant measures. Some of these cases are
presented as Examples 1.3 and 1.4. The Example 1.4b is tied up with the
two-dimensional Ising model; its system is non-ergodic as it has at least
two invariant measures.

Now let us pass to our examples. Remember, that all of them treat
independent (termed synchronous in [7]) transitional operators; that is,
all automata take their states independently if their last time states are
fixed.
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Example 1.1 (*Voting’) [58]. Let every automaton have an odd number
of neighbours. At every unit of time the following two transformations
are performed.

First, every automaton assumes that state (0 or 1) in which the majority
of its neighbours has just been. Second, every automaton changes its state
(0 to 1, or 1 to 0) with probability & independently from all the other
automata and all the past events. On can express it by saying that all
automata are unreliable and make random independent errors.

Our reasons for examining voting systems were the following. We did
not know whether non-degenerate non-ergodic systems exist and believed
it would be interesting to find some. It seemed that the ‘voting’ rule with
small ¢ should be the best remedy against forgetting the initial state.
(Chapter 13 will show that reality is more complicated.)

With & near enough to % all voting systems are ergodic. So our question
is: Does such an ¢, 0 < & < 1, exist, with which some voting system is
non-ergodic? Computer simulation shows that this depends on the sys-
tem’s dimension. In fact the following three cases were simulated.

(a) Automata occupy integer points of a line. The automaton i € Z has
three neighbours: { — 1, i, i + 1. In this case simulation has showed
ergodicity for all e, 0 < ¢ < 1.

In the two other cases automata are placed at the points of an
integer plane and the automaton (i,j) € Z* has the following neigh-
bours:

(b) three automata (i,j), (i—1,j), (i,j—1);

(c) five automata (i,j), (i—1,j), (i,j—1), (i+1,)), (i,j+1).

Simulation showed the cases (b) and (c) to be non-ergodic for suf-
ficiently small ¢. This has been proved, however, for the case (b), but not
for (c). On the other hand, ergodicity has been proved:

for the case (a) with ; < ¢ <

for the case (b) with 3 < ¢ <

for the case (c) with % e

-

LAl Laira sl

In fact finite automata systems were simulated by the Monte Carlo
method. Say, we had the initial state ‘all zero’, some scores of automata
and some thousands units of time; if th= proportion of zeros remained
clearly more than % in this process, we inferred non-ergodicity; if the
proportion of zeros approached 3 quickly we inferred ergodicity.

As a matter of fact, a finite voting system is ergodic with all ¢, 0 < ¢ <
1. Therefore, interpreting the finite systems simulation data, one can
speak of the velocity of their convergence to the limit distribution and
of its dependence on the boundary conditions only, the value of &, the
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number of automata and the boundary conditions playing the role of
parameters. It is natural to conjecture that finite systems converge quickly
and their limit distributions do not depend on the boundary conditions for
the same values of ¢ for which the infinite system is ergodic. In this survey
we shall neither discuss this hypothesis nor even formulate it precisely.
We note only that 1t is confirmed by all the cases known to us where
ergodicity or non-ergodicity has been proved.

Let us say something about one way to prove ergodicity [96] for the
case (a) of Example 1.1. Assume that we have two copies of our auto-
mata systems. Both systems start working at the same time, but one has
the initial state ‘all zeros’, and the other ‘all ones’. The possible mutual
approaching of the two systems for f — o warrants ergodicity because all
other initial states are ‘between’ our two.

Assume ¢ < J (the case & > 1 can be reduced to this one). In this case
the ‘errors’ of the two systems can be made mutually dependent (errors
inside each system remaining independent) in such a way that for all
realisations the condition x! = y! will hold for all ; and all ¢, where x; and
yi are states of the ith automaton at time ¢ in the first and second system
respectively. This does not prevent every single system from working as
before. This is done by introducing mutually independent random vari-
ables w!, each of which takes three values:

0 with probability &,
1 with probability 1 — 2e,
1 with probability &.

These variables control errors of both systems in the following way:

if w; = z‘, both automata x; and y; make no errors at time f;

if w} # % both automata x; and y; go to the state equal to w; at time ¢
(so they make errors if their states after voting were different).

Under these rules our two systems can be seen as one system of ‘double
automata’ having actually just three states: 00, 01, 11. The proportion of
01 states in this double system tends to 0 as r — = if and only if the system
in the example (a) is ergodic. Now note that the states 01 multiply no
more than three times in a unit of time. Hence, if they ‘die out’ (due to
errors) with rate greater than %, their proportion tends to 0. This is
guaranteed if 4 < & < 2. A more complicated argument proves ergodicity
with % G 8 - -} But our conjecture of ergodicity for all £, 0 << £ < 1 1s not
yet proved.

We term a system non-degenerate if all its transitional probabilities
differ from 0 and I, and it is degenerate otherwise. The system in
Example 1.1a is non-degenerate with 0 < &£ << 1. Thus, according to our
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simulation data, this system is ergodic if and only if it is non-degenerate.
For a very similar system (described below as Example 1.4a ergodicity for
arbitrary small ¢ > (0 can be proved.

Of course, degenerate one-dimensional systems may be non-ergodic
(like degenerate Markov chains). But it 1s interesting that the transition
from ergodicity to non-ergodicity may occur at some intermediate (that
is, different from 0 and 1) value of the parameter (which is impossible for
finite Markov chains). This is illustrated by the following example, which
we have studied a great deal.

Example 1.2 (Stavskaya’s problem) [78]. Automata are placed in a line
Z . Neighbours of the ith automaton are i — 1 and i. The transition from ¢
to t + 1 consists of two transformations.

First, for all i € Z, the automaton i takes the state equal to xj_;-x;
(which equals 1 only if x{_; = x{ = 1, and equals 0 otherwise). Second,
every automaton, having got into the state 0, makes an ‘error’ that
changes its state into 1 with probability ¢ independently from all the other
automata and all the past events. Automata, having got into the state 1,
never make errors.

According to what has been said, this system is ergodic, when ¢ is near
1. But it is interesting that when & is near (), the system is non-ergodic.
Let us describe its limit behaviour in more detail. Evidently the state 1
(all automata are ones) goes into itself with the probability 1, whence the
measure 0; concentrated in this state is invariant. Denote by u, the limit
t — o measure if at r = 0 the system was in the state 0 (‘all automata are
zeros’) — for this particular system existence of this limit can be proved
easily. Denote by u.(1) the probability (which does not depend on i) that
x; = 1 in .. It has been proved [71,85] that there is such a ‘critical value’
€* of &, which seems to be about 0.31 (it has been proved that 0.09 < ¢*
< (.323 [85]), for which the following assertions hold:

(1) With € > &* our system is ergodic. In this case u,.(1) = 1, that is,
MHe = él-

(2) With £ < £* our system is non-ergodic. In this case g (1) < 1, that is,
u. differs from o0,. All homogeneous (that is, translation-invariant)
invariant measures are of the form au, + (1 — a)d, where 0 < a <1
[47].

It is plausible that all invariant measures of this system are homo-
geneous and that u, depends on & analytically in the range 0 < £ < €%, but
both assertions are proved only for sufficiently small £ [100]. The measure
i, has been proved to depend on ¢ continuously in e < £* [47], but 1t is
unknown whether this dependence is continuous at € = £*. The measure
u, for € < &* is neither a Markov one, nor a k-Markov one for any k [84].
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Let us sketch a proof that the Example 1.2 system is non-ergodic with
some small € = 0 [85]. Let us start from the state ‘all zeros’. Assume that
every pair (i,¢), 1 € Z, t € Z, has its own variable w} € {0;1} (see Fig. 1.1,
where crosses mark points (i.r) where w; = 1). Now these variables will
be the only source of randomness in the system. They control automata
behaviour in the following way:

if w! = 0, the automaton i makes no error at time f;
if w; = 1, the automaton i is in the state 1 at time ¢, even if it has to make
an error to do so.

Thus, the state of the automaton 0 at time 7 is some function of a finite
number of variables w}, namely of those in which0 <(=T, T —r=i=
0. Our main point is the following representation of this function: the
automaton 0 at time 7 is in the state 0, that is, xJ = 0, if and only if there
is a path from the point (0,7) to the line r = 0, consisting of two kinds of
steps only: down, at vector (0;—1) or left-down, at vector (—1;—1), along
which all points have the corresponding variable w; = 0. In other words,
we imagine that from every point (i,f) of our integer lattice two pipes
start: one goes down to the point (i,r—1), the other goes left-down to the
point (i—1,1—1), and there are stoppers at those points where w; = 1.
Then the automaton 0 at time 7 will be in state 0 if and only if it is
possible for a fluid to percolate from the point (0,7) to the line ¢ = 0. The
automaton 0 at time 7T will be in state 1 if the point (0,7) is fenced off
from the line ¢t = 0, which implies that stoppers form a ‘fence’.

Geometrically, this fence is placed along a polygonal line consisting of
three types of links, which are directed:

(a) left-down, at vector (—1;—1);
(b) right, at vector (1;0);
(c) up, at vector (0;1).

We may assume that every one of these polygonal lines begins and ends
at the point (%,T+1}. The centre of every type-(b) link is a point (i,f),
where @; = 1, that is, there is a stopper. (See example of a fence in Fig.
1.1.}

Now estimate the probability that xJ = 1. It does not exceed the sum

of probabilities of all possible fences, that 1s E Nie® where N, is the
k=1
number of fences having k stoppers. If a fence has k stoppers. its poly-
gonal line has k type-(b) links; hence it has just k type-(a) links and k
type-(c) links. Thus, N; = 3%*. So, with ¢ < 1/54, our sum E Nie* is
k=1
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Fig. 1.1 A ‘fence’. See Example 1.2.

less than 1, which guarantees that the proportion of zeros in our automata
system does not tend to 0 and the system is non-ergodic.

This sketch shows that investigation of our systems has connections
with percolation theory problems (see, for example, [41]).

In fact, investigation of the Example 1.2 system, among others, began
with its computer simulation, which showed non-ergodicity with small
values of £ and ergodicity with large enough values of £. Thus, here too
we may hypothesise that finite systems converge quickly if and only if the
infinite system is ergodic.

The finite systems analogous to the Example 1.2 system have been
proved to converge quickly with large ¢ and slowly with small ¢. More
exactly, denote by 7.(n) the mean time when the system of n automata
having started from the state “all zeros’ first gets into the state ‘all ones’.
Then

cplnn <rt.(n) <clnn+ ¢y for large enough ¢ [78];
exp (can) < 7.(n) < exp (csn) for small enough ¢ [85].
Here ¢,. ¢, c3. ¢4, €5 are positive parameters depending only on e.
In Examples 1.3 and 1.4 which follow, the investigation of ergodicity is



Examples and ideas 11

promoted by the possibility of describing an invariant measure explicitly:
in Example 1.3 it i1s Bernoulli, in Example 1.4a it is 2-Markov, in the
two-dimensional Example 1.4b it is Gibbs.

Example 1.3 [96]. As in the preceding example, every automaton i € Z
has two neighbours i — 1 and i/, but the transformation from rto r + 1 1s
different.

First, every automaton i goes to 1 if x;_; # xj and goes to 0 if x;_; = x}.
Thus, it takes the state x{_, @ x| where @ means sum modulo 2. Second,
every automaton changes its state (makes an error) with probability e
independently from all other automata and from all past events.

This system has been proved to be ergodic with all ¢, 0 < & < 1, and its
only limit measure is easily described: it is Bernoulli, that is, automata
states are independent random variables, equal to 0 and 1 with equal
probabilities 1. Let us prove it. Introduce the following functions of the
system state :

x= (@), ieZx® =% =lx
ieK
where K is any finite subset of 7.

It is sufficient for us to prove for any K that the mean value Eyg of yx
at time ¢ tends to 0 when r — <« (for any initial state of the system).
Denoting the system states at times £ — 1 and ¢ by x* ' and x* we write

Ex(x) = (1 — 2% -1 (x'), (1.1)
Exx(x') = HK Exi(x). (1.2)

The equation (1.1) holds because y;(x') equals y%_,(x"!) with probabil-
ity 1 — &, hence equals —y;—,(x'"') with probability £. The equation
(1.2) follows from the independence of the automata choices. Now, (1.1)
and (1.2) give us

Exx(x') = (1 = 28)Myp(x") (1.3)

where K' consists of those j for which just one of the two numbers j, j + 1
belongs to K; |K]| is the cardinality of K.
Double iteration of (1.3) gives

Exx(x') = (1 = 2&) KBy (x'™") = (1 — 2&)KI+K Dy, (x2)

where K? is obtained from K' by the same rule by which K' was obtained
from K. We can iterate (1.3) further. Thus we obtain

E}:K(J;r) o (1 o EF}I.’\'|+|K1|+...+|K"|;EK|I(I[])

where every K*'! is obtained from K° by the same rule. Evidently,

K # @ implies |K'| = 2, whence |K*| = 2 for all s = 1. Thus, |Eyx(x)]| =
(1 — 2¢)**! which tends to 0 with t — .
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Consider the value of
o = |Kl + |K'l+ ... +|K".

In the special case [K| = 1 it is the number of ones in the first ¢ lines of
the Pascal triangle modulo 2. and for all non-empty K it grows in the

same way:

g, > const - 11983

This provides super-exponential convergence to the limit Bernoulli mea-
sure in our system: probabilities of cylinder sets differ from their limit
values less than

const- (1 — 2¢)"

This (function) method can be extended to many other systems to
prove ergodicity by choosing appropriate base functions y, and using our
iteration argument.

Note another property of transitional probabilities in Example 1.3. Let
the state x{_, be fixed one way or the other: x{_; = 0 or x!_, = 1, while x!
take the values of 0 and 1 with equal probabilities 1; in this case x/*!
takes the values of 0 and 1 with equal probabilities 1 also. This property
can be generalised in the following way to construct a class of ergodic
systems having Bernoulli limit measures [97].

Let every automaton / € Z have two neighbours i — 1 and 7 and n states
{1,2,....,n}. Let such a distribution & on this state set exist that with any
fixed value of x;_,, the value of x{ being thus distributed implies the same
distribution & of the value of x{"'. In these assumptions, the system is
provably ergodic and its limit measure is a Bernoulli one, that is, a
product of measures identical with & Of course, the same holds when
x;— being distributed in & implies x{*' being distributed in the same way
with any fixed x|. "

Consider all homogeneous one-dimensional systems in which every
automaton i € Z has i — 1 and i as neighbours, and # states. This family
of systems has n* — »n? parameters:

O(s|€,r) = P(x{™'=s|x{_1=€ x{=r),

where 1 = £, r=n,1 =5 = n — 1. We have described the subset of
this family consisting of systems having Bernoulli or Markov invariant
measure. This i1s not trivial because the direct verification whether a
given measure 1s invariant for a given system consists in checking an
infinite system of equalities. But in fact, for a Markov measure, this veri-
fication provably boils down to checking some finite system of equalities
corresponding to the behaviour of a string of » + 1 automata. The
set of combined values of O(s|¢,r) for which the system has Markov
invariant measure is a piece of some algebraic manifold of dimension
(n — 1)(n* — n + 1). For all n > 2 the two components of this manifold
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correspond to systems having Bernoulli invariant measures of the kind
described above (reproducing the distribution of one neighbour with any
fixed value of the other neighbour). Note that ergodicity of these systems
having Bernoulli invariant measures has been proved (and has also been
done for some analogous d-dimensional systems too), but the ergodicity
question remains open for other systems with Markov invariant measures.

The special case n = 2 of two-neighbour systems having Bernoulli and
Markov invariant measures was examined first in [2]. With n = 2 a system
is defined by four parameters:

6(1]0,0), 6(1]0,1), 6(1]1,0), 6(1]1,1).

Their combined values can be represented as points in a four-dimensional
cube. In this cube there are two non-reducible manifolds of dimension 3
(in which systems having Bernoulli invariant measures can be found) and
another manifold also of dimension 3 (in which systems having Markov
invariant measures can be found).

Example 1.4 [42]. This example, in which every automaton has two
states 0 and 1 as before, will remind us of the voting in Example 1.1.
Consider first the one-dimensional version.

(a) Every automaton i € Z has three neighbours i — 1, i, 7 + 1 and its
probability to be in the state 1 at time ¢ + 1 is a function @ of the number
r of its neighbours having been in the state 1 at time ¢, as presented 1n
Table 1.1. (The bottom line gives the corresponding values of Example
1.1a, for comparision.) This system has been proved to be ergodic with all
g, 0 < & = 1. The case € = 1 is evident, the cases with small &£ are our
concern; in these cases Examples 1.1a and 1.4a are especially similar. The
proof of its ergodicity 1s based on the following presentation of its in-
variant measure. It is more convenient to describe not just the measure,
but the corresponding joint distribution for times ¢ and ¢ + 1. It has the
following property: for any natural m and any states

xr—ﬂi ¥ xi__ﬁi“ 'r:?ilﬂ X:]
the conditional probability of certain values

&), &Y, —-m+1<si,jsm-1

Table 1.1
r 3 2 ] 0
I 1 - ?
0 : - : F
l + ¢ 1 + ¢ 1 + ¢ 1 + ¢
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is proportional to the product of values
a(xlxitl) = gt
over all such pairs (i,j) that -m <i<j=mand |i — j| = 1. (In Fig. 1.2
these pairs are connected with lines.) In physical terms it is a Gibbs
distribution with pair potential
@(xhx™) = In a(xf,x™).

Now let us pass to two-dimensional systems. As we have said, some
non-degenerate two-dimensional systems are non-ergodic. The five-
neighbour voting Example 1.1c is not proved to be non-ergodic, although
it seems to be. But the following similar system has been proved to be
non-ergodic:

(b) Every automaton (i.j) € Z> has four neighbours:

(fsf}i {i_l'j): {If'_])i (I—l..j—l}

At time ¢ + 1 the automaton (i,j) gets into the state 1 with probability
which depends on the number r of its neighbours having been in the state
1 at time ¢ as in Table 1.2.

Fortunately, some Gibbs measure fits as the joint distribution at times
t and t+ + 1 of this system. This Gibbs measure corresponds to some
two-dimensional Ising model with attraction, and our parameter € is pro-
portional to exp(28) where ! is the model temperature. Vertices of the
two square two-dimensional lattices corresponding to times ¢ and ¢ + 1
may be thought of as white and black squares of an infinite chessboard on
which the Gibbs measure is defined. It is well known that temperature
B! being small (less than ‘phase transition’ point) the Ising model has
two different Gibbs measures. Hence our automata system with & being

XXX

Fig. 1.2 Dependences between automata in Example 1.4a..

Table 1.2
/ 4 3 2 I 0

1 ] 2
6 l £ £

I
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small enough has at least two different invariant measures: one near the
state “all zeros’ and the other near the state ‘all ones’. In this sense we
have ‘presented’ or ‘found’ two invariant measures of our system.

Examples 1.4a and 1.4b have the following property of ‘reversibility’: the
transition operator from ¢ to r + 1 and the back transition operator from
t + 1 to ¢ are one and the same, up to a shift of the lattice. We shall
describe general conditions under which a system of n state automata is
reversible. All these systems have a Gibbs invariant measure, and the
corresponding joint distribution at times ¢ and ¢ + 1 is also Gibbs and has
some pair potential {¢;(x!,xi"")}, where (i,j) are all possible pairs of
neighbours. This joint distribution is convenient to start with if you want
to construct and investigate systems of this sort.

The next example is analogous to Example 1.2; it illustrates another
way to prove non-ergodicity of non-degenerate systems [86,87].

Example 1.5 Automata are in integer points (i,j) of a plane. At every
unit of time two following transformations occur.

First, the state of every automaton, having been xj; ;, at time ¢, be-
comes a certain function of its neighbours’ states:

f{fo,_,r'}+u] -t :—xif,j')+uﬁ) .

Let us assume that every automaton has only two states 0 and 1 and the
function f takes only two values 0 and 1. Moreover, assume the function
f to be monotone, that is, a; = by, ..., ag = bg = flay,....ag) =
f(by,...,bg).

The second transformation consists in that every automaton ‘makes an
error’, that is, changes its state with probability & independently from
other automata and from all past events.

[t remains to consider some natural R, some integer vectors u; ..., Ug
and some monotone function f: {0;:1}® — {0:1} to define a concrete
system. We shall do it, but first we shall say something about our method
of proving non-ergodicity of the system with small ¢ and about the
conditions under which this method can work.

Non-ergodicity will result from two following facts:

(a) starting from the state ‘all zeros’, the system has a small proportion of
ones at all times. :

(b) starting from the state ‘all ones’, the system has a small proportion of
zeros at all times.

Let us discuss how to prove (a) — because (b) can be proved analogous-
ly. It is clear that the proportion of ones will only increase if we change
the second transformation in the following way: only errors from 0 to 1
occur, that is, automata having got into the state 0 make errors with



16 Discrete local Markov systems

probability &, but automata having got into the state 1 make no errors.
Thus we have obtained a system which is similar to the Example 1.2
system in that their second transformations are alike. So we want to make
their first transformations alike too. The first transformation in Example
1.2 diminished arrays of ones, and it was essential to resist the random
generation of ones by the second transformation. So the first transforma-
tion in the present case has to do the same. Now we are ready to make
things concrete.
Neighbours of (i,j) are

(f-r.f)s (i"_laj): (I,}_l), (I-_]J_l}

i

and the value of f at (i,j) is
X j-1Xaj) V X-1,/-DXG-1,))>
where \/ means logical disjunction:
00 = 0; OV/1 = 1VO = 1V1 = 1.

Let us explain why this system does work in the desired way. Let
‘island’ mean any state of our system having a finite (or empty) set of
ones. It is essential that for any island there is such a ¢ that r-multiple
application of our first transformation turns this island into the state ‘all
zeros’. Moreover, this transformation erodes islands in a specific way:
they are flattened along the j-axis, that is, the range of the values of j in
the set of points occupied by ones is certain to diminish at every unit of
time. This is the main point in the proof of the fact (a). The fact (b) is
based on the analogous property of our transformation with respect to
‘island of zeros in the sea of ones’, that is, state having a finite number of
Zeros.

Note that the first transformation in our Example 1.1b (voting with
three neighbours in a plane) erodes all islands of ones and all islands of
zeros too. However, it does it in a different way, diminishing triangles
whose sides are directed along i and j axes and lines i + j = const. This
demands a more complicated proof of non-ergodicity, which, however,
exists.

As to the Example 1.1c system, its non-ergodicity (if it takes place)
seems to demand a quite new method of proof because its first (deter-
ministic) transformation does not erode islands at all: neither of ones, nor
of zeros.

Analogous problems may be considered for continuous time systems
too [48], or for continuous space systems, or for a continuous set of
single-automaton states systems. In some way such systems are like di
crete ones, but there are differences which present specific difficultic
We shall briefly mention these systems when treating analogous disci
systems In our survey.




Chapter 2
Definitions and notations

This chapter is unlike the previous one. It contains definitions and prim-
ary propositions general enough to serve most developments in this
survey. First of all, let us define the system state space in a way suitable
for all dimensions and all finite sets of states of a single automaton.

The state space. Let V be a countable or finite set. Every element
(automaton) & € V has a finite set X, termed its ‘state space’. The system
state space is their product:

x=]] x.

heV

States of the system are elements x € X of the form
x = (x,), h e V.

We term x; the hAth coordinate of x.

For any non-empty K C V we denote

XK = H Xh'r
he K

any element of which xx € X may be viewed as the restriction of x € X
onto K, that is, the image of x in the canonical projection X — Xg.

As a rule, we assume that there is some transiti*= group G of permuta-
tions g: V — V, in which case V is termed homogeneous (or G-
homogeneous). This is convenient if all X, are identical: X, = X for all
h € V. This assumed, any permutation g: V — V defines a map (which
we denote by the same letter) g: X' — X according to the rule:

(x8)n = Xguy forall heV, xe X
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(We write transformations on the right-hand side: x — xg. The conveni-
ence of this will become clear.)
Elements of X, will be denoted by numbers in most cases:

}l.,” = {”,l} ar X[] = {I:, . ,,H}.

For any s € X, the state ‘all x;, equal s’ will be denoted s.

For example, take V = G = Z, where any g € G acts as a shift # —
h + g. Take also X, = {0:1}. In this case the space X = {0;1}° is the set
of all both-sides-infinite sequences of zeros and ones. Any g € Z shifts
any sequence in question g units to the right (to the left if g < 0).

We equip our product X = I1X, with the discrete-factors product
topology in which

limx") = x

H—=

means that for every h € V there is such N that

W =x, if n=N.
Since all X, are finite, X is compact in this topology.
Let us have two state spaces

x = HX;, and X' = HX,-'

helV e W

A mapping D: X — X' is continuous in our topology if and only if every
component x; of x" depends only on a finite set of components of x € X,
We term any continuous D: X — X' a deterministic transition operator
from X to X'.

This survey is about stochastic transition operators, of which determin-
istic ones are a special case. Stochastic transition operators can be seen as
linear operators acting upon either measures or real-valued functions on
X. Both should be introduced now.

Measures. Cylinder sets are subsets of X having the form
{x: xx € B}

where B is any subset of X, K being any finite subset of V. A measure
on X means any probabilistic measure x (that is, u(X) = 1) on the
o-algebra generated by all cylinder sets. According to the well-known
Kolmogorov theorem, any additive function on the algebra of cylinder
sets uniquely extends to X. Moreover, we need not consider all cylinder
sets: to define w it is sufficient to assign its values consistently on
elementary cylinder sets of the form

{x: xx = Yy}
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where yx € Xg. We shall denote briefly
u({x: 2= ye)) = pi).

Let us term a family of cvlinder sets ‘full’ if a measure is uniquely
defined by its values on the sets of this family. We have just said that the
family of elementary cylinder sets is full. These are three other examples
of full families.

(a) Let X = {0;1}". In this case a full family consists of sets of the
following form:

{x: x5, =1, .50, =1},

where {h;,...,h,,} is any finite subset of V. The value of u at this set
1s denoted briefly ’

pu(xp, = ... Xp, = 1).
(b) Let X = {0;1}". In this case a full family consists of sets of the form
{I: x.l'__-[}s-xf'—!-l =5 aXiem—1"8m- 1 r-x:'+m:'0}1

where s, ..., 5,-1 € {0;1} and i, m e Z, m = 0.
(c) Let X = X7 . In this case a full family consists of sets of the form

{IZ Xi=50. X418 - s X =8 g »

where 53, ..., 5, € Xgpandi,me Z, m = (.

Let .#(X) stand for the set of all normed measures on X. For any u,
v € #(X) their mixture also belongs to .#(X):

au + (1 — a)v € A(X) foranya, 0 < a =< 1.

Hence .#(X) is convex.

Now let us introduce a weak topology in .#(X) by assuming a sequ-
ence of measures convergent if it converges in every cylinder set. This
makes .#(X) compact. The symbol d, stands for the measure concen-
trated in one point x € X. The mapping X — #(X) defined by x — 0, 18
continuous.

We call a measure ¢ homogeneous if u(Ag) = u(A) for all cylinder A4
and all g € (. The set .# ;(X) of homogeneous measures is convex and
closed in . #(X).

We assume the image of a measure in a continuous or deterministic
mapping and the canonical projection of a measure in the mapping
X — X to be defined in the natural way.

We term a measure on a product space X = [7TX,, Bernoulli or indepen-
dent if it equals the product of its projections onto single X, sets.
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Operators and their graphs. Let us have two spaces
X = ]__I)f(;1 and X' = HX,’.

heV ie W
In particular, X and X" may be identical and correspond to times ¢ and
t + 1 of a system’s work.
The following definition gives a general framework for our examples in
Chapter 1, where every automaton’s state depended in a random way on
a finite set of its neighbours at the previous time.

Definition 2.1 A local operator P from X to X' stands for a linear
operator P: #(X) — .#(X') such that for any finite K C W the
projection of uP to X depends only on the projection of u to some
Xuyky where U(K) is a finite subset of V.

Let us write xP for 0,P and say that P transforms x into it. A local
operator is defined by its action on all x € X. Definition 2.1 provides
continuity of all mappings 4 — uP and x — xP. Local operators will be
our central theme. So we shall speak just of operators P from X to X",
implying the omitted word ‘local’ everywhere.

Definition 2.2 An operator P is termed independent if the measure xP is
independent (that is Bernoulli) for every x.

Definition 2.3 Suppose V and V' are G-homogeneous. An operator P
from X} to Y§ is termed G-homogeneous if ge P = Pegforallg e G.

Definition 2.4 An operator P from X to X' is termed non-degenerate if
uP(A) = 0 for any g € .#(X) and any non-empty cylinder A C X".

The bulk of our survey is about independent homogeneous operators
from X to X, and we denote their totality by Z2(X). The independence
condition is essential for many proofs. The homogeneity condition is not
so essential but without it all our constructions would be more cumber-
some. Let Z;(X) stand for the set of G-homogeneous elements of
P(X).

In all our cases the neighbourhood relations can and will be constructed

in such a way that
U(K) = l_ﬁJ U(i)

for all K. This allows us to explain any operator functioning with a
suitable oriented graph I" = I(V, %), % = {U(h),heV}. Its set of
vertices 1s V and to any A € V arrows (directed bonds) come from all
elements of U(h). Say, Examples 1.2 and 1.3 where V = Z, U(h) =
{h—1;h} have the graph shown in Figure 2.1. Generally, for a homo-
geneous operator, its graph is homogeneous too, that is,

U(g(h)) = g(U(h))
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O U O

Fig. 2.1 Graph I.

We denote also:
Umh) = UU(...(Uh))...))
1L‘---N,.———-—---——-——""

m

and

oty = U Um(h).
The set U™(h) consists of those vertices of I" from which there is an
oriented path to & consisting of m bonds.
Mostly our operators’ graphs will have the following property. We call
I’ strongly connected if for any two of its vertices i and j there is such a
vertex k that

{i.j} © U™(k).

The following property makes graphs especially easy for investigation.
We call I ‘tree-like’ if two different paths coming from a vertex never
meet before; this amounts to {ij} C U(h), i # j > U™(i) N U™(j)
= (J. Evidently, an independent operator having a tree-like I" transforms
any Bernoulli measure into a Bernoulli measure.

Functions. Denote by F = F(X) the totality of real-valued functions on
X, of which every one actually depends only on a finite set of coordinates
xp: @(x) = @(xg) where K is finite. Often we shall identify a function
@ € F(X) and its restriction to Xg on which it actually depends, as has
been done in the last equation. In this sense we may write
F(X) = U F(Xx)
KCV

where all K are finite.

In particular, F(X),) is a linear space, whose dimension is |X},|. One of
its bases consists of the following functions:

_d[r] i {]. 1f Xy = &,
Ao\t = 1y otherwise,

where h € V is fixed, s runs through X,,.
These functions are convenient because the whole space F(X) consists
of finite linear combinations of finite products of them. Let F'(X) C
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F(X) stand for non-negative-valued functions from F(X). They are the
same linear combinations with non-negative coefficients.
We equip F(X) with a norm:

lell = suple(x)l.

For any linear operator P: M(X) — M(X') there is the conjugate
operator P: F(X') — F(X). As you see, we denote them by one and the
same letter. This allows us to reword our Definitions 2.1-4 in the follow-
ing way:

Definition 2.1' A (local transitional) operator P from X to X' stands for
a linear operator
P: F(X') - F(X)
satisfying conditions
P(F*(X")) C F*(X) and P(lyx) = 1y,

where 1y and 1y are function on X' and X identically equal to 1.

Definition 2.2" An operator P from X to X' is called independent if
P(py) = Pg- Py
for any such
p € F(Xx) and vy e F(X}.)

that K N L = & (where K and L are finite subsets of V').

This multiplicative interpretation makes it useful to treat an indepen-
dent operator as acting on functions, instead of measures.

For any continuous mapping f: X — X let T; stand for the linear
operator defined by

Tde) =g@-f
where @ € F(X). In particular, this defines Tg for all g € G.
Definition 2.3" Let V and V' be G-homogeneous. An operator P from
XY to YV is termed (G-homogeneous if
IlgoP=PoTg
for all g € G.
Definition 2.4  An operator P from X to X' is termed non-degenerate

if for any ¢ € F*(X") the condition ¢ # 0 implies (Pg) (x) = 0 for any
x € X,

S p——
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et us denote

ny = f P(x)du(x).

X

Then by definition of the conjugate operator,

(uP)p = u(Pe)

which warrants writing this simply as uPg.

Now we see the point of our decision to write operators on the left-
hand side of functions and on the right-hand side of measures. In the
same way we can write composition of operators: suppose P is an oper-
ator from X to X' and Q is an operator from X' to X”. Then PQ is an
operator from X to X" and for any ¢ € .#(X) and ¢ € F(X")

(uPQ)p = (uP)(Qg) = u(PQg),
which may be written as just uPQg.
Often we shall define an independent operator P from X to X =

HX;, in the following way. For every h we fix its neighbourhood
heV

U(h) C V and transition probabilities
0 (Y| Xum) € [051]

for all y, € Xy, xywy € Xy, which are subject to condition

E On(yn rIU{m) =1 forall xygp,.

Vi
Now our operator is fixed. For any measure ¢ € .#(X), any K C V and
any yx € Xk,

uP(yg) = E H(-TU:;K}} ]._.[ O (}}!:[IU{h}}' (2.1)
Xy heK
For any ¢ € F(Xg) image Pp € F(Xy,) is defined by
Po(x) = ), @(Fﬁ;)hllx 04 (yi Xu)- (2.2)
Vi &

If V is G-homogeneous, G-homogeneity of P amounts to the following
consistency of transition probabilities:

ﬁg{n}(,‘l’gm {x[}'{g(h}}) = Ou((¥2)n i (-‘ig)uﬂr})'

In this case. defining all the transition probabilities boils down to defining
them at one place, say 0 € V:

Huf}’nh’f!;n)] or 677

"'.I"I':"l-

Sometimes we need to define an operator on X = I71X), in the following
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way. First, we have an auxiliary space Q = H £, where all Q, are

heV

finite, and a measure v on 2. Second, we have a mapping
2 xX—- X
defined by certain mappings for all h € V:
o Q5 X Xpgy — Xy

where U(h) are given for all h € V.

Now we can define P by saying that 4P is induced by the measure
v X p on the space £ X X with the mapping f. If v is independent, that
is, v = || v, where v, € _#(8,), the operator P turns out independent

heVv
and its transition probabilities are

ﬁh(_r{r|xﬂ{h]} = Evh(wh}

where the summing is over all w,, such that

fu(@nXumy) = Yo

The trivial kind of independent operators are those for which U(h)
consists only of & for every 4. This means that automata do not interact at
all, every one behaving as a Markov chain of its own. Let us term such an
operator a ‘noise’. We shall often use the following two special noises
acting on {0;1}" where ¢ is the parameter, 0 = ¢ = 1:

(a) the noise S, defined by 65 = £, 6] = 1, which means that every
automaton goes from 0 to 1 with probability ¢ and remains in 1 with
probability 1;

(b) the noise S defined by 6} = 6% = &, which means that every
automaton always changes its state with probability &.

Note that composition of an independent operator and a noise is
another independent operator with the same neighbours. In particular,
every operator in our Examples 1.1, 1.2 and 1.3 was actually described as
a composition of a deterministic operator and a noise.

Our construction with its auxiliary space 2 is very suitable for repre-
senting these operators. For any deterministic operator D the composi-
tion DS, is representable with 2, = {0;1}, v,(1) =.¢ and f,(w,.x) =
Dy(x) V' wy,, and the composition DS, is representable analogously, only

[ulwy,x) = Dy(x) + wy (mod 2).

(The cases w;, = 1 correspond to errors of automata.)

It is possible to represent all independent operators, squeezing all the
randomness into an independent measure on an auxiliary space ©, but in
the general case it seems to be more cumbersome than useful.

B
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Invariant measures and ergodicity. Let us call a measure invariant for an
operator P if u = uP.

Proposition 2.5 Let an operator P map some convex compact C C
A(X) into itself: CP C C. Then P has at least one invariant measure
u e C.

This is a version of the well-known fixed-point theorem. The reader can
hit on its proof having taken any initial ¢, € C and proving u = uP for
u = lim %(,un + uoP + ... + pupP" ). Now we can take C = #(X)

H—x

and obtain:

Corollary 2.6 Any operator has an invariant measure. Any homogeneous

xw
. . f .
operator has a homogeneous invariant measure. Hence the set ﬂ AMP s
=0

non-empty as it contains all the invariant measures.

Definition 2.7 Term an operator P € 2°(X) ergodic if the set () #P
=0

consists of one point.
The following is its equivalent:

Definition 2.7' Term an operator P € (X)) ergodic if for any ¢ € F(X)
the sequence P’ uniformly converges to a constant with r — .

To prove equivalence of Definitions 2.7 and 2.7" note that both are
equivalent to the following: For any ¢ € F the contracting sequence of
intervals

Ale) = {uPo: ue L} CR, t=1,2,3, ...

~ has just one common point.

Clearly, ergodicity implies uniqueness of invariant measure, but gener-
ally not vice versa. (The simplest example: V is finite and consists of one
point &; so we have just one automaton, which has two states () and 1 and
passes from each state to the other with probability 1. This system is
non-ergodic, but the only invariant measure is (%% .} In fact, however, all
the proofs of non-ergodicity in our survey are proofs of non-uniqueness of
invariant measure. Often these proofs use another corollary of Proposi-
tion 2.5:

Corollary 2.8 P is an operator on .#(X), C, is a convex compact in
A (X) and there is such a measure « that uP" € C, for all natural ¢, then
P has an invariant measure in C.
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To prove Corollary 2.8, one has only to apply Proposition 2.5 where C
should stand for the closing of the convex hull of the union of «P’ for all
natural ¢.

Let us consider a simple example of a non-ergodic non-degenerate
operator. Let [" = I(V,#/) be a homogeneous tree-like graph with
|U(h)| = 3. Let every automaton have two states 0 and 1 and choose P ¢
2({0,1}") in the form P, = DS; where D is a deterministic ‘majority
voting” operator:

Dp=1, i )i =3,

ke lLi(h)

(Dx), = 0, if ), x = 1.
ke U
Let v, stand for the homogeneous Bernoulli measure on {0;1}" where
y is the proportion of ones:

v(xp, =1)=y forall helV.

Any homogeneous operator on a tree-like graph transforms a homo-
geneous independent measure into another of the same sort. In the
present case

Whe = Vi.0)
where

fly.e) = (1 = 2e)(* + 301 — y)?) + e
Now we have only to solve the equation

f(y.e) = v

to obtain all homogeneous independent invariant measures. Solutions of
this equation are y = 5 and y = {1 = V[(1 — 6¢)/(1 — 2¢)]}, the latter
being valid for ¢ < }. Thus, with ¢ < 1 we have three different invariant
measures of one operator P.

Note. The same formulae allow another interpretation. We may assume
that P, = DS where I is any homogeneous graph, but all automata are
randomly mixed after every application of P..

This mixing transforms any homogeneous measure into an independent
measure having the same proportion of ones. Thus, all homogeneous
invariant measures of a system with mixing are independent and their
investigation boils down to examination of iterations of one function f:
[0:1] — [0;1] where

() = (v)Px;, = 1).

The behaviour of operators with intermixing may be seen as an approx-
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imation of the chaotic behaviour of operators, about which there is an
extensive literature, including [67].

Evolution graphs. Remember that we are interested in the temporal
behaviour of automata systems. As before, xj, stands for the state of the
hth automaton at time ¢. Let I (V, %) stand for the graph of our operator
P. We know that any x};"! depends in a probabilistic way on x ), which
depends on xu_“,,, which depends on .rb__xf;,]., and so on. To represent
these dependences in a more suitable way we introduce

X = ¥ = GO ReVieT, )

Thus, an element of X is given by states of the ifstem at all the times 0,
1, 2, ... Now we introduce the oriented graph I" whose set of vertices is

= {(h,)),heV,tel}.

To every vertex (h,t+1) of I' arrows (oriented bonds) come from all
(k,t), where k € U(h), and the corresponding neighbourhood is denoted

U((h,t+1)) = {(k.1),ke U(h)}.

We term I the evolution graph of I'. The same term is also used if ¢ runs
over a finite range. We term a set K C V pyramidal if

re K Up)C K

Of course, any operator P and initial measure u (given at time ¢ = 0)
define a certain measure & ou X, that is, the joint probabilistic distribu-
tion for all the times 0, 1, 2, ... We shall call i evolution measure. For a
local independent operator P having 6(y;|xy,) parameters the value of
evolution measure j on a cylinder set Xx for K pyramidal is equal to

f(xg) = (X g 0) ]._.[ gh{v}(xp|xﬁ{v])m
ve K\Wo
where VY = {(h,0).heV} C V and h(v) is the first component of v =

(h,t) € V. These values define ji, that is, the totality of pyramidal sets is
full.

Monotonicity. Sometimes it is convenient to introduce a partial order in
X and .#(X). First every X, has to be ordered. If e]enmnts of X, are
denoted by numbers, it is aqﬁumed that

P=<g<=p=4q.

In particular, in the case X, = {0;1} we always assume 0 < 1

In any event, suppose every X, ordered. Then we partially order X
assuming (x;) < (v,) if x, < vy, for all h € V. We term a real-valued
function ¢ on X monotone if
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r=<y = ¢ = ¢(y).

We order .#(X) too bv assuming that ¢ < v if up = ve for any
monotone ¢ € F(X).
We term a set C C X full-above if

re Cix<y=>ye (.
It is easy to see that 4 < v if and only if u(C) = v(C) for all full-above C.

Proposition 2.9 Let X = HX;,. Let # and v be independent mea-

heV
sures on X, that is,
‘H = quﬂ‘! v = th*
heV hel

Then 4 < v if and only if w;, < v, for all h € V.

One half of this assertion is evident. Let us prove the other: suppose iy,
< vy, for all & and prove i < v, that is, prove ug = v for any ¢ € F(X).
First assume that ¢ € F(Xg) where K is a finite subset of V. In this case it
is sufficient to prove that uyx < vy where

Hg = H.luh: U= H Vi

he K he K

because up = uge and vep = v, This can be proved by induction over
the number of elements in K. Essentially the induction step is analogous
to the proof for K having two elements. Finally, we prove ug¢ = v for
any @ approximating it with functions of a finite set of arguments.

Definition 2.10 [52]. Let X and X' be partially ordered. We term an
operator P from X to X' monotone if

I = yeare el g B
Equivalently, we may term P monotone if
= y=aP ~{LyP,
Equivalently, we may term P monotone if for any monotone ¢ the

function P¢ is monotone too.

Definition 2.11 Let P and Q be two operators from X *~ X' and X' be
partially ordered. Let P < (0 mean that xP < xQ for any x € X.
Equivalently, P < Q means that uP < uQ for any u € . #(X).

Proposition 2.12 An operator P on {0:1}V having parameters
H”(yh|.n,.-”,}) is monotone if and only if

Xum) = Xpun = On(l |«‘-'U{;r]) = 0,(1 |J~':fr.:;;]J-
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Proposition 2.13 Let P and P’ be operators on {0:1}" having para-
meters ﬁ;,(_v;,[x;,rm] and @,(v,|xya) respectively. Then P < P’ if and
only if for all xy,, |

9;,(1 ]-‘-’f.';m] = H.Fr{] 1xi’{I:]]'

Proposition 2.14 Let us have operators P from X to X, Q from X' to X"
and R from X to X" and let X' be partially ordered, Q be monotone, and
RO < PR. Then for all natural ¢

RO' < P'R

Putting here X = X’ and R the identity operator, we obtain:

Corollary 2.15 Let P and Q be operators on X, let P < Q and let at
least one of P and QO be monotone. Then P' < Q' for all natural .

The set 2,. Let 2, = 2,({0,1}") stand for the set of those indepen-
dent homogeneous operators P on X = {0:1}" which conserve the mea-
sure 0, concentrated in the point ‘all ones: 1P = §,. Having d, as an
invariant measure, these operators are ergodic if they attract all X to this
measure in the limit + — . To consider this problem more closely, we
denote

pk(Q) = 00(1)
where K C V, 1 is time, 0 is the state ‘all zeros’, 1, is the cylinder set
{x: x, = 1 for all h € K}. If O is monotone (in which case we shall use

this notation), the sequence px(Q) is non-decreasing in t for any K,
whence all the limits exist:

px(Q) = limpi(Q).
So the limit measure exists:

o = im0 Q'

[

and 1s invariant for Q.

Proposition 2.16 For any monotone (0 € % just one of the two follow-
ing cases takes place:

(a) Either Q is ergodic and uy = 0y
(b) Or Q is non-ergodic and uy # 04 and
pr(Q) = up(ly) < 1
forall K # J, h e V.
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It is easy to prove that some operators of #?; are ergodic: namely those
which have large enough parameters 0!, = € U(h).

" Proposition 2.17 Let an operator P € #,({0,1}") have parameters

O%,...x, Wwhere R = |U(h)|. Suppose that there exist such non-negative
R

Xis oM that ZH,— < 1 and for any x;, ... xg € {0;1}
i=1

R
5'2;__.;:& = !E; %i(1 — x;).
Then P is ergodic. :

Proof. Let u be any initial measure and g be the related evolution
measure. Then

uP*\(x, = 0) = a(xi = 0) = )3 0%, A(xbm) <

R
< ) Axym) 22wl - x) <
i=1

R R
<V N AChe) = L% = 0).
i=1 xpm:xi=0 =1
Let us denote o, = supji(x;, = 0),
helV
% =0 4 woaobap< L

- Then 0,4, = x0, whence o0, = »' — 0 g.e.d.
Consider a simple example: an operator P € 2,({0,1}") on the sim-
plest graph I5:

V=27, Uh) ={h—1,h}, h e Z,
and denote
9(15:” = 1|xi:—1=-’da) = ﬂxj, 1 e
In our case 6,; = 1. Proposition 2.17 proves ergodicity in the case
Gio + By > 1 and 6y > 0.

In Chapter 5 we shall use another method to prove ergodicity for P
monotone, :

'9[![] + Hlfl] + !91“ >1 and ﬂuu -2 |

Consider another example: an operator P € %; on any graph. Of
course, ,; ; = 1. Let all others be: €. = ¢ for all z # 1 (this is a
‘percolation” operator). For this case our Proposition 2.17 proves ergodic-

ity for e > 1 - %, where R = |U(h)|.
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For tree-like graphs this estimation is the best one. In fact, let us have
an independent measure v, € A({0;1}Y) and a percolation operator P,
on the tree-like graph I'(V, %) where |U(h)| = R. Then v,.P, = vy,
where f(y,e) = (1 — e}y® + e. It is easy to see that for e < 1 — }l?the
equation f(y,e) = y has not only the trivial solution y = 1 but another

solution. (Because f(0,¢) = £ > 0 and ;—’;(I,E} = R(1 — ¢).) Thus, with

e %‘, the operator P, is non-ergodic.

But for the graph I the estimation & > 1 — %can be improved, and

we shall do that in Chapter 8.



