A Useful Renormalization Argument
MAURY BRAMSON AND LAWRENCE GRAY!

We define a collection of ‘generic’ population models for which we prove a
survival criterion by using a renormalization argument. These models can be
compared with other more familiar models, leading to simple proofs of various
survival results. In particular, we prove a generalization of Toom’s Theorem
concerning survival in multidimensional probabilistic cellular automata. Our
technique should also be applicable to a variety of other discrete and continuous

time models.

0. Introduction. Consider the discrete time version of the basic
asymmetric one-dimensional contact process. In this model, one imagines
that a population of particles is located at the sites (points) of the integer
lattice Z, with at most one particle per site. A site containing a particle
is called occupied, and a site with no particles is called vacant. During
each discrete time step, the population changes according to a two step
procedure: first, a new particle is placed at each vacant site x for which
the neighboring site x + 1 is occupied; second, occupied sites (including
newly occupied sites) are vacated with probability ¢, independently of one
another. Thus, the probability that x is occupied at time ¢, given the past,
is 1—eif x or z+1 is occupied at time t—1, and 0 otherwise. The parameter
€ is called the death rate. This describes a simple model for a population
of individuals with geometrically distributed lifetimes and with births oc-
curring only at vacant sites immediately to the left of (in ‘contact’ with)
an occupied site. (The name ‘contact process’ was first applied to a contin-
uous time version of this model, with the population under consideration
being a collection of diseased cells. For simplicity, we will restrict this intro-
ductory discussion mostly to discrete time models. The basic asymmetric
one-dimensional discrete time contact process is equivalent to oriented site
percolation on Z2.)

If the death rate £ is close to 1, it is easy to show that even if all the
sites are occupied at time 0, the population will die out, in the sense that
the probability any given site is occupied will converge to 0 as ¢t — co. On
the other hand, it was shown by Stavskaya and Pyatetskii-Shapiro [12] that
if € > 0 is sufficiently small, the population does not die out if it starts with
all sites occupied. Instead, there is a non-trivial equilibrium for the process
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in which the probability that a given site is occupied is strictly positive.
We describe this situation by saying that the contact process survives for
all sufficiently small death rates.

A large proportion of the work done in the field of interacting par-
ticle systems has been concerned with the question of whether a given
parametrized family of processes survives at certain parameter values. It
is interesting that between 1968 and 1988, with the notable exception of
the work of Holley and Liggett [10] concerning the one-dimensional contact
process in continuous time, virtually all work concerned with showing sur-
vival relied on a common technique, the so-called contour method. This
method was first introduced in a statistical mechanics setting by Peierls
[11], much later developed to a very high level for discrete time systems by
Toom [13], adapted to the continuous time setting for the contact process
by Harris [9], and then developed for more general use in continuous time
by Gray and Griffeath [8], Bramson and Gray [4], and Durrett and Gray
[5].

In the work of Durrett and Griffeath [6], another idea borrowed from
statistical mechanics (and percolation theory) made its way into the field of
interacting particle systems, namely the block rescaling method. Durrett
and Griffeath used this technique to get more detailed information about
the survival probabilities of the contact process.

Block rescaling is a powerful tool for examining the survival of a large
class of processes. Many processes can be compared with the contact pro-
cess by using this method, thus allowing a relationship to be established
between the survival of the contact process and the survival of these other
processes. This technique was first applied in Bramson [1], Bramson and
Durrett [2], and Bramson, Durrett, and Swindle [3]. In particular, this
procedure allows one to prove survival for interesting models that were too
complicated to yield to contour methods.

In the rescaling procedure used in [1], [2], and [3], the discrete time
contact process (or at least a close relative) plays a special role. The point
is that the contact process is a relatively simple process whose behavior is
fairly well understood, and it is possible to find transformations for many
other processes that allow them to be compared with the contact process.
However, not every process that survives can be compared in this fashion
with the contact process. An example is the discrete time process known as
Toom’s model. We describe one version of this model here. It is similar
to the discrete time contact process, with two important differences. The
first difference is that it is a two-dimensional model, that is, the sites are
the points of the two-dimensional integer lattice Z2. Again, there is a two
stage procedure for changing the state of the system from one time to the
next. The second stage of this procedure is the same as before (vacate
occupied sites with probability ), but during the first stage, a new particle
appears at a vacant site (z,y) if and only if both of the two neighboring
sites (z + 1,y) and (z,y + 1) are occupied by particles. (As before, a
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given particle disappears with probability € during any time step.) Thus it
takes at least two particles, properly positioned, to produce a new particle
at a vacant site, which is why the continuous time version of this model
is sometimes said to have sexual reproduction, to distinguish it from the
contact process in which reproduction is asexual. There is no known way
to prove that Toom’s model survives by comparing it to a basic contact
process. Note that if we change the rule to ‘a vacant site is occupied if and
only if at least one of the two neighboring sites (z + 1,y) or (z,y + 1) is
occupied’, then it is easy to make a direct comparison to the asymmetric
contact process in one dimension to prove survival for small death rates.
This ‘at least one’ model is a two-dimensional contact process, with asexual
reproduction. Like the one-dimensional contact process, it can be used as
a comparison to many models, but not to Toom’s model. Toom [13] used
contour methods to prove survival for Toom’s model, and Durrett and Gray
[5] used contour methods to prove this and other interesting facts about the
continuous time version. There are several variations on Toom’s model in
which more symmetry exists, but they all behave similarly, and none of
them seems to be comparable in any useful way to basic contact processes.

One can imagine that Toom’s model could be used as a comparison pro-
cess in the same way as the basic contact process. That is, one should be
able to find other processes whose survival can be proved by transforming
them into Toom’s model, using some version of the block rescaling tech-
nique. There are still other processes which survive, but which can neither
be transformed into Toom’s model, nor into the basic contact process. In
fact many (but not all!) of the higher dimensional processes in the gen-
eral class studied by Toom appear to be not comparable with the one- or
two-dimensional models.

In this paper, we introduce a class of generic population models
which can be used as comparison processes via the block rescaling technique.
These models have two desirable properties. The first is that they form a
sufficiently general class so that many interesting attractive systems that
survive can be compared to them by an appropriate application of the
block rescaling technique. In particular, we will be able to use them to
give a much simpler proof of Toom’s Theorem [13] concerning the survival
of multidimensional discrete time systems. The second property of these
generic models is that they lend themselves to renormalization, which is to
say that when the block rescaling argument is applied to them in a natural
way, they are transformed into themselves. Once this is done, an induction
argument then leads to a necessary and sufficient criterion for the survival
of generic models. Thus, the block rescaling technique accomplishes two
purposes: it transforms models of interest into generic processes, and it
then tells us which generic processes survive. In previous work, this second
step has usually required a (sometimes quite difficult) contour argument.

Here is an overview of the rest of the paper. In Section 1 we construct
the generic population models and indicate briefly through some examples
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why they work well as comparison processes. It will be seen that they are
temporally and spatially continuous analogues of Toom’s general class of
probabilistic cellular automata. In Section 2, we carry out the renormal-
ization procedure and establish necessary and sufficient conditions for the
survival of generic processes (Theorem 1). In Section 3, we prove that a
general class of processes, which includes the class studied by Toom, can be
compared to generic processes (Theorem 2). As a consequence, we immedi-
ately get a generalization of Toom’s Theorem (the Corollary to Theorem 2).
This generalization does not seem to be amenable to contour methods. We
believe that the Corollary to Theorem 2 is only one of many potential ap-
plications of generic processes. For the reader who wants to first look at
the application discussed in Section 3, we remark that it is not necessary
to read the proof of Theorem 1 in Section 2 before reading Section 3.

1. Construction of generic population models. We will denote
the state at time ¢ of a generic process by A;. In general, A; will be a
collection of compact convex (d + 1)-sided polyhedral regions in R¢. Each
such region will correspond to some point (x, s) in space-time R x [0, 00),
and for t > s, we will denote the state of this region by D(x, s;t). The space-
time points (x, s) will be contained in some random subset of R x [0, 00).
We will be interested in the union

Ay = U D(x, s;t).

(x,s):s<t

When we make comparisons to population models like the contact process,
the set A; will correspond to the set of vacant sites, so we call A; the vacant
region. We will always take

Ao =10

as the initial state of our generic process. This corresponds to the state in
which everything is occupied.

Let us fix unit vectors ny, ... ,ng41 € R?. We call these vectors orien-
tation vectors. In general, each of the regions D(x, s;t) will be a convex
polyhedron whose faces are perpendicular to the vectors n;. Let us intro-
duce some notation that will be helpful in describing such sets. Let p be a
point and n a unit vector, both in R?, and define

H(n,p) = {x € R*: (x —p,n) > 0},

where ( , ) denotes the usual Euclidean inner product in R%. In more de-
scriptive terms, H(n, p) is one of the two closed half-spaces whose boundary
contains the point p and is perpendicular to the vector n. The vector n
points into the set H(n,p). In a generic process, all of the polyhedral
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regions will be of the form p + R(r), where p € R%, 7 > 0, and

d+1
R(r) = ﬂ H(n;, —rn;)
i=1
for some fixed unit vectors nj, ... ,ng11. Note that according to this defi-

nition, p 4+ R(r) contains the closed ball of radius r centered at p, and that
r is the distance from p to each of the faces of p + R(r). We call p the
base and r the size of p + R(r). The following proposition collects some
elementary facts about regions of the form p + R(r).

Proposition 1. If the set

d+1
R= () H(n,pi)
i=1
is nonempty, then it is bounded if and only if ny,... ,ngy1 span R? and
there exist strictly positive scalars ai, ... ,aqy1 such that

aing + -+ agyingyy = 0,

where 0 is the origin in R%. In this case, there exists a unique real number
r > 0 and a unique vector p such that R = p+ R(r), where R(r) is defined
above. The quantity r and the vector p are linear functions of the vector

y = ((P1,m1), .-, (Pa+1,Nay1))-

Proof. Without loss of generality, assume that R contains the origin.
Under this assumption, the convexity of R implies that R is unbounded if
and only if there exists a nonzero vector x such that for all a > 0,

(ax—psyn;) >0 for i=1,...,d+ 1.

Since R contains the origin, the quantities {(—p;, n;) are all nonnegative, so
R is unbounded if and only if there exists a nonzero vector x such that for
alla >0,

(ax,n;) >0 for i=1,...,d+1.

It is now an easy matter to finish the proof of the first part of the proposi-
tion.

For the second part of the proposition, consider the following system
of d equations:

(P — Pa+1,n441) =(P—pi,n;) i=1,...,d.
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The conditions on the vectors n; imply that any d of them are linearly
independent. Hence this system has a unique solution p. This solution lies
equidistant from the hyperplanes that bound the half-spaces that determine
R. Let r be the common value of the quantities {p — p;,n;). Note that
both p and r are linear functions of the vector y. If R is nonempty, it is
straightforward to check that R = p + R(r) as claimed. (If R is empty, it
turns out that r < 0.) [ |

From now on, we assume that the vectors n; satisfy the conditions of
Proposition 1. Note that the intersection of any collection of n regions of
the form p + R(r) can be written as an intersection of half-spaces that
are oriented by the vectors n;. By grouping the half-spaces according to
orientation, such an intersection may be rewritten as the intersection of
d + 1 half-spaces, each with a different orientation n;. Thus Proposition 1
has the following consequence.

Corollary. Let ry,...,r, be nonnegative numbers and let py,... ,pn
be vectors in R%. If the set

R=([p; + R(r))]
j=1

is nonempty, then there is exists a unique number r > 0 and a unique vector
p such that R = p + R(r).

We wish to describe the dynamics of a generic process. We will give
three different ways in which new polyhedral regions enter the collection
A, namely by death, overlap, and collision, and we will say how each type
of polyhedral region evolves. Afterwards we will explain why there exists a
process that corresponds to our description.

Deaths. In order to describe the first way in which new polyhedral
regions enter the collection A, we need to define certain point processes.
Fix a parameter € > 0, called the death rate, and a probability density u
on the positive integers, called the size distribution. For k > 1, let P}, be
independent Poisson point processes in R? x [0, 00) with intensity measure
equal to eu(k)\, where X is Lebesgue measure on R? x [0,00). In other
words, the P,’s are random subsets of R? x [0, 00) such that the random
variables

t(ANP), A Borel,

satisfy two properties: (i) #(4; N Py), i =1,...,n,k =1,2,..., are inde-
pendent if the sets A; are pairwise disjoint; and (ii) §(A N Py) is a Poisson
random variable with mean eu(k)A(A). (Here and throughout the paper,
we use #S to denote the cardinality of a set S.)

We combine the sets Py, into a point process

o- U
k=1
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Since the Pj’s are independent, P is itself a Poisson point process with
intensity measure e\. We will label a typical point in P by (x,s), where
x € R? and s > 0. For (x,5) € Py, let

A(x,s) = k.

The quantities A(x,s), (x,s) € P, are independent and identically dis-
tributed random variables, with probability density p. For the main part
of our work, we will often assume that the size distribution p satisfies the
following condition:

(1-1) 36 > 0: sup [exp(6k) u(k)] < oco.
k

It is possible to get by with less, but the extra work required does not seem
to be worth it.

For each point (x,s) € P, we say that a death occurs at (x,s). If a
death occurs at (x,s), a new region is added to the collection A,. It is
defined by

D(x,s;s) = x + R(A(x, s)).

We call any region produced in this way a death region, and say that it
arises due to the death at (x,s). The evolution of a death region after time
s is determined by fixed real numbers aq,... ,aq+1, called occupation
rates. For each (x,5) € P and t > s, the corresponding death region
D(x,s;t) at time ¢ is given by

d+1
D(x,s;t) = [ H(ni,x + ((t — )i — A(x, 5))ny).

i=1

Thus, D(x,s;t) starts at time s as the set x + R(A(x,s)), and as time
progresses, its i face moves inward at rate a; (if a; is negative, the move-
ment is actually outward). To picture this, the reader might want to think
about the 2-dimensional case, in which each of the regions is a triangle with
moving edges. Also, it is helpful to think about the case in which all of the
a;’s are all equal to some positive number «, for which it is easy to see that
the region D(x,s;t) vanishes after time t = s + (A(x, 5)/a).
We now define a process

Ny = U D(x, s;t).
(x,s)€P:s<t

We call N, the noninteractive region at time ¢. It is merely the union
of all the death regions that exist at time ¢ and does not involve any of
the other two types of regions yet to be defined. When we complete our
construction, it will be apparent that IV; is a subset of the vacant region A;.
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Before going on to describe the other two types of regions, we prove a result
concerning the behavior of N;. This result implies the ‘easy half’ of our
main theorem, Theorem 1 in Section 2. Consider the following condition
on the orientation vectors n; and occupation rates «;:

Generic eroder condition. There exists a time t > 0 such that

d+1

() H i, (cit — 1)n;) = 0.
=1

Note that if all of the «;’s are positive, the generic eroder condition is
satisfied, whereas it fails if they are all less than or equal to 0. Other cases
depend on the orientation vectors. The following result says that if the
generic eroder condition fails, then the noninteractive vacant region ‘takes
over’.

Proposition 2. If the generic eroder condition does not hold, then for
alle > 0,
Py e Ny) > 1ast — oo,

uniformly in y € R%.
Proof. The proof is based on the following claim:

CrLAamM. If the eroder condition does not hold, then there exists a
nonzero vector v € R? such that for all (x,s) in P and ¢ > s,

x + Bi((t — s)v) C D(x,s;t),

where D(x, s;t) is the death region corresponding to (x,s), and where for
any z € R% and § > 0, B;(z) is the closed ball of radius & centered at y.

Let us show how to finish the proof of the proposition by applying the
claim. Fix x € R? and ¢t > 0. Note that the condition y € x+ By ((t—s))v)
is equivalent to the condition (x,s) € Bi(y — (t — s)v) x {s}. It follows
from the claim and our construction of the set N; that y € Ny if

PO |UBi(y - (t - 9)v) x {s})| #0.

s<t

The cardinality of the set on the left side of the above expression is a Poisson
random variable with mean etA(B1(0)). Since this quantity goes to oo as
t — 00, the proposition now follows.

It remains to prove the claim. Fix (x,s) € P. By Proposition 1, for
all t > 0 such that D(x,s;t) is nonempty, there exists a point p(t) and a
nonnegative real number r(t) such that

D(x,s;t) = p(t) + R(r(t)).
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The hyperplanes determining D(x, s; t) move at constant linear rates which
do not depend on (x,s) or A(x,s), so it also follows from the last part of
Proposition 1 that p(t) and r(t) are also changing linearly: p(t) = x+ (t —
s)v and r(t) = —a(t — s) + A(x, s), for some vector v and real constant «,
neither of which depends on (x, s) or A(x,s). That is

D(x,s;t) =x+ (t — s)v + R(—a(t — s5) + A(x, s))

for all ¢ > 0 such that D(x, s;t) is nonempty. In particular, this statement
holds for sufficiently small £ > 0. We may apply this same argument to the

set
d+1

() H(n, (ait — 1)n;)

i=1
to conclude that it equals tv+ R(—at+ 1) for sufficiently small ¢ > 0. From
this we see that « is nonpositive, since the eroder condition fails. It follows
that D(x, s;t) is nonempty for all ¢ > 0, and that

x + (t — s)v + R(A(x,s)) C D(x, s;t).

Since A(x,s) > 1, B1(0) C R(A(x,s)) and the claim follows. [ |

The generic eroder condition is the continuum analogue of the eroder
condition of Toom [13], and the proof just given is essentially the same
as Toom’s proof of the corresponding fact for discrete time lattice models
(except for the part concerning the claim, which is a technical feature that
becomes necessary in our continuous setting). In Section 3 we present a
description of Toom’s results. We now return to the construction of generic
processes.

QOwverlap interactions. Whenever a new polyhedral region appears as the
result of a death, it may be that it overlaps one or more already existing
polyhedral regions. These already existing polyhedral regions may be any of
the three types of regions that we are in the process of defining. When such
an overlap occurs, further new regions are produced in a manner that we
now describe. Suppose that there is a death at a space-time point (y1,u1),
and let D(y1,u1;u1) be the corresponding new region. Write s = uy, and
let D(y2,u2;8),... ,D(¥yn,un;s) be any collection of regions in A, such
that up < sfor k=2,...,n, and

n

() D> uk; s) # 0.

k=1

By the Corollary to Proposition 1, this set may be written as x + R(r)
for some r > 0 and x € R%. We assume that the collection of regions
D(y,ur; s) is the maximal collection satisfying the above description with
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intersection equal to x+R(r) (there will be only one such maximal collection
for each different set x + R(r) formed in this way). We write D(x,s;s) =
x + R(r), and add this new region to our collection A;. We say that it
appears due to an overlap interaction. Any region that appears due to
an overlap interaction is called an overlap region.

Note that if the death region D(y1,u1;u1) overlaps m already existing
regions when it appears, then as many as 2™ — 1 new overlap regions may
be produced as a result. We have avoided one possible ambiguity that may
appear in the labelling of these regions (when two different sub-collections of
these m regions have the same intersection with D(y1,u1;u1)) by requiring
that the collections of regions D(yy,ur;s) be maximal, as described in the
preceding paragraph. There is another possible ambiguity that can arise
when two different overlap regions are produced with the same base point.
This second possibility has probability zero (see the discussion of existence
given later in this section). The possibility that m = oo is not excluded. It
can be shown that m is finite almost surely if (1-1) is satisfied, but as we
don’t really need this fact, we omit the proof.

The evolution of an overlap region is determined by the occupation
rates a; and a fixed quantity 8 < 0 called the interaction rate (as we will
see, specifying that 8 be negative means that the corresponding movement
of faces will be outward). We assume that

B < min q;.
K2

For (x,s) and (yg,ur) as in the preceding paragraph, and i = 1,... ,d+1,
define

Hi(yk,ur;t) =
the half-space corresponding to the i" face of D(yg, ux;t).

Let
n
T; = inf {t >s:H(n;,x+ (6t —r)n;) D U Hi(yk,uk;t)} ,
k=1

and define a function 7;(x, s;t) which is continuous and piecewise linear in
t > s and determined by the conditions

B8 t<T;

a; t>T1;.

dr;
(1-2) vi(x,8;8) =0 and %(x,s;t) = {
We allow the possibility that 7; = 0o, which can happen when «; = 8. The
overlap region D(x, s;t) is now defined as

d+1
D(X,S;t) = ﬂ H(l’li,X + (’)/z'(X,S;t) - T)ni)

i=1
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for all ¢t > s. In descriptive terms, this region starts at time s as x + R(r),
after which its 3" face moves outward at speed —f until time 7;, at which
time it has caught all of the corresponding faces of the regions D(yy, ug;t).
The time 7; is defined in such a way that at time 7;, the i*? face of each of
the regions D(yg,uy;7;) is moving at rate a;. From time 7; on, the i*" face
of D(x,s;t) also moves at rate a;.

Collision interactions. The third way in which a new region appears is
similar to the second. Fix s and suppose that D(y1,u1;$),--. , D(¥Yn,Un;s)
are regions in the collection A such that up, < s for k=1,... ,n and

n

ﬂD(yk,uk;t)z(D for t<s.
k=1

(In this formula and elsewhere, we interpret D(yy,ur;t) as the empty set
for t < ug.) Thus we have n regions that existed and had empty intersection
prior to time s. Suppose that their intersection is not empty at time s. By
the Corollary to Proposition 1, this intersection is of the form x + R(r)
for some x € R? and r > 0. All regions change continuously in our time
evolution, so the intersection at time s cannot contain interior points of any
of the regions. It follows that r = 0, so the intersection equals x + R(0) =
{x}. We say that a collision occurs at (x, s). We assume that the collection
of regions D(y,ux; s),k = 1,... ,n, is maximal in the sense that it contains
all regions that existed prior to s and have x as a boundary point. As with
overlap interactions, we allow the possibility that n = co. Under condition
(1-1), this occurs with probability 0.

We start a new region D(x,s;s) = {x} at time s, and say that this
region arises due to a collision interaction. For ¢ > s, this new region is

of the form
d+1

D(x,s;t) = ﬂ H(n;,x + vi(x, s;t)n;),
i=1
where 7;(x, s;t) is defined as in (1-2).
Summary of the description of generic processes. The state of a generic

process A is a collection of regions D(x, s;t) of three types. For all three
types of regions, we have

d+1
D(X,S;t) = n Hi(X,S;t),
=1
where
(1'3) H,'(X, S t) = H(n’iax + (71'(7(; S t) - T(X, S))l’lz’)

for certain continuous piecewise linear functions 7;(x, s; -) and nonnegative
numbers r(x, s). If the region arises due to a death, r(x, s) = A(x, s). In the
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case of a collision, r(x,s) = 0. For overlap interactions, 7(x, s) is the ‘size’
of the overlap. For regions arising due to a death, v;(x,s;t) = a;(t — s). In
the two other cases, condition (1-2) says that ~;(x, s;-) starts at 0 at time
t = s, then has slope § until some time 7;, after which the slope is «;. The
vacant region A; is the union of all of the regions in .4;. As such, the vacant
region involves regions of all three types, as opposed to the noninteractive
region N; which only involves death regions. It is clear that

Nt C At.

Our construction has been designed to ensure the following:

Proposition 3. Suppose that A; is a generic process defined in terms
of orientation vectors n;, occupation rates «;, interaction rate (3, death rate
€, and size distribution p satisfying (1-1). Let D(y1,u1;t),... ,D(yn, un;t)
be a collection of regions in A; with nonempty intersection, and define

s= inf{u: ﬁ D(yg,ur;u) # (Z)} .

k=1

Then there exists a region D(x,s;u),u > s, with (X, s) possibly being one
of the points (y,u), such that

n
(1-4) ﬂ D(yp,ur;u) C D(x,s;u) for all u € [s,t],
k=1

and such that for alli =1,... ,d+ 1, either

(1-5) %(x,s;u) =0 forall ué€E ] s,t),

or

(1-6) U Hiyr,ur; t) C Hi(x, ;).
k=1

This proposition says that an overlap or collision region grows at speed
—f in the direction —n; until the half-space that determines the region in
that direction contains all of the corresponding half-spaces of the regions
that initiated the overlap or collision. The proposition is a straightforward
consequence of our description of the appearance and evolution in time
of the three types of regions. Note particularly the role played by the
relationships given in (1-2) and (1-3). In fact, these relationships were
carefully created with Proposition 3 in mind. More simplistic approaches
which might also lead to a result like Proposition 3, such as setting § = —c0
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so that (1-6) is satisfied already at time ¢ = s, run into trouble later on
when we want to prove survival under the generic eroder condition.

The collection of regions D(y, ug;u) in the statement of Proposition 3
need not be the same as the maximal collection that was used in the defini-
tion of overlap and collision regions. However, if D(y,u;u) is an overlap or
collision region, and if the collection of regions D(yy, ug;u) is the maximal
collection that was used in the definition of D(y,u;u), then (1-2) ensures
that

n

(1-7) Hi(x,5t) C | Hi(y, ue; t)
k=1
foralli =1,...,d+1and ¢ > s. Thus, for this special case, we may replace

‘C’ by ‘=" in (1-6).

Existence. It may not be immediately obvious that there exists a process
A; corresponding to the prescription given above. The main problem is
that it is conceivable that inconsistencies arise due to the fact that we are
working in an unbounded space. We also have the minor problem that our
notation does not distinguish between two different regions that arise at
the same time s and have the same initial base x. One way to overcome
these problems is by defining the process in terms of a finite volume limit.
More precisely, for each j, we construct a process in which we only allow
deaths to occur at points (x,s) € P such that ||x|| < j, according to the
prescription given above. Since Poisson point processes are almost surely
finite on bounded sets, we do not need to worry about infinitely many
regions arising before any finite time. Thus, a straightforward inductive
procedure can be used to define the process up to time ¢ for any ¢ € [0, 00)
and any j > 0. Our only concern is that more than one region might arise
at a point (x, s) in one of these processes. This could happen if two deaths
occur at the same point in space-time, or if a death occurs at the same
point (x,s) in space-time where a collision also occurs, or if two different
overlap regions arise at time s with the same base x. The first possibility
has probability zero because the different Poisson point processes Py are
independent. The second possibility has probability zero because there are
only finitely many collision points up to any finite time. A little thought
reveals that for each fixed s, the set of points y; such that a death at
(¥1,5) can produce two different regions with the same base x is a finite
set. It follows that the third possibility also has probability zero. The proof
that these possibilities all have probability zero relies on the fact that the
probability that a Borel set B contains two or more points of the random
set P is O(A\(B)?).

We now take a limit as j — oco. The set of points (x,s) at which
deaths occur converges to P. Unfortunately, the set of points (x,s) at
which overlap and collision regions arise does not necessarily increase as
j — oo. Due to the maximality conditions imposed on the collections of
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regions D(y,ug; s) used in the definitions of overlap and collision regions,
a given point (x, s) may correspond to a region for one value of j but not
for some larger value of j. However, it can be shown by an elementary but
tedious proof (using the fact about Poisson point processes mentioned in
the last sentence of the preceding paragraph) that the probability is zero
that there exists a point (x,s) and integers j; < j» < js such that there
is an overlap region corresponding to (x,s) for j = j; and j = j3 but not
for j = j2. A similar fact can be proved for collision regions. Thus, the
set of points (x,s) at which overlap regions arise has a limit as j — oo,
as does the set of points at which collision regions arise. It is easy to see
that for those points (x,s) that lie in the limit sets, the corresponding
quantities ~; ;(x, s;t) form a decreasing sequence for each fixed i and ¢,
so the corresponding regions D;(x, s, (;t) form an increasing sequence for
fixed ¢. Therefore, the limits ~;(x, s;t) and D(x, s;t) exist for all ¢ > s. We
leave it to the reader to check that for these limits, conditions (1-2) and
(1-3) are satisfied. Existence follows.

It is natural to also ask about uniqueness. We are content that at least
one process exists that agrees with our prescription, since uniqueness is not
needed in our applications. A graphical proof of uniqueness similar to the
uniqueness proof in Gray [7] can be given under condition (1-1).

Note that in the construction, the randomness comes only from the
random sets Pj. Once these point processes are fixed, the remaining objects
(D(x, s;t), A, Ag, etc.) are determined. This observation allows us to make
certain comparisons. We state one such comparison here. It can be proved
by first considering the finite volume processes and then taking limits.

Proposition 4. Suppose that {P,} and {P;} are two collections of
Poisson point processes defined as above. Assume that they are defined
jointly on the same probability space, and that for each k, P, C P;,. Also
assume that we have two sets of occupation rates and interaction rates
such that a; > of, and 3 > 8'. Let A; and A} be the corresponding generic

processes, with vacant regions A; and A}. Then A, C Aj}.
We conclude this section with two examples.

Example 1. We consider the general one-dimensional model (d = 1).
In this case, polyhedral regions are intervals, so 4; is a collection of closed
intervals, and A; is their union. Note that in this one-dimensional setting,
overlap and collision regions are always contained in the union of the cor-
responding death regions. Thus, as far as the set A; is concerned, when
a collision or overlap occurs between two regions, we treat them as being
part of a single interval, ignoring the motions of the overlapping endpoints
and also ignoring the collision or overlap regions that are produced. The
remaining endpoints are the endpoints of the disjoint intervals whose union
is A;. The left endpoints of these intervals move inward at some rate oy
and their right endpoints move inward at rate a,.. Note that except when
a death causes an interval of A; to jump in size, the intervals of A; expand,
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shrink, or stay the same size, depending on whether a; + «,. is negative,
positive, or zero. The generic eroder condition is that a; + a, > 0. The
generic analogue to the asymmetric contact process has rates a; = 0 and
a, = 1.

Example 2. We give the parameters for the generic analogue of
Toom’s model. The orientation vectors are n; = (1,0),ny = (0,1), and
n; = —(v2,v2) /2, with corresponding occupation rates a; = a2 = 0 and
a3 = v/2/2. The interactive rate is 3 = —1. A typical death region is a
right triangle whose vertical and horizontal edges do not move, and whose
hypotenuse moves inward. The generic eroder condition is satisfied, since
such triangles vanish after one time unit. If one were to simulate Toom’s
model and its generic analogue on a computer, using the distance between
pixels as the unit of measurement, the two would look very similar. The
main difference would be that vacant area increases somewhat faster in the
generic model when the regions that arise from interactions are in their
‘B-growth stage’.

2. The renormalization argument and the main theorem. Let
A; be a generic process, defined as in the preceding section in terms of
occupation rates «;, interaction rate [, orientation vectors n;, size distri-
bution u, and death rate € > 0. We think of each of «;, 8, n;, and u as
being fixed, and ¢ as being a variable parameter. Our main result is

Theorem 1. If the generic eroder condition does not hold, then for all
e>0
t—00

uniformly in y € R®. If the generic eroder condition holds, and if in
addition the size distribution y satisfies (1-1), then

lim limsup P(y € 4;) =0
>

NO  t—o0

uniformly in y.

Proof. Since N; C A;, the first half of the theorem follows from Propo-
sition 2. In order to prove the second half of the theorem, we first simplify
matters somewhat. Let a and v be as in the proof of Proposition 2. We
change coordinates linearly according to the following transformation:

(x,t) = (x —tv, ).
Note that this transformation does not change the time variable, nor does it

change distances in the spatial variables. Once this change of coordinates
is made, the occupation rates a; are all changed into a. Of course, the
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interaction rate 3 is also changed, resulting in d+ 1 possibly different inter-
action rates. By Proposition 4, we may replace these different interaction
rates by their minimum, which will be some negative number. By changing
our time scale if necessary, we may assume that this new interaction rate
is less than or equal to —1. Since the eroder condition holds, a > 0 (before
and after the change in time scale). By applying Proposition 4 again, we
may assume that a < 1. For the remainder of the proof, we will assume
that these modifications have been made, namely, that o; = a € (0,1] and
B < —1. We also fix 6 € (0, 1] such that (1-1) holds, and let

C= sup [u(k) exp(0F)].

Here is an outline of the proof. We will first partition the points in P
into clusters defined in terms of the proximity of these points to one another.
We will prove that the clusters are finite almost surely. To each cluster of
cardinality 2 or greater, we will associated a point in space-time, and the
resulting set of points will be called P"). We will use the random set P
to define a new generic process Agl). This process is a renormalization
of A;. We will need to take care of some technical details concerning the
random set P(!) that underlies the construction of Agl) in order to know
that Agl) behaves in every essential way like a generic process. We then
continue inductively to define successive renormalizations A,ﬁz’,Af’), et
It is then shown that the vacant region A; of our original generic process
is contained in Ny U Agl), the union of the noninteractive region of the
original generic process and the vacant region of the renormalized generic
process. An inductive argument then allows us to obtain an upper bound
for the probability that a point y lies in A; in terms of upper bounds for
the probabilities that y lies in the union of the noninteractive regions of the
sequence of renormalized generic processes. This upper bound is shown to
converge to 0 as € N\ 0, uniformly in y and t.

Definition of clusters. First we need some notation. Recall that Bg(x)
is the closed ball in R? of radius d centered at x. Choose an integer M > 1
such that R(1) C Bp(0). (Note that R(r) C B (0) for all r > 0.)
When measuring distance between points in R? x [0, 00), we will use the
max-norm:

”(Xa 3) - (y;u)”max = max{ls - ula |SL'1 - ylla ey |$d - yd'}a
where x = (21,...,74) and y = (y1,...,¥4)- For (x,8) € R? x [0, 00), we
write
Q(d,x,8) =[z1— 6,21+ ) X+ X [£g— 0,24+ 6) X ([s — 8,5 + J) N [0,00)),
which is a cube with sides of length 2§, centered at (x,s), and truncated
at t = 0 if necessary. For (x,s) € P, define

<5M2|ﬂ(|lA(x,s)’ X, S)‘

S(x,s) = the interior of @)
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We think of S(x, s) as the cube of influence of the point (x, s). The quantity
5M?|B|A(x,s)/a is chosen for the proof of the relationship 4; C N; U
Agl). For now, the reader should note that since the size of a death region
D(x, s;t) shrinks at rate a and hence reaches 0 at time s + A(x,s)/a, the
quantity has been chosen large enough so that D(x,s;t) C S(x,s) for all
t > s. Let

S(x,s) = the component of U S(y,u) containing S(x,s)
(y,u)eP
and
C(x,s) =S(x,5)NP.
We call C(x, s) the cluster containing (x, s).
Finiteness of clusters. In order to show that the clusters are finite in

cardinality almost surely, we will mainly rely on two basic properties of
Poisson point processes which we now describe. The first is quite simple:

(2-1) P(#(BNP) >2) = O(\(B)?)
for Borel sets B. To state the second property, let Q1,... ,Q, be disjoint
cubes in R? x [0, 00). Then for all positive integers ki, ... , km,
(2-2) P (HQiNPy; #0} | < [lenk)N@;))-
j=1 j=1

The reason we mention these properties now is that later in the proof, we
will define clusters in terms of point processes that are not Poisson point
processes, but which do satisfy versions of (2-1) and (2-2). The reader
should take care to observe that these are the only special properties of
Poisson point processes used in the following argument.

Fix a cube Q@ C R? x [0,00). We wish to obtain an upper bound for
the probability that ) has nonempty intersection with some cluster with
infinitely many points. For each positive integer kg, define

Go(ko) = Q NPr, and Go = Fy = | ] Go(ko).

ko=1
Now proceed inductively. For positive integers ky, - .. , ky, let
Gn(ko,--. kn) = {(x,58) € P, \ Friu1 : S(x,s) N S(y,u) #0
for some (y,u) € Gp_1(ko,--- ,kn-1)}

Gn=|J Gulko,--- kn)
koyeer kn>1

F,=F,_1UG,.
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We may think of G, as the n'® generation of a family of particles with
multiple types. The particles are points (x,s) in P. The type of a particle
(x,s) is A(x,s). A sequence of points (x;,s;),7 =0,...,n, such that

(Xg,So) € G(ko), (xl,sl) (S G(ko,kl), ey (xn,sn) (S G(ko,.. . ,kn),
is called an ancestry of type (ko,..., k) if foreach j =0,... ,n—1,
S(xj,85) N S(xjr1,8541) # 0.

Every point in G, (kq, - - - , k,) is the last point of one or more ancestries of
type (k(]: s 7kn)

We will use (2-1) and (2-2) to obtain an upper bound for the probability
that G, (ko, - - - , k,) is nonempty, which will in turn give us an upper bound
for the probability that G, is nonempty and thus help us to analyze the
size of the clusters that intersect ). To this end, fix 6 > 0 and let

Q(67yi7ui)7 i= 1727 L)

be a partition of R? x [0,00) into disjoint cubes with sides of length 24.
For positive integers ko, ... ,kn, let I(ko,...,k,) be the collection of all
sequences (ig, . .. ,ip) of distinct positive integers such that

Q((S: Yioauio) N Q 7é @

and
||(yij 7uij) - (yij+17 uij+1)||max < 26 + 5M2|/8|(kj + kj+1)/a

for j = 0,...,n — 1. To understand this last expression, note that for
any two consecutive points (x;,s;) and (X;y1,5;41) of an ancestry of type
(ko, ..., kn), the max-norm distance ||(x;,5;) — (Xj+1, 8j+1)|lmax is at most
5M?2|B|(k; + kjt1)/c. Thus, for any ancestry (xo,80),.-- , (Xn,sn) of type
(ko, ... ,kn), as long as the points in the ancestry lie in different cubes of
the partition, there exists a sequence (ig, ... ,4,) € I(ko,--. ,kn) such that
(2_3) Q(6ayijauij)mpkj #ﬂa .7:07 y T0-

The points in an ancestry of type (ko, - . - , k,) necessarily lie inside the
cube

Q((5M?|B|(ko + -+ + kn) /@) +7,P,1)

if @ = Q(r,p,t), so the probability that any two of the points in the
ancestry lie in the same partitioning cube goes to 0 as § — 0 by a straight-
forward application of (2-1). By (2-2), the probability of the event in (2-3)
is bounded above by

(2-4) H [£(26) " (k)
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It follows that

< i . ‘
i Fr(Aeesmnn o)
(10yeen 5in ) EI(KQyer ykn) j=1

eu(ko)A(Q) [ [e(5M?|B|(ki—1 + ki) /)™ u(ki))-

i=1

IN

This last expression is (crudely) bounded above by

MQ)(e(10M || /) )"+ TTIRF2 (k)]

=0

Since by elementary calculus

2 2 2d+2
K oxp(—k0/2) < ( d+ ) ,

0
we have by (1-1)

P(Gyp(ko,. .., kn) #0)

2-5 <
> @ :
K,Ce|B|2+1\ " 6
(ald+17|921|i+2) exp(—g (ko + -+ +kn)),
where
K, = 2(10M?)4+1(2d + 2)24+2,

Summing (2-5) on ko, ... , k,, we obtain

P(Gn #0) _ (K Celp|" ' """
(2-6) MQ) < d+1g2d+3 :

In order for a cluster to be infinite and also contain at least one point
in Q, either G,, # 0 for all n, or Gp(kg,--- ,kn) has infinite cardinality
for some n and some ky,...,k,. Since the points in G, (ko,...,k,) are
confined by the construction to the intersection of P and a certain ball
centered at the middle of @, the sets G, (ko, - . . , kn) are finite almost surely
(this follows from (2-1)). There are only countably many such sets. The
probability in (2-6) converges to 0 as n — oo for small € > 0, certainly for

Oéd+192d+3

2- < .
(2-7) €= 8K,C|Bla+
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(We have left some extra room in this condition because of what comes
later.) Assuming (2-7), it follows that the probability that G,, # @ for all n
is 0, so any cluster that intersects @ is finite almost surely. It is elementary
to conclude that all clusters are finite almost surely for e satisfying (2-7).
We assume from now on in the proof that (2-7) is satisfied.

The first renormalization. In this part of the proof and the next, we will
carry out a procedure that will be the first step in an induction. Our even-
tual goal will be to define point processes P,SZ) and corresponding generic
processes Af/), such that analogues of (2-1) and (2-2) are satisfied.

To begin the first stage of the induction, we define

PW = {(x,5) € P: 4(C(x,5)) > 2 and u > s for all (y,u) € C(x,5)}.

A point is in P™) if it is the ‘oldest’ member of a cluster containing at least
2 points. The fact that we only take points from clusters of size two or
more will imply that for small € > 0, the points in P(!) are considerably
sparser than the ones in P. Since the clusters are finite almost surely,
every cluster with at least 2 points contains a unique oldest member almost
surely; there is therefore a one-to-one correspondence between clusters of
cardinality greater than or equal to 2 and points in P(1). For (x,s) € P,
let
AW (x,5) = [2inf{r > 0: S(x,5) C B,(x) x [s —r,5 +7]}],

where |-| denotes ‘greatest integer less than or equal to’, and let
P,gl) ={(x,5) € P : AW (x,s) = k}.

Also let
oY) = /2 and gV = 24.

We now have all the ingredients for defining a new generic process
A,El), using the sets ’P,gl) in place of the Poisson point processes P, and
the quantities A (x,s) in the place of the quantities A(x,s). We set
all the occupation rates equal to o), and the interactive rates equal to
B, We use the same orientation vectors n; as before. Since P() C P,
the finite volume construction outlined in Section 1 can be carried out,
even though the sets ’P,gl) are not Poisson point processes. Thus, we can
construct a collection .Ail) of polyhedral regions D) (x, s;t), determined by
the half spaces Hi(l)(x, s;t) that move according to functions 'ygl)(x, s;t).
We also have the vacant regions Agl) and noninteractive vacant regions
Nt(l), all in analogy with what was done in the construction of the original
process A;. The process Agl) is our renormalization of A;. We remark
that A(M(x, 5) has been chosen large enough so that for any point (y,u) €
C(x,s), D(y,u;u) C DM (x, s;u). This follows from the fact that the size
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of DM (x, s;t) shrinks at rate (") < 1/2, so that the space-time set S(x, s)
is contained in the union of the space-time sets D1 (x, s;t) x {t}, t > s.

Showing that P() satisfies analogues of (2-1) and (2-2). We wish to
continue the renormalization procedure inductively. We cannot do this im-
mediately because the point processes ’P,gl) are not Poisson point processes.
We must first prove the appropriate versions of (2-1) and (2-2). Since
P C P, the following analogue of (2-1) is immediate:

(2-1a) P#BNPWY) > 2)=0(AB)?) for Borel sets B.

We must now find e > 0, §1) > 0, C") < 0o, and quantities p(V) (k)
such that

(1-1a) sup [exp(8M k) u (k)] = CW,
k
and such that for all collections of disjoint cubes @1, ..., Q@ and positive
integers ki1,..., km,
(2-2a) P O{QnPY #0} | < JJEDu® (k)AQ,)].
j=1 j=1
We choose 9
1) =2 g = 2
=T WER]
32K2C2,82d+2
1) _ i 1 _ (1 1

(Note that u(Y) automatically satisfies (1-1a). It is not necessary for the
numbers x (k) to sum to 1.)

We first prove (2-2a) for the case m = 1. Let Q; be a cube in R? x
[0,00). We partition @ into small disjoint cubes with sides of length 2.
Let @ be one such cube, and let the sets G, (ko,--- ,kn) be defined in
terms of ) as in the preceding part of this proof (where we showed that the
clusters are finite). Now look back at our definition of 73,51). If (x,5) is a

point in 73,(61), then some other point (y,u) in C(x, s) lies outside the cube
Q(K,x,s), where

K= g — (A(x,5) + A(y,u))5M?| 8|/ .

If (x,8) € Q and @ contains no other points of P, then there is an ances-
try from (x,s) to (y,u) of type (ko,...,ky) for some n > 1 and integers
ko,... ,kyn (the case n = 0 can only occur if @) contains at least 2 points
of P). By the definition of ancestries, the max-norm distance between
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the " point and the (i + 1)** point in such an ancestry is no more than
(k; + kir1)5M?|8|/c. Therefore, by the triangle inequality,

1(x,8) = (¥, ) llmax < (ko + 2k1 + 2k + -+~ + 2kn 1 + kn) 5M?| B /cx.

It follows that if ) contains at most one point of P and Q N P,gl) # 0, then
there exists an integer n > 0 and positive integers kg, ... ,k, such that
Gp(ko,. .. ,ky) is nonempty and

(kO + 2kl + st + an—l + kn)5M2|ﬂ|/a Z K:

where K is defined above. Since in this case A(x, s) = ko and A(y,u) = ki,

we have
«a

20007[8]

Since the probability that ) contains two or more points of P is
O(X(Q)?) by (2-1), we have by (2-5)

ko+---+kn> Ak, where A=

PPy £0)
()

o P(Gp(ko,... kn) £ 0
> > (Grn(ko ) #0)

- 0(A@))

IN

n=1  kot--+kn>Ak @)

> K, Ce| B+ " 6

Z Z (;,Hlillgztli_ﬂ) eXp(_i(kO + -+ kn))
n=1 ko+--+kn>Ak

2, (4K, Ce|fH+\ "

n=1

IN

Now sum the geometric series. By (2-7) and our choice of ¢, (1) C(1)
and pV, we obtain

(2-8) PQNPY #£0) < WD (R)AQ) + O(ANQ)?).

The inequality in (2-8) holds for each of the cubes @) that partition the big
cube 1. If we sum over all of the small cubes () contained in ()7 and let
1\ 0, we obtain (2-2a) for m = 1.

Now consider general m > 1 in (2-2a). By subadditivity, we may
assume that the cubes @); all have sides of length less than 1. Decompose

the events {Q; N ’P,S) # 0} into events

anj(kﬂja e 5knjj) 7£ @

with
koj + -+ kn;; > Ak;
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as above. Recall from the definition of ) that only one point from a
cluster can be a member of P™). Also recall from that definition that
two points in P that lie in the same cube with sides of length less than 1
necessarily lie in the same cluster (since according to our assumptions, the
quantities M, |3, and 1/« are all greater than or equal to 1). Therefore, if
each (); contains a point in P then the sets

U U Gn:](kOJ: : ":J)

nj kOJ iR kn

are disjoint.
Now we proceed as in the case m = 1. We have

{@;nP, #0} ] <

Jj=1
!
oo oo
n1=0  koi+---+kny1>Akn, Nm=0  kom~+-+knm>Akn,,

({Gn,i(koss- - s kns5) # 0} |

=1

where the notation (X ...3X)’ means that we only sum over terms for which
the corresponding sets G, ;(---) are disjoint. To complete the proof of
(2-2a), it is enough to show that under this disjointness assumption,

P (ﬂ;nzl{GnJJ(kO,ﬂ e 7k’njj) 7é @})

KiCelg|™\™" g
< H l( ad+t192d+2 exp( (koj + -+~ +knjj)) | >

(2-9)

since the rest of the proof is then the same as in the case m = 1. Decompose
each of the events {Gy,,;(---) # 0} in (2-9) into events involving the small
partitioning cubes that were used in the derivation of (2-5). This allows us
to write the intersection in (2-9) as a disjoint union of events, each of which
is an intersection of events of the form {Q(d,y;,u;) N Py # 0} for various
values of 7 and k. Because of the disjointness mentioned just before (2-9),
the integers i involved in any one of these intersections are distinct. This
fact allows us to use (2-2) to bound the probabilities of these intersections
by products analogous to the product that appears in (2-4). Now summing
over the decomposition and letting § — 0 leads to (2-9), just as in the
derivation of (2-5).
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Successive renormalizations. Let us summarize what we have just ac-
complished. Using only (2-1), (2-2), and (2-7), we constructed point pro-

)

cesses P,El which satisfy (2-1a) and (2-2a) for certain parameters (), §(1),

C®, and pM (k). The generic process Agl) corresponding to the point

processes P,gl) and with rates agl) and B is our first renormalization of

A:. As long as the appropriate analogue of (2-7) is satisfied at each stage,
we may continue to renormalize, thus inductively obtaining a sequence of

collections of point processes {’P,ge); k > 1} and a sequence of corresponding
generic processes Agl), £ > 1. The corresponding parameters are

al® = ot=1) /2 = o2t B = 25(t=1) = 24 e = ((t-D)2 = e2°
(2-10)

0({) g(e—l)a(l—l) gae ga(f
= SOMRIED]  (SOMEB AT D = (W 2

) — 32(K,C1D)2(ple-1))2d+2

C (a(t=1))2d+2 (g(t=1))4d+6

pO k) = CY exp(—0Ok).

(We write A§°’ = Ay, €9 = ¢, etc.) We remark that as before, clusters
C¢~1(x, s) are used to construct the point process P{¥). In this construc-
tion, the appropriate cubes of influence are of the form

21 R(=1)] A (£=1)
Se=1) (x,s8) = the interior of @ (5M 18 A (x,5) , X, s) .

alt-1)

The renormalizations satisfy

(2-1b) P@#(BNPY) >2)=0\(B)?) for Borel sets B

and

(220) P ﬁWJW$¢m sﬁw%mwnwm
Jj=1 j=1

for disjoint cubes Q1,... , Q-

In order to be able to continue the induction at each stage, we only
need the following analogue of (2-7):

(0))d+1(g())2d+3
_ ) (@) (6'Y)
(2-7b) e =< 8K, CO|BO a1

We will be able to obtain (2-7b) because of the simple but important fact
that £(© goes to 0 very fast as £ — co. The quantities a(®),6(® go to 0 much
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more slowly, just as the quantity |ﬂ(‘3)| goes to oo much more slowly. The
quantity C(® is the only parameter that grows at a rate that is comparable
to(t)he rate at which £(9 decreases, but for & small enough, £(© will dominate
c®,

We use (2-10) to substitute for a() in terms of a, for (9 in terms of
8, and the given lower bound for () in terms of «, 8, and §. After these
substitutions it is apparent that (2-7b) is implied by

(a/ wl) (2d+3)¢+d+1 (0/M2l)2d+3
K, C©2(2d+3)(£2+70)+3

It is clear that this last inequality is in turn implied by

1
(2-11) e < KETGE
for some constant K2 which depends on «, 3,6, M, and d. After we put
further assumptions on the constant Ks, we will prove inductively that
(2-11) is satisfied for all £ if it is satisfied for £ = 0. (Our choice of the
exponent in (2-11) is dictated by the way in which the induction argument
works.)

By using (2-10) as in the preceding paragraph, it is elementary to check
that there exists some constant K3 depending only on «, 3,6, M, and d such
that

c® < K§2+1(C(“1))2.

Let us assume that the constant K» from the preceding paragraph is cho-
sen large enough so that Ky > (K3)2. Assume inductively that (2-11) is
satisfied for some ¢ > 0. Then
6(£+1) — (6(£))2

< 1

T (CW) RS

< 1

= ot (K22(£+1)2+8/K§l+1)2+1)

< 1

= CUH1) (K,)(B(+1)2+15) /2

Since the exponent on the constant K in the last line is bounded below
by (£ + 2)? + 4, the inductive step in the proof of (2-11) is completed. In
other words, if (2-11) is satisfied for ¢ = 0, it is satisfied for all £ > 0.
We conclude that for all £ > 0, the point processes P,g) and corresponding
generic processes Ay) can be constructed so that (2-1b), (2-2b), and (2-7b)
are satisfied, provided the original death rate e satisfies

1

(2-12) ¢ < yC
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For the rest of the proof, we will assume that (2-12) holds.

Comparing the different renormalizations. Let Nt(g) and Aff’ be respec-
tively the noninteractive and vacant regions corresponding to the generic
process A§‘) constructed in the preceding part of the proof. We will prove
that for all £ > 0,

(2-13) Age) C Nt(e) U Ag”l) a.s. for all t > 0.

This relationship between the different renormalized processes is the key
to the entire proof. Our definitions of clusters and of the sizes A(M)(x, s)
were designed with (2-13) in mind. As we will see in the final part of the
proof, (2-13) will enable us to analyze the vacant region A; in terms of the
collection of noninteractive regions Nt(f) for £ =0,1,2,.... It is relatively
easy to work with the noninteractive regions because, for each £, their faces
all move inward at rate a(9). Because of the rapidity with which £(© goes
to 0 as £ increases, the noninteractive regions are extremely sparse for large
£ and small e. These simple facts motivate the proof of the theorem.

Because of the inductive way in which the renormalization is carried
out for each ¢, it is sufficient to prove (2-13) for the case £ = 0. We write
Ny for Nt(o), A, for A,EO), etc. It will be seen that certain parts of the proof
of (2-13) are most properly done in terms of the finite volume processes
that were used in Section 1 to show the existence of generic processes. It
is certainly sufficient to prove (2-13) with A; replaced by the finite volume
process Ay j, since A; is the limit of A ; as j — oo. The main advantage of
finite volume processes is that there are only finitely many regions present
in such a process at any finite time ¢. However, almost all of the notation
acquires an extra subscript when working with the finite volume processes,
so we will be slightly informal here and continue to speak in terms of the
limit A;. We will indicate those places in the argument where complete
rigor would require dealing first with the finite volume processes and then
taking limits.

For each point (x, s) corresponding to a region D(x, s;t) in the generic
process Az, we wish to define a point (£(x,s),0(x,s)) € P which marks
‘the most recent death involved’ in the appearance of the region D(x, s; ).
For death regions D(x,s;t) we simply let ({(x,s),0(x,s)) = (x,s). For
overlap and collision regions, we recall the maximal collection of regions
D(yg,uk;s) used in the definitions of overlap and collision regions in Sec-
tion 1. Assuming that £(yg, ur) and o(yg, ux) are defined for each k, choose
i such that o(y;,u;) = maxy o(yg,ur), and then define

(€(x,8),0(x,38)) = (E(¥i,ui), 0(yi, ui))-

In the case of an overlap region D(x,s;s), we have (£(x,s),0(%,s)) =
(y1, 8), since in the definition of an overlap region, D(y1,u1;s) is a death
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region with u; = s. For collision regions D(x, s; s), complete rigor would
require that we work with the finite volume process, both so that the max-
imum in the definition of o(x,s) is actually achieved and so that the in-
duction implied in the phrase “assuming that &(yy,ur) and o(yg,uy) are
defined” can be successfully carried out.

We claim the following:

(2-14) if p e D(x,s;t),
then |lp — &(x, 5)l| < M[A({(x,5),0(x,5)) + |B|(t — o(x, 5))].

This statement is obvious for death regions D(x,s;t), since M has been
chosen so that D(x, s;s) C Ba(x,sm(X), and since death regions shrink in
size. For overlap and collision regions D(x, s;t), let (y;,u;) be as in the
preceding paragraph. Then (2-14) is true, provided it is true with (x, s)
replaced by (y;,u;), because D(x,s;s) C D(y;,u;; s), and after time s, the
radius of the smallest ball that contains D(x, s;t) increases no faster than
rate M|S3|. The induction argument implied by the phrase “provided it is
true with (x,s) replaced by (y;,u;)” is properly carried out in the finite
volume setting.

We complete the proof of (2-13) (for £ = 0) by showing that for any
overlap or collision region D(y,u;t), there exists a region DM (x,s;t) €
Agl) such that

(2-15)  Hi(y,u;0) — (a(v — o(y,w))/2)n; € HY (x, 5;0)
forall v € [u,t] and i =1,...,d+ 1.

This last expression is just a way of saying that the i*" face of the region
D(y,u;v) is at least a(v —o(y,u))/2 units inside of the corresponding face
of the region D) (x, s;v). The significance of the factor a/2 will be seen in
the proof of (2-17) below. It is clear that (2-13) (for £ = 0) holds if (2-15) is
true for all overlap and collision regions D(y,u;t), since any death region
D(y,u;t) is contained in N.

Let D(y,u;t) be a collision or overlap region, and let D(yg,uxr;u),
k=1,...,n, be the maximal collection of regions used in the definition of
D(y,u;t) in Section 1 (we know that n is finite in the finite volume set-
ting). We now make the assumption that (2-15) is satisfied for all overlap
and collision regions that arise prior to time u. More precisely, we assume
that for any overlap or collision region D(y’,u’;t") such that v’ < u and
t' < t, there exists a region D) (x’, s';¢') such that (2-15) is satisfied with
(y,u) replaced by (y',u'), (x,s) replaced by (x’,s'), and t replaced by ¢'.
As above, we are setting up an induction that can be rigorously carried
out in the finite volume setting. For this reason, we refer to the assump-
tion just made as the ‘inductive hypothesis’. Note that in particular, this
inductive hypothesis applies with D(y’,u';t") = D(yg,ur;t) for all k such
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that D(yg,ur; t) is not a death region, since for each such k, it follows from
our construction of generic processes that uj < u. For these values of k, let
(xk, 81) be the point (x',s') provided by the inductive hypothesis.

We now break the argument into three cases: (i) none of the regions
D(yg,ur;u) is a death region; (ii) only D(y1,u1;u) is a death region; (iii)
D(y1,ur;u)y ... , D(¥m,um;u) are death regions for some m with 2 < m <
n, but none of the remaining regions is a death region. It will be seen that
cases (i) and (iii) are relatively easy. Case (ii) is the critical case. The
constants used in the definition of clusters were chosen with this case in
mind.

First consider case (i). By Proposition 3 and (1-7), there is a region
DM(x, 5;t) such that

n

(1-4a) ﬂ DW(xy, sp;v) € DY (x,5;0) for v € [u,t],
k=1
and either
(1-5a) d’CY;il) (x,s;0) = Y for v e [u,t),
or
(1-6a) U HY (i, s158) = HO (x, 5t).
k=1

We claim that this region D) (x, s;t) satisfies (2-15). If (1-6a) holds, (2-
15) follows from the inductive hypothesis (with (y',u') = (yg,ur) and
(x',8") = (x,s)) and the fact that o(y,u) > o(yg, ux) for all k. Suppose
that (1-5a) holds instead. By (1-4a),

Hi(y, uiu) = (u = o(y,u))n;

(2-16) = IQ1 Hi(yr,ur;u) — %(u —o(y,u))n;

n
c N HE N ko su) € HY (x,55u).
k=1

Since the derivative of ;(y,u;v) with respect to v is at least 8 = 81 /2, it
follows from (1-5a) that the distance between the it" face of D(y,u;v) and
the corresponding face of D(Y) (x, s;v) increases at least at rate |3(1) — 8| =
|B] > 1> a/2. This fact combined with (2-16) gives us (2-15).

Next consider case (ii). The argument for this case will be the same
as the previous case, once we find a region DM (xy, s1;t) such that for all
i=1,...,d+1and v € [u,t],

(2-15a) H;(y1,u1;v) — (a(v —o(y1,u1))/2)n; C Hf”(m,suv)-
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(Since D(y1,u1;u) is a death region, our inductive hypothesis does not help
us directly in this case. It would do us no good to try to strengthen the
inductive hypothesis, since (2-15a) is not true in general for death regions.)
Recall that the faces of the death region D(y1,u1;t) all move inward at rate
a, and that the faces of regions in the process A,gl) all either move outward,
or they move inward at rate a(t) = /2. Thus, if a region D™ (x4, s1;v)
contains a death region D(y1,$1;v) at some time v, then for each i the
distance between the it" faces of these two regions increases at least at rate
a/2 after time v. Hence, to prove (2-15a), it is sufficient to prove that there
exists a region D) (x,, s;;t) such that for some v € [uy,u],

(2-17) D(y1,u1;0) € DY (x4, 81;0).

To prove (2-17), we first need to find some region D(z, w;v) with w < u
and v € [uq,u], such that

D(z,w;v) N D(y1,ur;0) 0 and  (§(z,w),0(z,w)) # (y1,u).-

(It will become apparent later how such a region will help us.) If there
is at least one value of k > 2 such that (£(yk,uk),o(Yr,ur)) # (¥1,u1),
then we can let (z,w) = (yk,ux) and v = u, since in this case u, < u and
D(y1,u1;u) has nonempty intersection with all of the regions D(yy, ug;u).
If on the other hand, (&(yk,ur),o(yk,ur)) = (y1,u1) for all k > 2, then it
follows from the definitions that all of the regions D(yy,ug;u) for k > 2
necessarily arose due to an overlap interaction caused by the appearance
of the death region D(y1,u1;u1). In this case, the overlap was necessarily
between D(y1,u1;u1) and some region D(z,w;u;) with w < u; < u, so we
have our desired region D(z,w;v) with v = u;. We have now chosen the
value of v for which (2-17) will be satisfied. It remains to use D(z,w;v) to
find the appropriate region D™ (x1, s1;v).

Let us abbreviate by writing (£,0) = (£(z,w),o(z,w)). Note that both
of the points (¢,0) and (y1,u1) are members of P. If they lie in the same
cluster, then there exists a point (x;,s;) € P®) such that C(yi,u1) =
C(¢,0) = C(x1,51). Now recall how the quantity AY)(xy,s1) is defined.
The remark at the end of the paragraph following the definition of A(Y)(.)
implies that A1) (x;,s;) has been chosen large enough so that (2-17) is
satisfied.

To finish case (ii), we must prove (2-17) under the assumption that
(y1,u1) and (§,0) do not lie in the same cluster. It follows from the def-
inition of clusters that the death regions D(yi,u1;v) and D(,0;v) are
disjoint (see the comment made at the end of the section of the proof in
which clusters were defined). But D(y1,u1;v) and D(z,w;v) are not dis-
joint, so (z,w) # (£, 0), implying that D(z,w;v) is not a death region.
Since w < uy < u, the inductive hypothesis applies to D(z,w;v), giving us
a region D™ (xq, s1;v) such that for all i = 1,... ,d + 1,

(2-15b) H;(z,w;v) — (v — 0))/2)n; € HY (x4, 51,0).
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We will show that the region D) (xy,s;;v) found in the preceding
paragraph satisfies (2-17). Since we have assumed that (yi,u1) and (&, 0)
are not in the same cluster, it follows from the definition of clusters that
either

(2-18) llys = €Il > 5M?|B|(A(y1,u1) + A€, 0)) /e,
or
(2-19) lur — o > 5M?|B(A(y1, u1) + A(€, 0)) /a.

We wish to show that both statements imply
(2-20) v—0 > 4M(A(y1,u) + A6, 0))/a.

To see that (2-18) implies (2-20), we use (2-14), with (x,s) replaced
by (z,w), t replaced by v, and with p equaling any point in D(y1,u1;v) N
D(z,w;v). Since the death region D(y;,u;;v) is contained in a ball of
radius M A(y1,u1), it follows from (2-14) that

llyr =&l < M(A(y1,ua) + A€, 0) + |B|(v = 0)).

Combine this inequality with (2-18) to obtain (2-20). To see that (2-19)
implies (2-20), it is sufficient to show that u; > o if (2-19) holds, since
v > u; (and, of course, since 5M?|3| > 4M). We know that v > o and
that the death region D(y1, u1;v) vanishes after time v = u; + A(y1,u1)/a.
If both 0 > u; and (2-19) held, then the death region D(yy,u1;v) would
be empty, contradicting the fact that it has nonempty intersection with
D(yg,ug;v). This contradiction establishes the desired conclusion.

We have just proved that if (y1,u1) and (£,0) do not lie in the same
cluster, then (2-20) holds. Therefore, by (2-15b),

Hy(z,w;v) — 2M (A(y1,u1) + A€, 0))n; € HY (1, 81;0)

for i =1,...,d+ 1. Now use the fact that D(y;,u1;v) is contained in a
ball of radius MA(y;,u1) and has nonempty intersection with D(z,w;v)
to conclude that (2-17) is satisfied.

Finally, we consider case (iii). As in case (ii), it is sufficient to prove the
analogue of (2-17) for the regions D(yy,ug;u), k =1,... ,m; namely, that
for each of the death regions D(yg,ur;u), there exists a time v € [ug,u]
and a region D (xy, sg;v) such that D(yy, ug;v) € DM (xg, sp;v). Since
the death regions D(yy,, ug;t) have nonempty intersection for k =1,... ,m,
their corresponding cubes of influence S(y, ux) have nonempty intersection
(this follows from the comments made at the end of the section of the proof
where clusters are defined). Therefore, the points (yg,ux),k =1,... ,m, lie
in the same cluster. Since m > 2, there is some point (x1,51) € PM) that is
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also a member of that cluster. Let (x,sr) = (x1,51) for k=1,... ,m. As
explained in case (i), A()(x1, s1) has been chosen large enough so that the
analogue of (2-17) for the regions D(yy,ur;u) is satisfied for k=1,... ,m.
This completes case (iii), so the proof of (2-15) and hence of (2-13) is
finished.

The final upper bounds. It follows from (2-13) that

(2-21) P(y € A;) < limsupP(y € AE”) + ZP(y € Nt([)).

{—00 —0

We will complete the proof of the theorem by obtaining appropriate bounds
for the terms on the right side of (2-21). More precisely, we will show that
the constant K> can be chosen sufficiently large so that for € > 0 satisfying
(2'12)7

(2-22) limsup P(y € AEZ)) =0 for fixed ¢, uniformly in y,
{—00
and that
o
(2-23) li\r‘r(l) P(y e Nt(e)) =0 uniformly in ¢ and y.
N =0

We prove (2-23) first. Note that if y € Nt(e), then there exists a point
(x,8) € ’P,gl) for some positive integer k such that

(x,5) € QU(ME/a), y,1).

The reason for this is that the death region D (x, s; ) is always contained
in the ball of radius Mk centered at x, and furthermore, this death region
vanishes after time k/ oY), (We are also relying on the obvious inequality
Mk/a'® > (k/a®) v (Mk).) Therefore, by (2-2b) with m = 1,

P(y e N9) < 3" P(Q((Mk/a®),y,t) NP #0)

WK

=~
Il
-

E(JZ) (ZMk_/a(l))d+1M(£) (k)

o

x~
Il
N

(2-24)

e®2ME/a9)H1 0O exp(—6Ok)

e

(022443 1100 (d 4 1)
= (a(e)g(e))d-i-l
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We have used the fact that
Z kT exp(—ak) < (2/a)? (d +1)!
k=1

for 0 <a< 1.

Now use (2-10) to substitute for a®@, 3¢), and ¥ in terms of a,p,
and 0. It follows, as in the argument preceding (2-12), that we can find
a constant K4 depending on «, 3,60, M, and d such that the expression on
the right side of (2-24) is bounded above by

5(4)0(1)Kﬁ2+1.
After substituting in (2-24), we obtain
241
() Ky
2

Note that the right side of (2-25) does not depend on ¢ or y. Ase \ 0, we
can let Ky — oo in accordance with (2-12). Thus (2-23) follows.

We now prove (2-22). Define an auxiliary process Nt(e) by

d+1
Nt(e) = U m H(ng, x + (2°6(t — s) — AO(x, 5))n;).
(x,5)eP®):s<t =1
This process is just like Nt(e), except that all of the occupation rates age)
have been replaced by the value 3 = 2¢{3. The points at which deaths
occur are the same for the processes Nt(e) and Nt(é), so it is clear that
Nt(l) - Nt(e). If we define the generic process A§‘) corresponding to Nt“),
Proposition 4 implies that Agl) - A,ﬁ“. A little thought based on the details
of the construction given in Section 1 reveals that Aff’ = ]\Aft(é). Thus

P(y € A") < Py e N{9).

Now note that if y € Ntm, then y lies in some death region D) (x, s; 1),
where (x, s) € ’P,E() for some k£ > 0. The faces of such a region move outward
at speed 2¢|3|, so (y,t) € Q(M(2¢8|(t — s) + k),x, s), or equivalently,

(x,5) € QM(2"B|(t — 5) + k), ¥, 1).
Noting that M (2¢|8|(t — s) + k) < 2+ M |B|(t V 1)k, it follows from (2-2b),
as in (2-24), that

P(y e A" < P(y e N{)
S O @2 ME|B| (1 v 1)H1 0O exp(—6O k)

k=1
02244322 (£ v 1) M| 81 /0)) 1 CO(d + 1)1

VAN

IA
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As in the proof of (2-23), we may choose a constant K5 depending only on
a, 3,0, M, and d such that the term on the right side of this last expression
is bounded above by

241 d+1
(220 B
K;
By choosing € > 0 sufficiently small, we can choose K > K3 in accordance
with (2-12). For such a choice of ¢ and K>, the expression in (2-26) con-
verges to 0 as £ — oco. Since y does not appear in this expression, (2-22)
follows. u

3. Toom’s Theorem and other applications. Now that we know
precisely which families of generic processes survive for small €, we can use
them as comparison processes for other models of interest. In this section,
we will show how to carry out this comparison for the general class of
discrete time processes studied by Toom [13]. As a result, we obtain a
relatively easy proof of a generalization of the main theorem in [13].

TooM PROCESSES. The models most directly related to our generic
processes are certain probabilistic cellular automata that we call Toom
processes. This is the class of processes to which Toom’s Theorem applies.
The two discrete time processes mentioned in the introduction, namely the
basic discrete time contact process and Toom’s model, are both in this
class.

To fix notation, we will briefly describe the construction of Toom pro-
cesses. A (d-dimensional) Toom process with range r is defined in
terms of a Toom rule, which is a function

@ : {subsets of Z?} — {subsets of Z?}

satisfying four conditions:
(1) (monotonicity) S1 C Sz = ¢(S1) C ¢(S2);
(2) (translation invariance) p(S) +x = ¢(S + x);
(3) (range r) x € ¢(S) & x € (SN B, (x));
(4) (nontriviality) ¢(0) = 0 and ¢(Z¢) = Z.
Fix a parameter value £ € [0,1], the death rate. For (x,t) € Z¢ x
{1,2,3,...}, let M(x,t) be independent identically distributed Bernoulli
random variables with P(M (x,t) = 0) = £, and let

P ={(x,t) : M(x,t) = 0}.

We now define the Toom process with rule ¢, death rate € and initial state
Ay, where Ay is is an arbitrary subset of Z%. For t = 0,1,2,..., define
inductively ~ B B

A = (A U{x: (x,t +1) € P}.
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It is also natural to consider a somewhat more general class of pro-
cesses as follows. For (x,t) € Z9 x {1,2,3,...} let A(x,t) be independent
identically distributed positive integer-valued random variables, with prob-
ability density fi. Let ¢, P, and Ay be as above. The generalized Toom
process with rule ¢, death rate &, initial state Ay and size density /i is
defined inductively by

A1 = p(4A) U U (Ba(x,t41)(¥) N z%)
(x,t+1)eP

We may interpret a generalized Toom process as follows. The system follows
the rule ¢ except near the random points (x,t) € P. At such a point (x,t)
in space-time, a ‘catastrophe’ occurs at time ¢ which vacates all the sites
within a certain random distance of x.

We have used notation that is analogous to that used for generic pro-
cesses. It is more standard to think of the state of one of these processes as
a configuration of 0’s and 1’s located at the sites of the integer lattice Z<.
In our notation, A, is the set of sites at which there is a 0 at time ¢, or in
terms of population models, the vacant region.

Toom [13] gave an elegant criterion for survival at small death rates in
families of Toom processes parametrized by the death rate. Fix a Toom
rule ¢ with range r. For t =1,2,3,..., let

pl=po---0¢p (ttimes).

Toom’s eroder condition. For all finite sets A C Z¢,
o'(4) =0

for some value of t € {1,2,3,...} which may depend on A.

Toom’s Theorem is as follows: Let A; be the Toom process with rule
¢, death rate &, and initial state Ay = (). If Toom’s eroder condition holds,
then

lim limsup P(0 € A;) =0,

ENO o0
whereas if Toom’s eroder condition does not hold, the limit is 1. We will
use generic processes and our Theorem 1 to prove the hard half of Toom’s
Theorem, namely the first part (the proof of the easy half is essentially
the same as the proof of Proposition 2). In fact, as we will see, the same
proof works for generalized Toom processes, provided the size distribution
fi satisfies (1-1). Toom has communicated to one of us (L. Gray) that he
was not able to prove the more general result, since contour methods do
not seem to work well with generalized Toom processes.
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Toom processes have a simple property that makes it easy for us to
compare them to generic processes. For any point p and unit vector n in
R4, let }

H(n,p) = H(n,p) N Z°.

We say that a unit vector n € R? is rationalizable if there exists a vector
x € Z% such that n = x/||x]|.

Proposition 5. Let n be a rationalizable unit vector, and let ¢ be a
Toom rule with range r. Let

a = sup{a : ¢(H(n,0)) C H(n,an)}.
Then a € [-r,r] and
¢'(H(n,0)) = H(n, atn)

forallt=0,1,2,....

This simple fact, which is also used by Toom [13], follows easily from the
four properties in the definition of a Toom rule. We will not give the proof
here.

For any rationalizable unit vector n and rule ¢, we let a(n,p) be the
quantity a given in Proposition 5. We now state an equivalent form of
Toom’s eroder condition:

Proposition 6. Fix a d-dimensional Toom rule ¢ with range r. Then
Toom’s eroder condition is satisfied if and only if there exist d+ 1 rational-
izable unit vectors n; € R satisfying the conditions of Proposition 1, and
a real number t > 0, such that

d+1

(3-1) ﬂ H(nj, (a(ni, p)t — 1)n) = 0.

This alternate form of the eroder condition is in fact the one that Toom
used to prove his theorem. Note that if we set a; = a(n;,p), (3-1) is the
same as our generic eroder condition. The proof of Proposition 6 is easy
in one direction, since (3-1) obviously implies Toom’s eroder condition. To
prove the opposite direction, one first shows that Toom’s condition implies
that there is a finite collection of rationalizable vectors ny,. .. ,ng such that
(3-1) is satisfied with d + 1 replaced by k. Then, assuming that a(ny, ) =
max; a(n;, p), one projects onto the d — 1-dimensional hyperplane that
forms the boundary of H(ny,(a(ng, )t — 1)n;). An inductive argument
completes the proof. The details are left to the reader.

We now define, for each Toom rule that satisfies (3-1), a corresponding
set of parameters for a generic process that will be used as a comparison
process. Suppose that ¢ is a rule with range r that satisfies condition (3-1)
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for a given set of unit vectors n;. Let fi be a size density that satisfies (1-1),
and define another size density u by

w(A + k) = a(k),

where A is the smallest integer greater than or equal to 2r + \/E/ 2. Choose
€ > 0 and then let € be the solution to the equation £ = 1 — exp(—¢).
The reason for these choices of y and e will become clear later. Let A,
be the generalized Toom process with rule ¢, death rate &, size density f
and initial state Ag = 0. Also let A; be the vacant region of the generic
process with orientations n;, occupation rates o; = a(n;, ), interaction
rate 3 = —r, death rate £, and size density pu. We say that A, is a canonical
comparison process for A;.

Theorem 2. Let A; be the generalized Toom process with rule ¢,
death rate &, size density fi satisfying (1-1), and initial state 0. Suppose
that ¢ satisfies (3-1) for a given set of unit vectors n;, and let A; be the
corresponding canonical comparison process. Then the processes Ay and
A; may be defined jointly (‘coupled’) so that

Ay C A

for all t > 0.

Proof. Let the process A; be constructed as in Section 1. For x =
(z1,...,74) € Z4 and t = 1,2,3,..., define

0 if PnQ(%,x,t—l);éw

M(x,t) = 2

1 otherwise,

where P is the Poisson point process with intensity parameter € used in the
construction of 4;. Note that Q(%,x,t — 1) is a unit cube. The random

variables M (x,t) are independent identically distributed Bernoulli, with
P(M(x,t) =0) =& =1—exp(—e).

For (x,t) such that M(x,t) =0, let

Apxt) = ~A+suplk: PenQ(g, %, — 2) # 0.

Note that these random variables are independent and identically dis-
tributed. We use them to construct a generalized Toom process A; with
rule ¢ and initial state (. Unfortunately, the common distribution of the
random variables A(x,t) is not the same as ji. However, it dominates ji in
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the appropriate sense, so that it is straightforward to construct a general-
ized Toom process A, with rule ¢, death rate &, size density i and initial
state 0 so that A, C At We leave the details to the reader. Note that A
has been chosen large enough so that

(32) M(x,t)=0 and A(x,t)=k =

1 1
3(3’7“) € Pk-i—A N Q(§7 X, t— 5) such that Bk-i-T(X) - D(Yﬂuat)

To see that this is the case, note that for (y,u) as in (3-2), (i) ||x —y|| <
V/d/2, and (ii) the size of D(y,u;t) is at least k +r 4+ v/d/2 since t —u < 1.

The comparison. We will prove by induction on t = 0,1,2,..., that
(3-3) p € A; = B.(p) C A,

from which it follows that A, C A, as desired. The case t = 0 is obvious
since both processes have initial state . Now let ¢ be a positive integer.
By (3-2), if p is a site that is vacated at time ¢ due to a ‘catastrophe’ at
some site x such that A(x,t) = k and p € By(x), then B, (p) C A;. By the
construction of Toom processes, all other points p € A; are in ¢(A;_1), so
to complete the proof of (3-3), it is sufficient to prove

(3-4) p € p(Adi 1) = B.(p) C Ay
Let p1,...,pr be those points in A,_; that are within distance r of p:

A1 N B,(p) = {P1,--- ,Pn}-

By the inductive hypothesis, there exist regions D(yg, ug;t — 1) such that
(3-5) B (px) C D(yk,uk;t —1)

for k =1,...,n. Since the distance between each p; and p is less than or
equal to r, we also have

n
(3-6) pE [ Dy urt—1).
k=1

In order to prove (3-4), we first need the following statement:

n

(3-7) B,(p) C |J Hi(yr,urst) forall i=1,...,d+1.
k=1

(Refer back to (1-3) for the definition of the half-spaces H;(y,uk;t).) To
prove (3-7), we choose real numbers g;, such that

Hi(yr,ur;t — 1) = H(ny, gixny)
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fori=1,...,d+1and k=1,...,n. Let
g =min{g;x : k=1,...,n}.

Since all of the functions ~; in (1-3) have slopes which are bounded above
by ag,

n

(38)  H(mi, (g +ai)m) C |J Hilyw,upst) fori=1,...,d+1.
k=1

Thus it is enough to show that B,.(p) is contained in the set on the left
of (3-8) for each i. Fix i. By (3-5), {p1,..-,Pn} C H(n;, (g + r)n;).
Assuming that the hypothesis of (3-4) holds, it follows from the finite range
and monotonicity properties that

p € o({P1,---,Pn}) C @(H(n;,(g; + r)n;) NZY).

By Proposition 5,
P € H(n;, (g + 7+ ai)ny),

from which it follows that
B.(p) € H(n;, (¢; + a;)ny),

completing the proof of (3-7).

To complete the proof of the theorem, we apply Proposition 3. Let
D(x,s;u),u > s, be a region satisfying (1-4) and either (1-5) or (1-6), with
the regions D(yy,ur;u) being as above. The existence of such a region
D(x, s;u) is guaranteed by Proposition 3. For all ¢ such that (1-5) is satis-
fied, (3-6) and (1-4) imply that B, (p) C H;(x, s;t) (since 8 = —r). For all
i such that (1-6) is satisfied, (3-7) implies the same result. Proposition 3
says that every ¢ must satisfy either (1-5) or (1-6), so

d+1
B,(p) C [ Hi(x,5;t) = D(x, ;1) C Ay,
=1

and the proof is complete. [ |

Note that the size density p of the canonical comparison process satis-
fies (1-1) if the size density i of the corresponding generalized Toom process
satisfies (1-1), and that the generic eroder condition is satisfied for the com-
parison process if Toom’s eroder condition is satisfied for the rule of the
generalized Toom process. Therefore, we have the following generalization
of Toom’s Theorem:

Corollary. Let ¢ be a Toom rule which satisfies (3-1), and let i be a
discrete probability density on {1,2,3,...} satisfying (1-1). Let A; be the
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corresponding generalized Toom process with death rate £ and initial state
Ao = 0 Then

lim li P(0€ A;) =0.

lim lim sup (0e Ay

t—o0

APPLICATIONS TO OTHER MODELS. The class of Toom processes does
not include all of the finite range translation invariant attractive (monotone)
models that are of interest. In a Toom process, the conditional probability
that there is a change at a site x at time ¢, given the state of the process at
time t—1, is either 1, 1—£&, £, or 0. When & = 0, the process is deterministic,
so we may view Toom processes as € perturbations of deterministic cellular
automata. The Corollary to Theorem 2 says that if a Toom rule ¢ satisfies
Toom’s eroder condition, then the deterministic process is stable under
perturbation by £ when the initial state is ‘all occupied’.

In general Markovian discrete time models A;, the conditional proba-
bility that there is a change at time ¢, given A;_; = A, equals some quantity
¢(x,A) which may not be close to either 0 or 1. This is more in line with
what happens in continuous time, where the rate at which there is a change
at a site x at time ¢, conditioned on 4; = A, is given by a flip rate ¢(x, A).

One can ask about the stability of these more general models under
various types of perturbations of the rates ¢(x, A). We suggest that generic
processes are quite useful for determining stability properties. In a future
paper, we intend to prove stability for various classes of systems that don’t
fit into the context of the present paper. We have already found certain
eroder conditions that lead to some new stability results. These eroder
conditions also apply to the sexual contact process, and relatively simple
proofs of both of the main stability results in Durrett and Gray [5] can be
given. We are however a long way from finding necessary and sufficient
conditions for general systems. In general, one needs some probabilistic
analogue of Proposition 5.
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