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Chaos and Monte-Carlo approximations

of the Flip-Annihilation process

A. D. Ramos1 A. Toom2

Abstract

The flip-annihilation process is a random particle process with one-dimensional

local interaction in discrete time, initially presented by one of us, namely Toom in

2004. Its components are enumerated by integer numbers and every component

has two states, “minus” and “plus”. At every time step two transformations

occur. The first one, called “flip”, independently turns every minus into plus with

probability β. The second one, called “annihilation”, acts thus: whenever a plus is

a left neighbor of a minus, both disappear with probability α independently from

other components. What is interesting about this process is that it is ergodic for

β > α/2 and non-ergodic for β < α2/250 . It is natural to conjecture that there

is some transition curve, which we call the true curve and denote by β = true(α) ,

which separates the areas of ergodicity and non-ergodicity of this process from

each other. The estimates, mentioned above, albeit rigorous, leave a large gap

between them and the present article’s purpose is to obtain some closer, albeit

non-rigorous, approximations of the true curve. We do it in two ways, one of

which is a chaos approximation and the other is a Monte Carlo simulation. Thus

we obtain two curves, which are much closer to each other than the rigorous

estimations. Also we fill in, albeit only numerically, another shortcoming of the

rigorous estimation β < α2/250 , namely that it leaves us uncertain whether the

true curve has a zero or positive slope at the point α = β = 0 . Both approximate

curves have a positive slope at α = 0 , as we hoped.
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1 Introduction

For most interacting particle systems, considered till now, the set of components,

also called the space, does not change during the process. We call such operators

and processes constant-length. We call processes, where the sites themselves may

appear or disappear, varible-length processes. There are quite a few studies of

them now, including Toom’s [6, 7, 8]. Maes’ recent survey [1] refers to a similar

kind of processes as processes with complex architecture as part of his discussion

of new trends in interacting particle systems. Another study of similar processes

is presented in Malyshev’s works [2, 3], which are motivated by some connections

between computer science and quantum gravity.

Let ZZ be the set of integer numbers and A a finite set called alphabet. We call

A ZZ the configuration space. Any s ∈ A ZZ is called a configuration, which may

be denoted by s = (si) , where si denotes its component at the position i ∈ ZZ .

We call elements of A letters. We call any finite sequence of letters a word. We

denote by An the set of n -letter words. We call a thin cylinder any set of the

form

C = {s ∈ A ZZ : si = ai for all i ∈ [m, n]}, where ai ∈ A. (1)

We consider only normalized measures on A ZZ , that is on the σ -algebra

generated by thin cylinders (1). We call a measure on A ZZ uniform if it is

invariant under translations along ZZ . For any uniform measure µ and any word

W = (a1, a2, . . . , an) ∈ An we may write

µ (W ) = µ (a1, a2, . . . , an) = µ (si+1 = a1, si+2 = a2, . . . , si+n = an). (2)

Since the right side of (2) does not depend of i , we may use the left side and call

it the frequency of the word W in the uniform measure µ. We denote by M the

set of normalized measures on A ZZ and by Mu the set of normalizad uniform



File caos/caos.tex on July 10, 2008 on [18] pages [3]

measures on A ZZ .

Random processes with discrete time are usually defined by some operator P ,

which transforms any normalized measure into another normalized measure. By a

process we mean a sequence of measures µ, µ P, µ P 2, . . . , where µ P n is the result

of n applications of an operator P to the initial measure µ . (We write operators

on the right side of measures on which they act.) A measure µ is called invariant

for an operator P if µ = µ P. Since we deal mostly with uniform measures, we

use the following definition of ergodicity. An operator P : Mu → Mu is called

ergodic if the limit of µ P t exists (on the algebra generated by thin cylinders) and

is one and the same for all initial measures µ ∈ Mu .

Now let us concentrate on the process introduced in [7], which we call

flip-annihilation. Let us describe it briefly. The components are enumerated by

integer numbers. Each component can assume only two states ⊕ and ⊖ , called

plus and minus respectively. Our operator is a superposition of the following two

operators. The operator flip denoted by Flipβ is very simple. Under its action

every minus turns into plus with a probability β independently from other compo-

nents. The annihilation operator is denoted by Annα. Under its action, whenever

a pair (⊕, ⊖) occurs in a configuration, it disappears with probability α inde-

pendently of what happens at other places. In other words, when a plus and a

minus ocuppy the i -th and (i + 1) -th sites respectively, both are eliminated with

probability α and the components ocuppying the (i − 1) -th and (i + 2) -th sites

become neighbors. With the complementary probability 1− α these components

remain unchanged.

By the flip-annihilation process we mean the superposition Flipβ Annα applied

iteratively to an initial measure. (At every step first acts the operator Flipβ, then

Annα .) This article is a numerical study of this process.
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We denote by δ⊖ and δ⊕ the measures concentrated in the configurations “all

minuses” and “all pluses” respectively. Of course, δ⊕ (Flipβ Annα) = δ⊕ ; so, if we

start our process with all pluses, we remain there forever. Therefore our operator

Flipβ Annα is ergodic if and only if

∀ µ ∈ Mu : lim
t→∞

µ (Flipβ Annα)t = δ⊕. (3)

The following theorem sums up the most relevant here of what we know about

ergodicity of the operator Flipβ Annα .

Theorem 1.

a) if β > α/2, then Flipβ Annα is ergodic.

b) if β < α2/250, then Flipβ Annα is not ergodic and has at least two different

invariant measures.

For the case α < 1 this theorem was proved in [5, 7, 8]. For the case α = 1

it is explained in [5] and a complete proof is available in [4]. Theorem 1 is

illustrated by two curves β = α/2 and β = α2/250 on figure 2. We call these

curves the rigorous estimations. We use a logarithmic scale on the vertical axis in

this figure because in the usual scale the curve β = α2/250 would be too close to

the horizontal axis.

In addition to the facts, which are already proved, we conjecture that whenever

β increases, the operator Flipβ Annα cannot pass from ergodicity to non-ergodicity.

Under this assumption, for every α ∈ [0, 1] there is a value of β in [0, 1] , which

we denote by true(α) , such that the operator Flipβ Annα is ergodic for β > true(α)

and non-ergodic for β < true(α) . We assume also that the function true(α) is

continuous, which allows us to speak about the curve β = true(α) , which serves

as the boundary between the regions of ergodicity β > true(α) and non-ergodicity

β < true(α) . We call the set {(α, β) : β = true(α)} the true curve. Our main goal

is to approximate it. Of course, the true curve (if it exists) is sandwiched between
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the rigorous estimations, but they are pretty far from each other; we want better

numerical estimations.

2 Chaos approximation

We denote by C : Mu → Mu, the well-known chaos operator. Its action amounts

to mixing randomly all the components. In other words, for each µ ∈ Mu the

measure µ C is a product-measure with the same frequencies of all the letters

as µ has. (This method is also known as mean-field approximation.) The chaos

operator allows us to approximate a given process µ P t on the configuration space

A ZZ by another process µ (C P )t on the same space. (Every time we apply first C ,

then P .) Thus, instead of the original process, whose set of parameters is infinite

or very large, we deal with the evolution of densities of letters, that is a finite

and limited set of parameters. Since densities of the letters sum up to one, the

number of independent parameters in the chaos approximation equals the number

of letters in the alphabet minus one. In our case, with only two letters, we deal

with only one parameter: as such we choose the density of pluses.

Due to the properties of the chaos operator, the density of pluses in the measure

µ C Flipβ Annα depends only on the density of pluses in the measure µ and this

dependence may be expressed by the formula

f(x) =
b − α · b(1 − b)

1 − 2α · b(1 − b)
, (4)

where x denotes the fequency of pluses in the measure µ , f(x) denotes the density

of pluses in the measure µ C Flipβ Annα and b = x + (1 − x)β . ( b is the density

of pluses in the measure µ C Flipβ .) Since the maximal value of b(1 − b) is 1/4 ,

the denominator of (4) is not less than 1/2 . So f(t) is defined and continuous

for x, α, β ∈ [0, 1] . Thus the study of the operator Flipβ Annα is substituted by
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a study of the operator C Flipβ Annα , which boils down to the study of the one-

dimensional dynamical system f : [0, 1] → [0, 1] with parameters α, β ∈ [0, 1] .

As usual, we call a fixed point of this system a value of x ∈ [0, 1] such that

f(x) = x . We call our dynamical system ergodic if it has a unique fixed point

xfixed and

∀ x ∈ [0, 1] : lim
t→∞

f t(x) = xfixed,

where f t means the t -th iteration of f.

Theorem 2. The chaos approximation C Flipβ Annα is ergodic if β > β∗(α) and

is not ergodic if β ≤ β∗(α) , where

β∗(α) =











4 − α − 2
√

4 − 2α

α
if α > 0,

0 if α = 0.

(5)

Thus for the chaos approximation we know exactly the curve dividing ergodicity

and non-ergodicity: it is the continuous curve β = β∗(α) : it starts at the origin

with the slope 1/8 , grows smoothly and reaches 3 − 2
√

2 ≈ 0.17 at α = 1 . The

graph of this curve is labeled “Chaos” in the figure 2.

Proof of theorem 2.

First let α = 0 . It is easy to observe that in this case our dynamical system is

ergodic for all β > 0 and non-ergodic for β = 0 , so theorem 2 is true. Now let

α > 0 . If β equals zero or one, theorem 2 is evident. So now we additionally

assume that 0 < β < 1 . Solving the equation f(x) = x explicitly, we find out

that all the fixed points of f are those of the values

p1 =
α − 3αβ −

√
∆

4α(1 − β)
, p2 =

α − 3αβ +
√

∆

4α(1 − β)
, p3 = 1, (6)

which are real and belong to [0, 1] , where

∆ = α2β2 + 2α2β + α2 − 8αβ. (7)
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Since α > 0 and β < 1 , the denominator of p1 and p2 in (6) is not zero. Since

β > 0 ,

0 < p1 ≤ p2 < p3 = 1 (8)

whenever p1 and p2 are real, that is ∆ ≥ 0 . ∆ equals zero at β = β1(α) and

β = β2(α) , where

β1(α) =
4 − α − 2

√
4 − 2α

α
and β2(α) =

4 − α + 2
√

4 − 2α

α
. (9)

Here β1 is what we called β∗ . According to (7), ∆ is a quadratic function of β

with a positive second-degree coefficient, so ∆ is negative when β is between the

roots (9) and positive when β is less that β1(α) or greater than β2(α) . It is

easy to observe that

∀ α > 0 : 0 < β1(α) < 1 < β2(α). (10)

If β < β1(α) , then ∆ > 0 and our dynamical system has three different fixed

points p1, p2 and p3 , so it is non-ergodic. If β = β1(α) , then ∆ = 0 and

our dynamical system has two different fixed points p1 = p2 and p3 , so it is

non-ergodic too.

Now let β > β1(α) . In this case ∆ < 0 , so f has only one fixed point p3 = 1 .

Let us prove that for all x0 ∈ [0, 1], f t(x0) tend to 1 when t tends to infinity.

As we know, f is continuous in [0, 1]. So, g(x) = f(x) − x is also continuous.

It is easy to calculate that g(0) > 0 . Since g is continuous, equals zero only at

the point x = 1 and g(0) > 0 , we conclude that g(x) > 0 for all x < 1 , whence

f(x) > x for all x < 1 . Then for all x0 < 1 the sequence f t(x0) is growing

and limited by 1 and therefore has a limit, which is a fixed point of f . But 1

is the only fixed point of f , so f t(x0) → 1 when t → ∞ . Theorem 2 is proved

completely.
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In fact, we can describe completely the limit behavior of this dynamical system:

If ∆ < 0, then lim
t→∞

f t(x0) = p3 = 1 for all x0.

If ∆ = 0, then lim
t→∞

f t(x0) =







p1 = p2 if x0 ≤ p1 = p2,

p3 = 1 if x0 > p1 = p2.

If ∆ > 0, then lim
t→∞

f t(x0) =























p1 if x0 < p2,

p2 if x0 = p2,

p3 = 1 if x0 > p2.

3 Monte Carlo simulation

Along with the process on A ZZ we shall consider its analogs on finite spaces.

When our operators act on finite configurations, every act of elimination of (⊕,⊖)

decreases the length of the configuration by two, whence in the average the number

of components decreases and the process degenerates into a finite sequence of

pluses (provided β > 0 ), which remains one and the same forever. However, the

time needed for this may depend drastically on the values of our parameters α

and β .

Let us consider the following finite analog of the flip-annihilation process. It is

a Markov chain with a countable set Ω of states called circulars. The circulars

are similar to words as they also are finite sequences of pluses ⊕ and minuses

⊖ , but now we imagine these sequences to have circular form. We denote by |C|

the number of components in a circular C. The indices of these components are

remainders modulo |C| (see figure 1 where |C| = n .)

(We could use words instead of circulars, but this would necessitate special

definitions at the ends when we transform them.) In most of our Monte Carlo
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Figure 1: A circular C with |C| = n .

simulations, the initial circular C consisted of 1000 minuses. In every single

experiment, the integer time t grew from zero to at most 100 000. The circular

obtained at time t was denoted by Ct and its i -th components were denoted by

Ct
i , where i = 0, . . . , |Ct| − 1.

We say that a word W = (a1, a2, . . . , an) appears at a place i in a circular

C = (c1, . . . , cn) if

ci+1 = a1, ci+2 = a2, . . . , ci+n = an.

We denote by quant(W |C) the quantity of different places where the word W

appears in a circular C . After that, we define the frequency of W in C as

follows:

freq(W |C) =
quant(W |C)

|C| . (11)

Let us describe a procedure, which we call Imitation and which is a Monte

Carlo imitation of our process. This procedure generates a sequence of circulars

in the following inductive way.

Base of induction. The initial circular C0 consists of 1000 minuses.

t -th induction step. Given a circilar Ct , where t = 0, 1, 2, . . . we perform

three procedures:

First procedure imitating the action of flip: every component of Ct , which is a

minus, becomes a plus with a probability β independently from other components.

(In more technical detail, for every minus in Ct we generate a new random variable

distributed uniformly in (0, 1) and change this minus into plus if this variable is
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less than β .) We denote the resulting circular by (C ′)t .

Second procedure imitating the action of annihilation: whenever a component

of (C ′)t , which is a plus, is a left neighbor of a component, which is a minus,

both are eliminated from the circular with a probability α independently from

other components. (In technical details, for every such pair we generate a new

random variable distributed uniformly in (0, 1) and perform this elimination if

this variable is less that α .) We denote the resulting circular by (C ′′)t .

Third procedure which helps to imitate the infinite process: given (C ′′)t , we

generate a new circular, namely Ct+1 , in the following way: if |(C ′′)t| < Nmin ,

where Nmin = 500, then Ct+1 is obtained from (C ′′)t by concatenating it with

its copy and thereby duplicating its length; otherwise Ct+1 = (C ′′)t .

When we stop: given a constant T = 100000 , we stop when t = T or there

is none minus in the circular Ct .

Let us explain why we need the third procedure. Remember that under the

action of our operator, components can disappear, but not appear; so for any

β > 0 the length of any finite circular decreases in the average and finally the

process degenerates into a circular consisting only of pluses. The third procedure

allowed us to postpone this and thereby helped us to make our simulation more

similar to the infinity process.

Thus the procedure Imitation is described. We used it for various purposes

in our study, but right now we use it for only one purpose: to attribute the

appropriate value to a Boolean variable denoted by E (which means ergodicity),

namely E is given the value yes if the last circular Ct contains none minus;

otherwise E is given the value no . If E = yes , we interpret this as a suggestion

that the process with the given values of α and β is ergodic; the result E = no

is taken as a suggestion that our process is non-ergodic.
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In fact we used Imitation within a cycle with growing β : we started with β = 0

and then iteratively performed Imitation and increased β by 0.001 and repeated

this until β reached the value 1 or E got the value yes , that is ergodicity was

suggested. Thus we obtained a certain value of β . In fact, we performed this

cycle 5 times and recorded the arithmetical average of the 5 values of β thus

obtained.

Remember that all this was done with a certain value of α . In fact we consid-

ered 1000 values of α , namely the values αi = 0, 001 · i for i = 1, . . . , 1000 . The

corresponding recorded value of β was denoted by βi . Thus we obtained 1000

pairs (αi, βi) . The graph called M. C. on figure 2 consists of these pairs plotted.

You can see that the Monte Carlo “curve” is not exactly a curve, it is somewhat

fuzzy. If instead of five procedures we had more for every value of α , this graph

would be thinner. However, even such as it is, it gives some idea of the behavior

of our process.

We see that the Chaos and M.C. curves are much closer to each other than the

rigorous estimations and we conjecture that they are closer to the true curve also.

3.1 Estimation of s(α, β)

In [7] a function s(α, β) was defined as the supremum of density of pluses in the

measure µt over all natural t . For every α the function s(α, β) was proved not

to be continuous as a function of β . We wanted to estimate s(α, β) numerically,

but to estimate it directly was difficult, so, instead of that, we estimated

s(α, β) = max{freq(⊕|Ct) : t = 0, . . . , 100 000}.

In the area of ergodicity (white area) s(α, β) = 1. Figure 3 shows the values of

s(α, β) in the other area, where our finite approximation suggests non-ergodicity.
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Figure 2: This graph shows both rigorous estimations and the two approximations of true(α) :
the chaos approximation(Chaos) and the Monte Carlo approximation (M. C.). Every point of the
latter curve was obtained as an average of 5 independent experiments.

The values of s(α, β), are represented by colors according to the rule shown in

the color box on the right side. All the values of s(α, β), which we obtained for all

the non-ergodic area, were less or equal to 0.14 , which illustrates non-continuity

of s(α, β) as a function of β.

We studied in more detail the behavior of s(α, β) near the critical curve: we

took a few values of α and for everyone of them made 100 experiments, in each

of them making β grow from zero to one with an increment 0.001 , all the time

calculating the supremum of density of pluses, which we denoted by si(α, β) .

Then we defined

E[s(α, β)] =
1

100

100
∑

i=1

si(α, β) (12)

and used (12) as an approximation for s(α, β) . The behavior of E[s(α, β)] for

α = 0.25, 0.5 and 0.75 is shown in figure 4. We observe that when β increases,

E[s(α, β)] also increases and that near the true(α) there is an abrupt increase.

For the same sample we evaluated the variance. The error bars in figure 4 show
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Figure 3: Here we used colors to represent the values of s(α, β) in the area, where the process is
suggested to be non-ergodic. The color box on the right side shows how colors from yellow to black
represent the values of s(α, β). For better visualization, we excluded the values greater than 0.08,
which constitute less than 1% of all data.

the variance of those si(α, β) which we used to obtain E[s(α, β)] in (12). We see

that the variance is the largest near the critical value true(α) . We notice similar

qualitative behavior of E[s(α, β)] for all the three values of α .

To study the first order phase transition of s(α, β) in more detail, we studied

the behavior of s(0.5, β), taking the initial circulars C consisting of |C| = 125,

250, 500, 1000 , 2000 and 4000 minuses. For each one of them, the maximal

time was taken 100 · |C| . Figure 5 shows the results of this experiment. In this

case we restricted our attention to a window of observation, where, as we believed,

was the critical value true(0.5) , which separates the area, where s(0.5, β) = 1 ,

from the area, where s(0.5, β) < 1.

We denoted by a|C| the minimum of those values of β , for which the variance

of E[s(0.5, β)] was greater than 0.01 and by b|C| the maximum of those values β ,

for which the variance of E[s(0.5, β)] was greater than 0, 01 . Using the behaviour
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experiments. Error bars represent the standart deviation.
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of variance near true(α), we estimated the interval [a|C|, b|C|], which contains all

the values of β, whose variance was greater than 0.01 . The results are shown in

table 1.

|C|
[

a|C|, b|C|

]

E[s(0.5, 0.001)] V ar[E[s(0.5, 0.001)]]

125 [0.007, 0.042] 0.0156 0.00411
250 [0.014, 0.042] 0.0121 0.00252
500 [0.023, 0.042] 0.0106 0.00179
1000 [0.030, 0.042] 0.00076 0.00106
2000 [0.038, 0.042] 0.00087 0.00085
4000 [0.039, 0.041] 0.00095 0.00062

Table 1: This table shows E[s(0.5, β)] and the correspondent [a|C|, b|C|] when |C| increases.

Table 1 shows that when |C| increases, the length of the interval [a|C|, b|C|]

decreases. Also, we observed that E[s(0.5, β)] shows a behaviour more stable

when |C| increases since its variance is decreasing. We conjecture that when |C|

tends to infinity, the interval [a|C|, b|C|] degenerates into a point and this point is

the value of true(α). Moreover, we conjecture that when |C| tends to infinity, our

estimation (12) for all values of β converges to the supremum of density of pluses

in µt, that is to s(α, β) .

We also studied how the results of our M.C. approximation depend on the

parameter Nmin. This suggests that our conclusions about phase transition and

slope remain valid for others values of Nmin . This confirms our belief that this

computational model approximates well the infinity process.

3.2 The slope at zero

It is natural to expect our process to converge to a process with continuous time

when α and β tend to zero, their proportion remaining constant. If this is

true, the true curve should have a positive slope at α = β = 0, but our rigorous

estimations do not imply this. For this reason we are interested in the value of this
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slope for our approximations. We have already seen that the chaos approximation

has a positive slope at the origin, namely 1/8 . Now let us evaluate this slope for

the Monte Carlo simulation. The procedure is similar to that we used to obtain the

separating curve shown in figure 2, but with the following modifications: for every

j ∈ {0, 1, 2, 3, 4, 5}, we take α varying from zero to 1/2j with an increment of

1/(2j × 1000). So, for every considered value of j, we recorded pairs {αj
i , βj

i } for

i = 1, . . . , 1000 . For these pairs we calculated the best fits, linear and quadratic,

which we denote by

f j
L(α) = aj · α and f j

Q(α) = bj · α + cj · α2.

To obtain these fits, we used the least square method. We introduced two

functions, f j
L and f j

Q which are the “best” fits for the set of datas. These functions

are obtained by minimization of

Dj
fL

=
1000
∑

i=1

(βi − f j
L(αj

i ))
2 and Dj

fQ
=

1000
∑

i=1

(βi − f j
Q(αj

i ))
2.

j aj bj cj

0 0.0911 0.0632 0.0371
1 0.0779 0.0718 0.0165
2 0.0742 0.0737 0.0027
3 0.0729 0.0738 −0.0095
4 0.0730 0.0745 −0.0321
5 0.0729 0.0712 0.0715

Table 2: The first column contains the coefficients of the linear fit, which show convergence to
≈ 0.073 . The second and third columns contain the coefficients of the first and second degree
terms of the quadratic fit respectively. The second column behaves like the first one, only looser.
The third column shows no clear pattern, which suggests that the quadratic term is irrelevant.

Table 2 shows the coefficients of the linear and quadratic fits. For α near zero

the sequence of coefficients aj of the linear fit, shown in the first column of the

table 2, stabilizes around 0.073 when j > 2. The second and third columns show

the coefficients of the quadratics fit. The coefficient bj of the linear term of this fit
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fluctuates around the same value as aj , but with less persistence. The coefficient

cj shows no clear pattern of behavior, which suggests that it is irrelevant. We see

that the linear fit approximates our curve near the origin (0, 0) at least as well

as the quadratic fit. This suggests that the curve is approximatedly linear near

the origin with the slope approximated by the values of aj . We conclude that

the M.C. approximation has a positive slope at the origin, approximatedly equal

0.073 .

4 Conclusions

This work is a numerical study of a variable-length process, which has been proved

elsewhere to behave in a non-trivial way. We obtained two approximations of the

hypothetical curve true(α) , separating areas of ergodic and non-ergodic behavior

of this process, using a chaos approximation and a Monte Carlo simulation. Also,

we have presented a computational model to approximate this process, which may

be used to approximate other variable-length processes. Finally, we have shown

numerically that the slope of the curve true(α) is positive when the probabilities

α and β are near zero. Our numerical work may indicate appropriate directions

for future research.
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