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Abstract:

We present results of Monte Carlo simulation and chaos approximation
of a class of Markov processes with a countable or continuous set of states.
Each of these states can be written as a finite (finite case) or infinite in
both directions (infinite case) sequence of pluses and minuses denoted by
@ and S. As continuous time goes on, our sequence undergoes the following
three types of local transformations: The first one, called flip, changes any
minus into plus and any plus into minus with a rate 8. Another, called
annshilation, eliminates two neighbor components with a rate a whenever
they are in differents states. The third one, called mitosis, doubles any
component with a rate . All of them occur at any place of the sequence
independently. Our simulations and approximations suggest that with ap-
propriate positive values of «, 8 and ~ this process has the following two
properties. Growth: In the finite case, as the process goes on, the length
of the sequence tends to infinity with a probability which tends to 1 when
the length of the initial sequence tends to co. Non-ergodicity: The infinite
process is non-ergodic and the finite process keeps most of the time at two
extremes, occasionally swinging from one to the other.

AMS 2000 subject classifications: local interaction, cellular automata,
particle process, Monte Carlo simulation, chaos approximation, phase tran-
sitions, positive rates conjecture, variable length.

1. Introduction

Since the first studies of the Ising model, it became common among physicists
to recognize the qualitative difference between the one-dimensional and multi-
dimensional cases for all multi-component models with local interaction. This
lore crystallized in the shape of the “positive rates conjecture” (see [Liggett, pp.
178, 201]) and was brilliantly refuted by Peter Gacs ([Gacs, Gray]). However,
the cases when a random process with one-dimensional local interaction shows
some form of non-ergodicity, remain non-trivial and for this reason still attract
attention; our task is to provide another case of this sort.

Our ultimate goal is to study the case, which we call infinite. In this case
configurations are infinite in both directions sequences of pluses and minuses
denoted by @ and & respectively. However, this case is not yet defined rigorously.
In addition, every computer has a finite memory, so any computer simulation in
fact is a simulation of some finite process. For these reasons along with infinite
processes, we deal with analogous finite processes, which are easy to define and
which we in fact model.
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In the finite case, to avoid complications at the ends, we use configurations
called “circulars”. A circular is just a finite sequence of pluses and minuses,
but terms of this sequence, called components, are enumerated by remainders
modulo |C|, where |C| is the length (that is the number of components) of the
circular, rather than natural numbers. (In the literature this is called sometimes
periodic condition.) Figure 1 shows a circular C' with length n = |C| and com-
ponents Cy,...,C,_1, whose indices 0,...,n — 1 are remainders modulo n, so
the index next to n — 1 is zero.

Co |G o 1Cog

Figure 1.A circular C with |C| = n.

The usual finite sequences of pluses and minuses, whose terms are indexed by
natural numbers, are called words. The length of a word W is denoted by |W|.
There is the empty word, denoted by A, whose length is zero. We say that a word
W = (a1, as,...,a) appears at a place ¢ in a circular C = (Cy,...,C, — 1) if
Ciy1 = a1, Ciya = ag,..., Citr = ag, where the sums in the indices are modulo
n. If a word W appears in a circular C and |W| < |C|, we can substitute
it by another word V', thus obtaining another circular. We shall label such a
substitution with W — V. Our process consists in iterative applications of
three concrete kinds of substitutions. Namely, as continuous time goes on, our
sequence (finite or infinite) undergoes the following types of transformation:

e Annihilation : (®,6) — A and (6,8) — A. If the states
of the components with indices z and x + 1 are different, both
disappear with a rate o independently of the other components.
The components © — 1 and x + 2 become neighbours. The length

of the circular decreases by two.

e Flip : @ — © and © — @. This changes the state of one com- (1)
ponent with a rate § independently of the other components.

The length of the circular does not change.

e Mitosis : & — &P and © — ©6. This duplicates one com-

ponent with a rate v independently of other components. The

length of the cicular increases by one.

In the finite case the text presented above may be accepted as a definition. In
the infinite case the corresponding class of processes has never been rigorously
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defined (according to our knowledge). However, we have reasons to believe that
such a definition is possible. Processes of this sort have been mentioned in a
physical context [Malyshev.99, Malyshev.02]. For similar processes with discrete
time some special cases have been already studied [Toom, Ramos, RT.1, RT.2]
and a general definition for the discrete time case is already available [Rochal.
Thus we take the liberty to speak about both finite-space and infinite-space
versions of the processes described above and study them using Monte Carlo
method and chaos approximation.

Our main results: Monte Carlo simulation and chaos approximation lead
to similar pictures of ergodicity vs. non-ergodicity and growth vs. shrinking.
(Figures 2 and 6.) Both of them suggest that with appropriate positive values
of a, # and ~y our processes have the following two properties:

Growth: In the finite case the length of the circular tends to infinity with
probability that tends to one, as the length of initial circular (consisting of
several minuses) tends to oco.

Non-ergodicity: the infinite process is non-ergodic and the finite process
keeps most of the time at two extremes, occasionally swinging from one to the
other.

Our work was motivated by success and failure of [Toom], which considered
infinite processes similar to ours with these differences: time was discrete (which
we deem unimportant), flip was asymmetric, that is it turned minuses into
pluses, but not vice versa (which also is unimportant for us since our initial
configuration consists of minuses) and mitosis was absent (which is important).
[Toom)] proved some form of non-ergodicity for that process for o small enough: if
the process started with “all minuses”, the percentage of pluses always remained
small. This was a success and it was improved in [RT.1] and studied numerically
in [Ramos, RT.2]. The failure of [Toom| was the impossibility to present a finite
analog: in the absence of mitosis, length of the sequence decreased in average
and the configuration degenerated. In our work this failure is removed.

2. Monte Carlo simulation

Due to limitations of all real computers, the Monte Carlo method by its very
nature always refers to some finite space case, even when the ultimate motiva-
tion is to study the infinite case. In addition, even when we study a continuous
time process, its computer simulation always has discrete time. This applies to
our study also. Thus, we approximate our infinite-space process with a Markov
process with a countable set ) of states, where () is the set of circulars of all
lengths. The time ¢ (that is, the number of iterations of our computer simula-
tion) is discrete and at every time step at most one transformation of the list (1),
chosen at random, takes place. Thus, in each individual experiment we obtain a
randomly generated sequence of circulars and the circular obtained at time ¢ is
denoted by C*. Its z-th component is denoted by C%, where z = 0,...,|C*| — 1.
We denote by M the set of probability distribution, that is the set of nor-
malized measures on €, the set of circulars. We call a measure p € M local
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if it is in fact concentrated on a finite subset of {2. We consider the circulars
C? as representations of the corresponding local measures u* € M. So the se-
quence C°, C', C?...is a “typical” trajectory of the corresponding process
uopt w2,

Let us denote by quant(W|C) the quantity of different places, at which a
word W appears in a circular C. After that we define the frequency of W in C
as

_quant(W|C)

freq(W|C) = TR (2)

For any . € M we define the frequency of the word W according to u as

freq(Wu) = > freq(W|C) - u(C). (3)
CeN

We were especially interested in freq(@|ut), that is the frequency of pluses
at time ¢. Due to limitations of our computer facilities, we could not estimate
freq(e|ut) directly, so we approximated it by

t
freq(elu) ¢ 3" freq(e|ch) (®)
t
k=1

Since the rules of our process do not change when we swap plus and minus,
the ergodicity of our infinite process implies that the frequency of pluses tends to
1/2 and for its finite analog this frequency tends to 1/2 with a probability, which
tends to 1 when the length of the initial condition (consisting only of minuses)
tends to co. To estimate the desired frequencies we used the following procedure,
which we call Imitation. This procedure generates a sequence of circulars in the
following inductive way. (Forget imprefections of computer generated random

numbers.)

Base of induction. The initial circular C° consists of 1000 minuses.

t-th induction step. Given a circular C?, wheret = 0, 1, 2, ... we performed
these three procedures:

The first procedure imitated the random choise of a place where to per-
form a transformation: a random integer number x distributed uniformly in
{0,1,...,]|C* — 1} was generated to identify the position, where the transfor-
mation would occur.

The second procedure imitated (1): first it generated a real random number &
distributed uniformly in (0,1). Then:

o if £ ¢ [0, OH‘Z)H) and C% # CL,,, these components annihilated,

that is both of them disappeared.
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elfee | _ath
at+p+y a+B+y
O to @ or from @ to ©.

) , the component C% changed its state from

° Ifé' c |:M7
a+f+y
into two components in the same state.

1], this component underwent mitosis, that is turned

If we denote the resulting circular by C**! we obtain the induction step
of that process, which we have in mind. However, this process cannot yet be
implemented on a real computer. That is why we denote the resulting circular
by (C’)!. Due to presence of annihilation and mitosis, the length of (C’)* might
be different from the length of C?; so in the course of the process the length
of our circular changed randomly and usually had a tendency either to shrink
all the time or to grow all the time. To prevent our process from shrinking to
degeneration or growing beyond our computer possibilities we used the third
procedure.

The third procedure which helped to keep C* within range: given (C’)!, we
generated a new circular, namely C**!, in one of the following ways.

Doupble: if |(C")!] < Noin, where Nyuin = 500, then C'*! was obtained from
(C")t by concatenating it with its copy and thereby duplicating its length.

Cut: if |(C")!| > Npaz, where Nyqp = 15,000, then C*T! was obtained from
(C")t deleting half of it.

Otherwise we changed nothing and obtained C**! = (C”)%.

When we stopped: We stopped our simulation when each one of the three
transformations (1) occured at least 100,000 times. Thus the procedure Imita-
tion is described.

To obtain the small squares on Figure 2, approximating the boundary be-
tween the regions of ergodicity and non-ergodicity, we used Imitation to at-
tribute an appropriate value to a Boolean variable denoted by E (which means
“it seems to be ergodicity”) as follows: if at the end of iteration the quantity

freq(®|ut) was in the range (0.45,0.55), we set E = yes; otherwise we set
E = no. We interpreted the result £ = yes as a suggestion that the infinite
process with the triple («, 3, 7y) is ergodic; the result E' = no was interpreted
as a suggestion that this triple produces a non-ergodic process.

Notice that if we multiply «, 8 and ~ by one and the same positive number,
the process does not change. So only ratios of these three numbers to each
other are important for us. We used Imitation within a cycle with a fixed v/
and growing «/(: we started with a/f = 0.1 and then iteratively performed
Imitation and increased «/f3 by 0.1 and repeated this until o/ reached the
value 8 or E got the value no. Thus we obtained a certain value of a//5. In fact
we performed this cycle 5 times and recorded the arithmetical average of the
5 values of a/f thus obtained. All this was done for 50 values of v/8, namely
the values 0.1 x ¢ with ¢ = 1,...,50. Thus we obtained 50 pairs ( «/8,v/5)
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represented by small squares on Figure 2.
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Figure 2. White squares approzrimate the boundary between suggested ergodicity and
suggested non-ergodicity. White balls approximate the boundary between suggested shrinking
and suggested growth. Compare this figure with figure 6.

To obtain the small circles on Figure 2, approximating the boundary between
the regions of growth and shrinking, we used Imitation within a cycle with a fixed
o/ and growing «/8: we started with /8 = 0.1 and then iteratively performed
Imitation and increased /3 by 0.1 and repeated this until v/ reached the value
8 or there was none duplication in the course of performing Imitation. Thus we
obtained a certain value of v/3. In fact, we performed this cycle 5 times and
recorded the arithmetical average of the 5 values of v/ thus obtained. All this
was done with 17 values of «/3, namely the values 0.5 x ¢ with ¢ = 0,...,16.
Thus we obtained 17 pairs ( «/3,7/03) represented by small circles on Figure 2.

Now let us look at Figure 3a), where we put results of two different experi-
ments to save space. One experiment with «/8 =1 and /3 = 3 is represented
by the points, whose vertical coordinates are between 0.3 and 0.7. In this case
the frequency of pluses kept close to 1/2. We interpreted this case as an example
of growth and ergodicity.

Figure 3b) pertains to the case a/3 = 7 and v/ = 3. It shows a different be-
havior: most of the time the frequency of pluses keeps either near a number close
to zero or near a number close to one. In other words, in this case freq(®|C?*) os-
cillates between two extremes. We interpreted this case as an example of growth
and non-ergodicity.

The points on Figure 3a), whose vertical coordinates are less than 0.2, pertain
to the case a/3 = 7 and /S = 1/2. The figure shows no swing in this case,
but there may be swings too rare for our computer time. In this connection let
us distinguish two cases: “real” and “ideal”. The real case is that, which was
actually programmed, including the third procedure at every step of iteration.
In this case the length of the circular remains bounded and therefore our process
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is an ergodic finite Markov chain. Due to its symmetry, the limit frequencies of
pluses and minuses must be equal. So, since we see the process staying for a
long time with a small (less than 0.2) frequency of pluses, somewhen in the
future it must stay for an equally long time with an equally small frequency
of minuses and so on with swings between them. The ideal case is the same
without the third procedure. In this case, if the process grows, swings may be
completely absent with a positive probability. However, in the present case the
process shrinks, so the swings seem to be inevitable also. Anyway, we suggest
to classify this case as an example of shrinking and non-ergodicity.

o/B=1,y/B=3 suggested ergodicity

freq(D\Ct)

02 e/B=7,y/B=0.5 suggested non—-ergodicity B

L L L L L L L L L
[o] 1le+006 2e+006 3e+006 4e+006 5e+006 6e+006 7e+006 8e+006 9e+006 1e+007

Time t
a

3. Chaos approximation

Chaos approximation is widely used in the numerical study of random processes,
especially in physical context. In spite of its simplicity, its behavior often is qual-
itatively similar to behavior of the original process. In our case chaos approxi-
mation gives us a deterministic approximation of our process, whose behavior
is shown on Figure 6. It is really similar to that on Figure 2.

Now let us describe the chaos approximation in our case. Remember our
procedure of Imitation. Let us imagine that at every step of this procedure,
in addition to the operations described above (before or after them - it does
not matter), all the components of C* are randomly permuted. Behavior of the
resulting process essentially has only two parameters: quantity of pluses and
quantity of minuses at time ¢, which we denote by X (¢) and Y (¢). When these
quantities are large, we may approximatedly treat them as if they were real.
In this approximation, we obtain a random process described by the following
differential equations:
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Figure 3a.The points whose vertical coordinates are between 0.3 and 0.7 pertain to the case
a/B =1 and v/B = 3. We suggest that in this case our infinite process grows and is ergodic.
The points with the vertical coordinates less than 0.2 pertain to the case a/B =7 and

~v/B =1/2. We conjecture that in this case our infinite process shrinks and is non-ergodic.
Figure 3b pertains to the case a/B =7 and v/B = 3. We observe that fI’GQ(EB\Ct) spends

most of the time near 0.1 or 0.9, sometimes rapidly swinging from one extreme to the other.
We suggest that the corresponding infinite process grows and is non-ergodic.

X XY (1)
i = HXOHBYO X0 -e gt
(5)
v XY (t)
- = AYOFBXO+y YO - S

The last term in each formula is based on our assumption that all the compo-
nents are mixed all the time, whence the neighbor components are independent
from each other. Also notice that in this case multiplying o, 8 and v by one
and the same positive number does change the process, but in a very special
way: it only slows it down or speeds it up. This allows us to use only ratios o/
and /(3 in the Figure 6.

Since the process (5) is homogeneous, we deal in fact with a two-dimensional
analog of the theorem on p. 7 of [Arnold]. So we may go to other variables

X(t)+Y(t)
For simplicity, sometimes we shall denote X (¢),Y (), S(t) and B(t) by X,Y, S
and B respectively. The following system of equations is equivalent to (5):

@ - s (-50-m), g

S(t) = X(t) + Y(t) and B(t) =
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dB e
o= B (S(1-8%)-253). 8
7 5 ) -2 (8)
The last equation is easy to solve explicitly, but we shall get all we need by
qualitative arguments. Since we are especially interested in the proportion of
each type of particles, we consider also another process, which we call normalized
chaos approximation:

7 X(t) Y(t)
Xnorm(t) = ma Ynorm(t) - X(t) 4 Y(t) (9)
Then
Xnorm(t) — 1+TB(1;) and Ynorm(t) = %B(t)

Thus, all we need to know will follow as soon as we study behavior of B(t). So
let us treat the equation (8) as a deterministic dynamical system with a space
[-1, 1] and continuous time ¢. We call a number B* € [—1, 1] a fized point of
this system if (8) equals zero at B = B*. We say that a fixed point B* € [—1, 1]
attracts a point B € [—1, 1] if the process (8) starting at B(0) = B tends to
B* when t — oo. Given a fixed point, we call its basin of attraction or just basin
the set of points attracted by it. It is easy to describe completely fixed points
and their basins for (8). The right side of (8) equals zero at three (generally
complex) values of B, which we denote by

Blz— 17;’ B2:0, B3: 17; (10)

Hence follows our classification:
If a/B3 < 4, then B} and Bj are not real and the right side of (8) is

positive when B € [-1, 0),
zero when B =0,

negative when B € (0, 1].

The following scheme illustrates this:

—_— — — — — — -~ — — — — <

[ ]

Py
@ @

-1 0
Figure 4. Behavior of B(t) when o/ < 4.

Therefore in this case B(t) tends to zero from any initial value when ¢ — oo.

If /B = 4, then B and Bj are real and equal to zero. The signs of the right
side of (8) are the same as in the previous case and B(t) also tends to zero from
any initial condition when ¢t — oo.
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If a/6 > 4, then Bf and Bj are real and —1 < Bf < B} =0 < B <1
(remember that 5 > 0). So the right side of (8) is
positive when B € [-1, B}),
zero when B = B,
negative when B € (Bf, Bj),
zero when B = B3 =0,
positive when B € (B3, Bj),

zero when B = B3,

negative when B € (B3, 1].

The following scheme illustrates this:

—_— — —> -+ 4— <+ —_— — —> -+ 4+— <

1 B} 0 B;
Figure 5. Behavior of B(t) when a > 40.

Therefore in this case B(t) tends to By or B3 or Bj from any initial condition
when t — 00, so [—1, 1] is a union of three basins:

basin(BY) = [-1, 0), basin(B3) = {0}, basin(B;)= (0, 1].

Thus the normalized chaos approximation is ergodic if o/3 < 4 and non-
ergodic if o/ > 4.

Now we are ready to study the chaos approximation (5). Let us remember
that X (t) + Y (t) = S(¢) and say that our dinamical system:

e grows if S(t) tends to infinity when ¢ — oc.
o shrinks if S(t) tends to zero when ¢ — oo.

Let us find out when it grows and when it shrinks.
Notice that we may rewrite (7) as

dln S _
dt

Let us denote by G(B) the right side of (11).
Given two positive functions fi; and fo of ¢ > 0, let us write f; =< fo if
fi =0(f2) and fo = O(f1).
Lemma. Let B(0) € basin(B]), where ¢ € {1,2,3}. Then:
If G(B}) > 0, then In S(¢) < t.
If G(B}) =0, then |InS(t)| = o(t).
If G(B}) < 0, then —1In S(¢) < ¢.

v-5(1-B). (1)
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Proof. The easiest case is when the initial value of B is a fixed point of (8).
In this case B(t) = B(0) for all ¢ > 0, so the right side of (11) is a constant.
If B(0) equals B3 =0, then (11) turns into
dIn S(t)
dt
whence In S(¢) = (v — a/2) - t + const, so

:"}/70[/2,

S(t) = e =*/2t times a constant.

Therefore our process grows if v/a > 1/2 and shrinks if v/a < 1/2.
If B} and Bj are real and B(0) equals one of them, then (11) turns into

dln S(t)
il AN
7 v — 28,

whence In S(t) = (v — 28) - t + const, so
S(t) = 28t times a constant.

Therefore our process grows if v/ > 2 and shrinks if v/5 < 2.

Now let us consider the general case: B(0) is any number in [—1, 1]. Then
B(0) belongs to a basin of some B}, where ¢ € {1, 2, 3}. Then from (11) for
any t >0

In S(T) = In S(0) + / ' G(B(t)) dt, (12)
0

where the integration is taken along the trajectory (S(t), B(t)) of our process.
It is easy to prove that

In S(t)

tends to G(B(b;)) when t— oco. (13)

This fact is similar to the well-know fact that if a sequence has a limit, its
Cesaro transformation has the same limit. So the idea of the proof is the same.
The following diagram resumes our findings.

v/ 5}
grows, grows,
ergodic non-ergodic
(4,2
shrinks, shrinks,
ergodic non-ergodic
(0 ) 0) (4 ) 0) 05/6

Figure 6. Classification for X(0) # Y (0). Compare this figure with figure 2.
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In the special case when X (0) = Y (0) we have B(t) = 0 for all ¢. But zero is
a fixed point, so the process is ergodic.

Conclusion

Our main purpose was to study a class of random processes, whose states were
infinite in both directions sequences of pluses and minuses. At the same time
we had to deal with analogous processes, whose states were finite sequences of
pluses and minuses, which we called circulars. We studied these processes using
two methods: Monte Carlo and chaos approximations. These methods led us to
similar results and suggested that our processes can grow and be non-ergodic at
the same time. So we may have found another example of 1-D non-ergodicity.
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