From the Life of Units

A. L. Toou

“Alas!” said the Saturnian, “none of us live for more than five
hundred anmual revolutions of the sun; ... owr existence is a point,
onr duration an instant, our globe an atom.”

Voltaire, Micromegas

Not o long agod it beeame known that certain seemingly quite different phe-
nomena and processes that occur in life, for example. transformations of polymers.
vital activity of biological tissues, crystal growth, and even the operation of comput-
ers in which caleulations take place simultancously in all the working cells (such a
computer does not yet exist, but its construction would be a fascinating possibility)
have nevertheless something in common, This common property is revealed when
an attempt is made to describe the given processes in the langnage of mathematics
and to create what researchers call a mathematical model.

The well-known Soviet physicist Ya. I. Frenkel’ said that a mathematical model
should be more like a caricature than like a “realistic”™ picture. The main require-
ment of a model is simplicity: life processes are so complex that a realistic model
vields to mathematical study with difficulty. Very widespread at present are so-
called “lattice models” describing processes that take place on a lattice of identical
“cells”. In such models there are difficulties already when each cell has only two
possible states. This is what we shall discuss below.

Colonies and operators

For a mathematician a piece of checked paper harbors many fascinating possi-
bilities. We make use here of one of them. Open a page of a notebook of checked
paper. You see on it a network of vertical and horizontal lines. For brevity we call
the intersection points nodes. Let us imagine a world consisting solely of all these
nodes. True, we do imagine the page here to be infinite. Suppose that some beings,
called units, can live at these nodes. In figures we denote the units by circles as in
Figure 1. Only one unit can be at a node at any one time. and if there is not a unit
at a node, then there is a zero there, The collection of all nodes occupied by units
will be called a colony. If there are finitely many units. then we say that the colony
is finite. If there are no units at all, then we say that the colony is emply. (Like
the space, the time is discrete. that is, it can be connted by integers: 0.1.2,....)

The Russian orginal is published in Keant 1974, no. 9, pp. 31-39.
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An gperator P must be given, that is, a rule which, for any colony K existing at
some time {, determines what colony PK is obtained from it at the next moment
of time t + 1.

Suppose that such an operator P is given. The basic question we are trying to
answer is the following. For the given operator P is there a finite colony that does
not die out, that és, a finile colony K such that no mafter how many times P is
applied fo i, the result will always be a nonempty colony? Or, on the contrary, is
the operator P such that every finite colony dies oul over some time inlerval, that
is, not a single unit is left?

Let us start by analyzing two examples. We introduce coordinate axes by taking
one of the nodes as the origin O, the axis of abseissas to the right and the axis of
ordinates upwards as usual (see Figure 1), and a side of a cell to be of length 1.

ExampPLE 1. Suppose that at time ¢ + 1 there is a unit at the node A = (x,y)
if and only if mest of the following five nodes were occupied by units at time £ A
and its four neighbors, namely, (x+ 1, y) to the right, (x— 1.y) to the left, (z,y+1)
above, and (z,y — 1) below. This defines the aperator P.

ExErRCISE 1. What do the colonies in Figure 1 (the circles and the crosses)
generate under the action of this operator? Follow the further evolution of the
colonies. For this operator does there exist a finite colony that does not die out?

EXAMPLE 2 (see Problem M213). Suppose that at time f - 1 there is a unit at
the node A = (z,y) if and only if most of the following three nodes were occupied
by units at time ¢: A and its two neighbors (z + 1,y) and (r.y + 1) to the right
and above. This defines the operator P,

It follows from the solution of Problem M215 (published in Kvant 1974, no. 3)
that under the action of this operator every finite colony dies out. {Verify this for
the colony in Figure 1.} We shall prove this fact ance more. by a method which
will be useful to us in what follows,

Let us look at the evolution of colonies of a special form that 8l isosceles right
triangles with legs directed to the right and upwards from the vertex of the right
angle (Figure 2). It turns out that each such triangle passes ar the next moment of
time into a triangle of the same form, but with legs shorrer by one. The smallest
triangle with legs of lenpth 1 passes into a single point, and it disappears at the
next step. (Verify this, by tracing the evelution of Figure 2.) Therefore, each such
triangle dies out in a time equal to the original length of the legs.
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Now take an arbitrary fnite colony K. It can be included in an isosceles right
triangle, as follows from Figure 3. Then the colony obtained from it at the next
moment will be inside & smaller triangle of the same form. and so on.

Here we have used an important property of the operator P: if a colony K, is
a part of a colony K> (this can be written as K, C K3), then PR is a subset of
PK3: PK; C PK5 (the possibility that PR, coincides with PR is not excluded).
We call this property. which can be written briefly as

K; CKy = PK; CPK,,

the monotonicity of the operator P. Only monaotone operators will be considered
in this article,

For nonmonotone operators the question of when there are finite colonies that
do not die out has not been solved in general form, and is possibly very difficult.
Interesting and extensive material on the investigation of a particular nonmonotone
operator, which has come 10 be called *The Game of Life”, is contained in an article
by M. Gardner in the October 1970 issue of Scientific American (p. 120).

We now describe the precise form of the operator P to be considered.

Let O be the “zero™ mode. the origin of coordinates. Part of the description
of P is a list U consisting of the r nodes uq,...,u, on whose states at time ¢ the
state of the node O at time £+ 1 depends. In Example 1 the number of these nodes
is r = 5, and in Example 2 it is r = 3. The state of any node A at time £ + 1
depends on the states of the nodes A + up,..., A + u, at time ¢{. The symbol +
here denotes addition of vectors. For example, if A = (z,y) and u; = (z,y'), then
A+uyy =(z+x. v+
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EXERCISE 2. Write out the coordinates of the vectors ... .. - in Example 1
and the vectors ug, tta, 1y in Example 2.

Besides the list U, the specification of P includes the function derermining
just how the state of a node A at time ¢ + 1 depends on the states of the nodes
A+, ..., A+ u, at time t. To specify this function we must indicate what will
be at A (a unit or a zero) at time ¢ + 1 for each combination of unit= and zeros
at the nodes A 4+ uy..... A+ u, at time t. There are 2" such combsinarions in all.
For example, we can make a table in which there is either a unit or a zero opposite
each combination of units and zeros, as done in Table 1 (verifv thar the function
given by this table determines the operator P in Example 2). It is not necessary to
make a table, of course. We ean give the function verbally. thousgh in such a way
that such a table could be uniquely determined by the verbal description.

Functions f = fla;,...,a,) whose arguments and values take oanly the two
values 0 and 1 are called Boolean or binary functions. A Boolean function is said
to be monotone if

flay,....a;) < flai,....a;)

whenever
iy = ui,. S a:_.

As already mentioned, we consider only monotone operators. They are ziven by
monotone functions. Moreover, we set f(0,...,0) =0 and f{l..... ii=1
These restrictions are not essential, since the only monotone funciions nof sat-

isfrving them are the constants—the functions taking only one value (alwavs zero or
always one). The constant functions are very simple, and therefore uninteresting,

TABLE 1
States of nodes
at time ¢ t+1
(0.0) [ (0.1) [ (1,0) | (0.0) |
0 0 0 0
] 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 T
1 1 0 1
[ 1 1 1 T

ExampLE 3. Suppose that at time t + 1 there is a zero at the node 4 = (r.y)
if and only if at time ¢ at least one of the following two conditions holds:

a) there are zeros at both the nodes (z,y) and (z,y + 1}

L) there are zeros at both the nodes (z + 1.gy) and (r = L.y — 1.
This defines the operator P.

ExERrCISE 3. a) Trace the evolution of the colonies in Figure 1 under the action
of this operator. Does one not get the impression that the colonies fatten ont from
the right side but stretch upward?
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b) Prove that every finite colony dies out under the action of the operator in
Example 3.

ExampLE 1. Suppose that at time ¢ + 1 there is a zero at the node 4 = (r, y)
if and only if ar time t at least one of the following two conditions holds:

a) there are zeros at both the nodes (r.y) and (r + 1.y = 1):

b) there are zeros at both the nodes (xr + 1.y) and (.3 = 1).
This defines the operator P.

For this operator there do exist finite colonies that do not die out. Tt is true
that they are constantly changing, but they never become extinet. Find one of
them.

2. Zero sets. The survival theorem

We now remind ourselves that, besides the nodes, there are also other points
in the plane. From the point of view of the units living only at nodes, of course, no
other points exist in nature. but for us they do exist. We shall consider all possible
geometric figures— sets of points in the plane. A figure M will be said to be filled
bty zeros if there are zeros at all the nodes contained in this figure.

DEFINITIOX 1. A figure M is called a zero figure (for a given operator P) if
there will be a zero at the node O at time ¢ + 1 whenever M is filled by zeros at
time £.

For instance. in Examples 1 or 2 a figure is a zero figure if it contains most of
the five (in Example 1} or three (in Example 2) nodes making up the set U.

For a line | drawn in the plane we define a half-plane to be the set of points
located on one side of the line. including the line itself.

Corresponding to Definition 1, a half-plane is called a zere half-plane if there
will be a zero at the node O at time £ 4+ 1 whenever it is filled by zeros at time t.

Let gp be the intersection of all the half-planes that are zero half-planes for
the given operator P.

SURVIVAL THECREM. Every finite colony dies out under the aclion of the op-
erator P if and oniy if the sef op is emply.

EXERCISE 4 (Verification of the theorem for examples 1-4}. Prove the following
assertions.

a) In Example 2 the three half-planes shaded in Figure 4 are zero half-planes.
In Example 3 the two halfplanes shaded in Figure 5 are zero half-planes. In both
cases the shaded half-planes do not have common points, that is. their intersection is
empty. Therefore. the intersection op of all the zero half-planes i= empty. According
to the theorem, all finite eolomies die out.

b) In Example 1 the set op consists of the single point O (and. according to
the theorem, there is a finite eolony that does not die out).

In Example 4 the s=t op consists of the single point £ = {
node, which is why nodes were not enough for us!)

In Example 1 the poimt () &= in op, and a finite colony that does not die out
remains in place. In Example 4 the simplest colony that does not die out consists
of four nodes: the vertices of a unit square (Figure 6). At the next moment of time
it generates a “cross . amd this cross in turn generates the same square, but shifted

.5 ). {This is not a
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onc unit to the left and downward. We say that a colony K fills a figure M if it
contains all the nodes in M. Both the eross and the square in Figure 6 can be
represented as a colony filling identical figures —the squares shown in these figures.
Thus, the colonies generated at successive moments of time can he represented as
filling one and the same square, shifted by the vector —{ = ——.——} in unir time.
Note that the sides of this square are parallel to the lines u;£. where u, = U. In
Example 1 the sides of the unit square filled by the colony are also parallel to the
lines w; (.

EXERCISE 5 (teasing). If vou were a unit and lived in the world ruled by the
operator in Example 4, then would the point £ = (3, 3) exist for you or not?
3. Convex sets and convex hulls

A set M of points in the plane is said to be conver if it satisfies the following
condition:
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For any two points A and B in M. all the points of the straight line segment
with endpoinis 4 and B belong fo M.

ExERrRCISE G. Prove that every half-plane is a convex set.
EXERCISE 7. Prove that an intersection of convex sets is a convex set.

EXERCISE 8. In some textbooks a polygon is defined to be convex if it is located
on one side of the line drawn through each of its sides. Prove that a polyvgon is
convex in this sense if and only if the set of points located on or inside its contour
15 Cconvex.

Thus, if a convex set M contains the points A;, ..., Ay, then it contains also
all the segments with endpoinis ar these points, and all the triangles with vertices
at these points. The union of all the points A;,..., Ag, all the segments with
endpoints at these points, and all the triangles with vertices at these points is
called the conver hull of 4,.....: 4 (the convex hull of some points A;. ..., Ag is
pictured in Figure 7). It can be said that the convex hull of a finite set of points is

what is necessarily contained in every convex set containing the points.

EXERCISE 9. a) Prove that a set of four points {in the plane) can always be
partitioned into two subsets whose convex hulls intersect.
b} The same statement when the set has n > 4 points.

Recall the definition of the set op. To find op from this definition we must
construct all zero half-planes, and there are infinitely many of them. True, in
Examples 1-4 we knew how to find op, but it is not vet clear how to do this in the
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general case. It turns out that with the help of convex hulls it is now possible to
construct op for any operator P.

We consider all subsets of U. According to Definition 1, a set U’ C U is called
a zero set if the fact that U’ is filled by zeros at time ¢ implies that there is a zero
at O at the time ¢ + 1.

LEmMMA 1. op coincides with the intersection of the conver hulls of all the zero
subsets of U.

Prove this lemma yourself.

HINT. A halfplane is a zero half-plane if and only if it entirely contains at
least one zero subset of U.

Using Lemma 1, we can construct op from any operator P given by its set U
and function f. Namely, we must write out all the subsets of U (there are 2" of
them), then use our knowledge of f to choose the zero subsets among them, then
construct their convex hulls (each is a polygon, segment, or point), and then find
their intersection.

COROLLARY. The set op is always the intersection of a finite number of zero
half-planes.

Exercise 10. Using the method following from Lemma 1, construct again the
set op for Examples 1-4.

4. Proof of the survival theorem. The familiar
Helly theorem in the role of a deus ex machina

A. Let us begin by finding conditions nunder which all finite colonies die out.
First of all we make some important remarks. Suppose that a zero half-plane IT is
bounded by a line . In this case if IT was filled with zeros at time £, then at time
t+ 1 there will be a zero not only at the node (. but also at every node A for which
the line AD is parallel to I (Figure 8).

Further, we denote by v a vector by which [ must be shifted in a parallel way in
order to pass through @ in its new position (there are infinitely many such vectors,
but v can be taken to be anv one of them). If at time { the zero hali-plane IT is
filled by zeros, then at time ¢ + 1 the half-plane IT + v obtained from IT by shifting
it by the vector v will be filled by zeros (I + v is shaded in Figure 8). Similarly, if
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at time t the half-plane IT + w is filled by zeros. then at time ¢ + 1 the half-plane
I+ w + v is filled by zeros.

LEMMA 2. Given a triangle ABC'. assume that the three half-planes 11, 115, 115
bounded by the lines AB, BC. AC' and located outside ABC are zero half-planes for
the operator P (they are shaded in Figure 9). Then every finite colony of unils dies
out under the action of this operator.

ProoF. Let K be a finite colonv. We shift the zero half-planes I1,;, I, T3 by
vectors wy, wa, wg such that the resulting half-planes IT] = Iy +w,, IT; = Ia+wa,
I, = I3 + w3 do not have points in common with K. that is, they are filled by
zeros (Figure 10). The boundary lines of I1;. Iz, IT; form a triangle A'B'C"” similar
to ABC (and also oriented in the same way): denote the similarity coefficient by d.
We prove that the colony K dies out in a time not greater than d.

Let vy, va, vy be vectors that shift the halfplanes IT;, ITy. IT; so that their

boundary lines pass through O. From the similarity it then follows that if the half-
planes IT{, II;, IT; are shifted by the respective vectors dv, dva. dvs, then their
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boundary lines will also pass through a single point; these same half-planes in the
new position cover the entire plane. But by our remarks. after ¢ applications of
P the half-planes obtained from IT{, IT;, IT; by shifting them by tvy. fvg, tvg will
certainly be filled by zeros, and for ¢ = d these half-planes cover the entire plane.
Hence, the whole plane is filled by zeros, which means that the colony has died out.

LEMMA 3. Suppose that two half-planes bounded by two perallel lines and dis-
joint from each other are zero half-planes for an operator P (as in Figure 5). Then
every finite colony of units dies out under the action of this operator.

Prove this lemma vourself.
HinT. Generalize the solution of Exercise 3.
Lemmas 2 and 3 can be combined into the following assertion.

Lemua 4. If the intersection of three zero half-planes s empty. then every
finite colony of units dies out.

Proor. If the intersection of three half-planes is empts. then either they are
arranged as in Figure 9, or some two of them are arranged as in Figure 5: but for
these two cases the assertion of Lemma 4 is proved.

B. Suppose now that op contains at least one point. We prove that there then
exists a finite colony that does not die out.

LemMMaA 5. Suppose that an infinite colony K fills (at fime ¢ a half-plane T1
having at least one point in common with the set op. Then the colony PK contains
the node 0.

ProOF. Assume that PK does not contain . Then there &= a zero at O at
time £4-1, that is, at time ¢ some zero subset of U was entirelv filled by zeros. Hence,
this zero subset did not have any points in common with II, thar is. it belonged
to the complement of II. But the complement of IT is a convex set. Therefore, the
convex hull of this zero subset was also entirely contained in the complement of IL.
Hence (see Lemma 1), op was entirely contained in the complement of IT. which
contradiets our assumption.

COROLLARY. Suppose that an infinite colony K fills o half-plane I having at
least one point in commeon with the set A+ op, where A is a node. Then the colony
PK contains A.

The following statement is fundamental for the case B.

LEMMA 6. Suppose that the point £ belongs to op (lik= the point (1.1} in
Ezample 4). Then there is a convex polygon M such that if a colony K flls M,
then the colony PK fills the polygon M —£ ( Figure 11), the colony PZK fills M—2¢,
and so on; in general, the colony P"K obtained from K in n units of time fills the
polygon M — nf obtained from M by a shift by the vector —n€.! Furthermore, all
the eolonies K, PK,P2K, ... are nonempiy.

Bt

1We are asserting that all the nodes belonging to M — nf are occupied by units, but possibly
not only those nodes: it is not excluded that there are units also outside this polygon.
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A particular consequence of this lemma is that if O belongs to op, then there
is a “stable” colony that does not lose a single one of its nodes in the process of
evolution (but that possibly acquires new nodes).

Proor. Note that we are not claiming to have found the smallest colony that
does not die out (as we did for Examples 1 and 4). It suffices for us to find any one
such colony. Therefore, from the start we assume that M is very large. How large
we say below,

It suffices to prove the assertion of the lemma for n = 1 alone; for larger n this
will follow by induction. Accordingly. we assume that the colony K that exists at
time ¢ fills M, and we prove that the colony PK fills the polygon M — £.

Suppose that some node A belongs to M — £ (sce Figure 13). We show that A
is in PK (this is written as A € PA). Obviously, A+ £ € M. Denote by R the
largest of the distances from & to the nodes ui,...,u,. Then the disk with center
A + £ and radius R covers all the nodes A + wy,.... 4 + u,. Choose M so large
that every disk of radius R centered inside M does not cover points of the sides
of M at all, or covers points onlv of one side of M, or covers points only of two
adjacent sides but no more. (Figure 12 shows a disk covering points of three sides
of a triangle—this must not be!} Let us consider the three cases.
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a) The disk centered at A + £ with radins B is entirely inside M (Figure 13).
Then all the nodes 4 + w; are inside M. that is. they are all in & hence, the node
A belongs to PR

b) The disk of radius R centered at A 4 £ covers points of only one of the sides
of M (as in Figure 14). We draw the line [ across this side. If the colony K filled the
whole half-plane IT bounded by ! (in Figure 14 this half-plane is shaded), then the
colony PR would contain the node 4 by the corollary to Lemma 5 (the half-plane
IT contains the point A -+ £, and hence intersects the set A + op). But the colony
PHK will contain A also when K fills only M, because the state of A at time £ + 1
depends only on the states of the nodes A + w; at time #, and these nodes do not
belong to the difference between IT and M.

) The disk of radius R with center A+ £ covers points of two adjacent sides of
M (Figure 15). We want to show that there is a unit at the node A at time £ + 1
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if at time ¢ there are units at those points A + uy... ., A+ u, in the intersection

of M with the disk. We prove that this actually holds even if there are units in a
smaller area: the intersection of the same disk with the polygon M’ obtained from
M by a shift under which the common vertex of the two adjacent sides of M partly
covered by the disk goes to the point A + £ (Figure 15). To this end we need to
impose on M one more. now the last, condition.

Let us draw lines through the point £ and each of the nodes ., . ... u, different
from £ (if all the u; are different from £, then there are r lines; if one of them
coincides with £, then there are r — 1 lines). We require that for cach of these (r
or r — 1) lines there be two sides of M parallel to it. Then each line parallel to the
line through £ and some one of the points wu,.... i, different from £ either does
not intersect M at all or has a whole segment in common with M. For example,
the square in Figure 6 (Example 4) satisfies this condition.

We now draw through the point A + £ a line [ having only A + £ in common
with the polygon M’ (gee Figure 15). If the colony filled the whole half-plane IT
bounded by ! (it is shaded in Figure 15), then by the corollary to Lemma 5, there
would be a unit at A at time ¢+ 1. But the colony PK will contain the node A also
when K fills only M, since there are no nodes A + u; lving in IT but outside M’.
We prove this. Suppose that some node A + w; is in the difference between IT and
M’. But at the same time it is in the disk of radius R centered at A+£. Hence, the
node A + w; lies in one of the two shaded sectors. Then the line passing through
A+ u; and A + £ has only one point in common with M’, which is impossible in
view of the choice of M. This proves Lemma G

C. Helly’s theorem. Thus. we have investigated the following two cases:

A) the intersection of some three zero half-planes is empty (Lemma 4);

B) the intersection of all zero half-planes is nonempty (Lemma 6).

It turns out that only these cases are possible. This follows from the well-known
theorem of Helly.

This is a very important and beautiful theorem, with many different formula-
tions, proofs, and applications. We need it only in the following variant.
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HELLY’S THEOREM. Suppose that there are n > 4 conver seis in the plane,
each three of which have a common point. Then all these n sefs have a common

point.

Let us apply this to our case. By the corollary to Lemma 1. the set op is the
intersection of finitely many half-planes. Suppose that the case B does not hold:
op is empty. Then using Helly's theorem and arguing by contradiction. we get that
the intersection of some three zero half-planes is empty: but this is the case A. This
proves the survival theorem.



