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I. Setup: the Euler equations
M ⊂ Rn – the flow domain filled with ideal
incompressible fluid;
u(x, t) – velocity field; p(x, t) – pressure.

Euler equations:

∂u

∂t
+ (u,∇)u+∇p = 0;

∇ · u = 0;

un|∂M = 0.

Initial conditions:

u(x, t)|
t=0

= u
0
(x).

Theorem (Lichtenstein, Giunter, Wolibner, Kato, Yudovich, . . . )
(i) If u

0
∈ C1+α, then there exists unique solution u(x, t) ∈ C1+α for |t| < T , where T

may depend on u
0
;

(ii) If n = 2, T =∞.

Question: If n = 2, what happens with the flow u(x, t) as t→∞?
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II. Inverse cascade: 2-d flow
at different moments of time

Figure 1: The velocity field of a 2-d flow at 4 consecutive moments; the scale of the flow is growing

How to explain this picture?
Is it possible to deduce this phenomenon from the Euler equations?
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III. Vorticity equation

ω = curl u

For any ω(x) ∃! u = curl−1(ω), such that
ω = curl u, ∇ · u = 0, un|∂M = 0.

Vorticity transport equation:

∂ω

∂t
+ (u,∇)ω = 0;

Hence,

ω(x, t) = ω(g−1
t

(x), 0),

where g
t

: M →M is the flow map.

Vorticity ω is transported by the flow, distorted and, generally, irreversibly mixed.
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IV. Mixing operators in L2(M)
(bistochastic operators, polimorphisms (Vershik)).

Kϕ(x) =

∫

M

K(x, y)ϕ(y)dy,

where the kernel K(x, y) satisfies the following conditions:

(1) K(x, y) ≥ 0;

(2)

∫

M

K(x, y)dx ≡ 1;

(3)

∫

M

K(x, y)dy ≡ 1.

Examples: (1) K(x, y) = δ(y − g−1(x), where g : M → M is a volume preserving
diffeomorphism;
(2) K(x, y) ≡ 1.

K = {K} is a convex, weakly compact semigroup of contractions in L2(M). Hence, it
defines in L2(M) a partial order.
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V s = {u ∈ Hs(m)|∇ · u = 0, un|∂M = 0}.
Definition. (1) If ϕ

1
, ϕ

2
∈ L2, then we say that ϕ

1
≺ ϕ

2
, if there exists a mixing

operator K ∈ K such that ϕ
1

= Kϕ
2
;

(2) If u
1
, u

2
∈ V 1, we say that u

1
≺ u

2
, if curl u

1
≺ curl u

2
.

For any u
0
∈ V 1 define

Ωu
0

=
{
u ∈ V 1

∣∣∣ u ≺ u
0
, ||u||L2 = ||u

0
||L2

}
.

If u(t) is a solution of the Euler equations,
u(0) = u

0
, then {u(t)} ⊂ Ωu

0
(closure in V 0).

Definition. Minimal elements of Ωu
0

(w.r.t. the order relation ≺) are called minimal
flows.

Minimal flows exist by the Zorn Lemma.
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Theorem. (1) Every minimal flow w(x) is a steady and stable solution of the Euler
equations.

(2) If ψ(x) is the stream function for w, i.e. w
1

= ∂ψ/∂x
2
, w

2
= −∂ψ/∂x

1
, then

curl w = ∆ψ = F (ψ)

for some monotone function F .

Note. It is not known whether any steady and stable in V 1 flow is minimal. Hence the
following hypotheses.

Conjecture 1. The set S ⊂ V 1 of steady stable flows is attracting for typical solutions
u(t) of (E).

Conjecture 2. The set M ⊂ V 1 of minimal flows is attracting for typical solutions
u(t) of (E).

Conjecture 3. For a typical solution u(t) ∈ V 1 there exists w ∈M s.t. ||u(t)−w||L2 →
0 as t→∞.
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V. Existence of the inverse cascade
solution of the Euler equations

We don’t know even a single example of a classical solution of (E) behaving like the
flow on the picture. But we can construct a weak solution of (E) having the inverse
cascade property in the strongest possible sense: the initial scale of the flow is zero.

Definition. Vector field u(x, t) ∈ L2 is called a weak solution of (E), if for any
test-field v(x, t) ∈ C∞

0
, ∇ · v = 0, and any scalar test-function ϕ(x, t) ∈ C∞

0
,

∫ ∫ [
(u,

∂v

∂t
+ (u,∇v · u)

]
dxdt = 0;

∫ ∫
(u,∇xϕ)dxdt = 0.

Theorem. There exists a weak solution u(x, t) ∈ L2 of (E) such that u(x, t) ⇀ 0 as
t→ 0 weakly in L2, while ||u(·, t)||L2 = const > 0.
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VI. 2-dimensional fluid
as a dynamical system

In fact, there are two dynamical systems: a system in the space V s, defined by the
Euler equations, and the dynamical system in the space D of volume-preserving diffeo-
morphisms of M , defined by the vorticity equations

ġ
t
(x) = u(g

t
(x));

curl u(y) = ω(g−1
t

(y));

ω̇ = 0.

We consider the last system.

Liapunov function. Consider a dynamical system in some phase space X, defined by
the equation dx

dt = f(x), x ∈ X.

Definition. A function λ(x), defined and continuous everywhere in X, is called a
Liapunov function, if it is growing along any trajectory, i.e. dλ

dt ≥ 0, and dλ
dt > 0 ”almost

everywhere” in X.
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Examples. (1) There exist no Liapunov function for the harmonic oscillator.
(2) For a free particle in R3 there exists a Liapunov function λ(x, v) = (x, v), because
dλ
dt = (v, v) ≥ 0.

Existence of a Liapunov function for a conservative mechanical system means that this
system cannot be in the statistical equilibrium.

Theorem. There exists a Liapunov function λ(ω, g) for the 2-dimensional ideal
incompressible fluid described by the vorticity equations.
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Construction of the Liapunov function. If M = T2, then

λ(ω, g) = ϕ
([

(curl T
g′−1

(g − Id), ω)ml

])
,

where
Tfh – paraproduct;
(·, ·)ml – microglobal scalar product (measure on T ∗M);
[ν] – germ of the measure ν(dxdξ) on T ∗M at infinity;
ϕ(·) – linear functional on germs of measures at infinity, positive on positive measures.

This Liapunov function describes the monotone growth of weak singularities of the flow
map g

t
. This is a rudimentary form of the mixing of vorticity.

Problem: Does there exist a more ”physical” Liapunov function for the fluid?
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VII. The entropy problem.

The picture of the inverse cascade in 2-d fluid reminds a machine containing countable
number of wheels, connected with gears, chains, springs, etc., without any friction, having
the following property. If at t = 0 any finite number of wheels is set into motion, then
all other wheels begin to move, but eventually, as t → ∞, all the energy accumulates
in the first few wheels, while all other parts come to rest. (Such Machine can be really
”constructed”; the difficult part is to prove that it works as intended.)
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Consider an ensemble of initial velocities of the wheels defined by the measure µ
0
(dv

1
dv

2
. . .),

where v
i

is the rotation speed of the i-th wheel. Let H0 be its entropy. The entropy
of the final distribution H∞ is clearly less than H0, because the final distribution is
concentrated on a small set. Where does the entropy go?

Answer: There is the second set of variables, the angles, and the entropy of velocities
is transformed into the entropy of angles (the configurational entropy).
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It’d be interesting to imagine the above Machine in more detail. Here is the sketch of
a possible design of the Machine. We use elastic balls of different size instead of wheels.
In fact, the Machine is a sequence of heat engines Hn; for any engine Hn, the balls in the
previous engine Hn−1 play the role of a load, while the next engine Hn+1 is a cooler.
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Another system with the velocity entropy transforming into the configuration entropy
is the ideal gas of noninteracting particles expanding freely into the vacuum. As a
consequence its temperature decreases:
Again, the volume in the configuration space, occupied by the system, grows, while the
volume in the velocity space decreases.
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For the 2-d fluid, the configuration space is the group D(M) of area-preserving diffeo-
morphisms of M . This is an infinite-dimensional Riemannian manifold: If g

t
, 0 ≤ t ≤ 1

is a curve in D(M), then its length

L{g
t
}1

0
=

1∫

0

(∫

M

(ġ
t
(x), ġ

t
(x))dx

)1/2

dt;

For any g, h ∈ D(M), the distance

dist(g, h) = inf
g0=g

g
1
=h

L{g
t
}1

0
;

Diameter

diam(D(M)) = sup
g,h∈D(M)

dist(g, h).

Theorem (Eliashberg-Ratiu). If dimM = 2, then diam(D(M)) =∞.
So, there is enough space in D(M) to absorb any amount of entropy. However, how it is
done, remains a mystery.
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VIII. Conclusions

1. 2-dimensional ideal incompressible fluid is a system extremely far from equilibrium.

2. The basic property of its motion is the irreversible transformation of the velocity
entropy into the configuration entropy, which is the feature of different strongly nonequi-
librium systems.

3. The inverse cascade is a visible manifestation of the above transformation.
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