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Abstract. Stavskaya’s model is a one-dimensional Boolean probabilistic cellu-
lar automaton very similar to the contact and directed percolation processes.
There is always an absorbing measure but close to the deterministic limit the
model also shows a non-trivial invariant measure. We show that the latter
“Stavskaya’s” measure is weakly Gibbsian with an exponentially decaying in-
teraction potential.
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1. Introduction

Not much is known about global characterizations of stationary measures
of interacting particle systems. There are of course the stochastic Ising model
with reversible Gibbs measures as stationary distributions, see, e.g., [14], and
weakly coupled systems with unique and Gibbsian stationary distributions, see,
e.g., [6, 11]; for Gibbsian characterizations of transient measures, see [1]. In
other cases, outside equilibrium, very little information is available about the
Gibbsian nature of transient or of stationary measures. There are some negative
results, e.g. in [13] about the extremal invariant measures of the voter model
and there are some elementary surprises, like in the exceptional case of the
invariance of the standard Ising model in dimensions d ≤ 2 for a nonreversible
dynamics, see [4].

In the present paper, we investigate the Gibbsianness of one of the simplest
examples of an interacting particle system. We deal with Stavskaya’s model,
see also [15,16,18], which is a one-dimensional probabilistic cellular automaton.
That model has a phase transition; for small noise there appears a non-trivial
stationary measure. We show that it is weakly Gibbsian in the sense that there
exists an exponentially decaying interaction potential for a full measure set of
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configurations, [5, 8]. To the best of our knowledge, our work establishes the
only example so far away from the weak coupling regime, where a Gibbsian
property can be established in a genuine nonequilibrium context.

The construction of the potential follows earlier work and methods that have
been applied in [7, 9, 10] to control the so called Kozlov potential, [2]. A new
mathematical difficulty in the present work is the presence of a hard core effect
in the dynamics; the transition probabilities are not bounded away from zero. In
fact, that effect is also responsible for why we think, see Remark 6.1 in Section 6,
the measure is not Gibbsian. Nevertheless a weakly Gibbsian property can be
established.

The reason to be interested in Gibbsian properties has a long history and
motivations continue to come from various sides. Obviously Stavskaya’s model
is not so very realistic to be wholly useful in discussions on the physics and the
construction of nonequilibrium statistical mechanics. Nevertheless, its simplicity
combined with the presence of a phase transition make it into an interesting test
case for attempts to characterize transient and stationary measures for spatially
extended stochastic dynamics. One of the important avenues that gets opened
and is related to Gibbsianness is the validity of a variational principle. We hope
to come back to that last point in a future publication. The main point however
was already started in [9,10]: to understand stationary measures as projections
of Gibbs measures, see [3, 12].

2. Stavskaya’s model

2.1. Definition

Stavskaya’s model is a discrete time Markov process on {+,−}Z. We think
of variables ηt(i) at time t at sites i ∈ Z which are simultaneously updated
according to the rule: ηt+1(i) = + if ηt(i − 1) = ηt(i) = +, and if otherwise,
then ηt+1(i) = + with probability ε ∈ (0, 1). That basic rule is abbreviated as,
for a, b = ±,

p(+ | a, b) ≡ 1 if a = b = +,

≡ ε otherwise,

p(− | a, b) ≡ 1 − p(+ | a, b), (2.1)

through which we define the transition probabilities

Prob[ηt+1(i) = ai, i ∈ A | ηt] ≡
∏

i∈A

p(ai | ηt(i − 1), ηt(i)) (2.2)

for all finite A ⊂ Z, ai = ±.
In that way the model defines a local and translation invariant probabilistic

cellular automata with one parameter ε for which however the transition proba-
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bilities are not bounded away from zero. As a result, the state with all η(i) = +
is invariant for all ε.

Note also that Stavskaya’s model is monotone in the sense that p(+|a, b) is a
non-decreasing function of a and b. That has some pleasant consequences. For
example, if we start the dynamics from all minuses and we denote the evolved
measure at time t ≥ 0 by µt, then the weak limit

lim
t

µt = µ

exists and is stationary.

2.2. Directed percolation

It is useful to think about the previous rules in terms of a noisy perturbation
of a deterministic (parallel) updating. We define therefore the map

M(a, b) ≡ + if a = b = +,

≡ − otherwise (2.3)

and a Bernoulli random field (et(i), i ∈ Z, t = 1, 2, . . .); et(i) = 0, 1 with density
Prob[et(i) = 1] = ε.

Stavskaya’s dynamics can thus be represented as

ηt(i) = (1 − et(i)) M(ηt−1(i − 1), ηt−1(i)) + et(i), i ∈ Z, t = 1, 2, . . . (2.4)

(where we identify + with +1.) Obviously, ηt(i) = − implies that et(i) = 0
and that ηt−1(i− 1) and ηt−1(i) cannot both be +. That suggests a percolation
process.

Consider the oriented graph with vertices v = (i, t), i ∈ Z, t = 0, 1, . . . and
directed edges going from (i, t) to (i−1, t−1) and to (i, t−1). We write v → v′

if there is an edge from vertex v to vertex v′. A path is a sequence of vertices
v1 → v2 → . . . → vn.

Looking at (2.4), we can trace backwards in time where a particular ηt(i) = −
comes from. Whenever ηt(i) = − there is a path v1 → . . . → (k, s) → . . . → vt,
starting at v1 = (i, t) and ending in vt = (j, 1) for some site j ∈ {i − t, . . . , i},
on which es(k) = 0 for all vertices (k, s) on the path. The opposite holds as
well: if there is such an oriented path on which the es(k) = 0 and if initially all
η0(j) = −, then ηt(i) = −.

2.3. Phase transition

The previous representation in terms of directed Bernoulli site percolation
makes it clear that there is a phase transition. If ε is large, there will be a high
density of “errors” es(k) = 1 and no percolation of zeroes will occur. Then, the
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ηt(i) = − will die out and the system has the trivial constant state η(i) = +
as unique invariant measure. If, on the other hand, ε is sufficiently small, the
ek(s) = 0 will percolate and a density of minuses will be maintained in the
Stavskaya updating.

From now on we always start the dynamics from the constant minus state,
η0(i) = − for all i ∈ Z. We write Prob[E] for the corresponding probability of
an event E, measurable with respect to the ηt(i), i ∈ Z, t = 0, 1 . . .

There is a value 1/C > 0 so that for ε < 1/C, there appears a second
stationary measure µ having a finite density of minuses:

µt[η(0) = −] ≥ µ[η(0) = −] = lim
t

Prob[ηt(0) = −] ≥ 1 − Cε.

3. Potentials

A potential U = (UA)A is a collection of real-valued functions UA on {+,−}A

for finite subsets A ⊂ Z; U∅ = 0. It is translation invariant when UA(α) =
UA+i(α

′) whenever α(j) = α′(j + i) for all i, j ∈ Z. To be useful, a potential
has to obey certain summability properties.

A potential U is absolutely convergent at α ∈ {+,−}Z if for all finite B ⊂ Z

∑

A∩B 6=∅

|UA(α)| < ∞. (3.1)

Suppose that U is a potential and that there exists a tail field set Ω ⊂
{+,−}Z of points of absolute convergence of U (i.e., for all finite regions B the
sums

∑

A∩B 6=∅ |UA(ξ)| are well-defined whenever ξ coincides with some α ∈ Ω
outside a finite set). Then, for every finite V ⊂ Z and every α ∈ Ω we can
introduce the finite volume Gibbs measure

µα
V (ξ) ≡

{

exp
{

−
∑

A∩V 6=∅ UA(ξ)
}

/ZV (α) if ξ = α on V c,

0 otherwise,
(3.2)

where the normalization

ZV (α) ≡
∑

ξ(j)=±,j∈V

exp
{

−
∑

A∩V 6=∅

UA(ξV αV c)
}

(3.3)

is well-defined. Factors of temperature or a priori weights (reference measure)
are supposed to be contained in the potential. The Dobrushin operator is then
defined by taking expectations with respect to (3.2):

RU
V (f)(α) ≡

∫

f(ξ)µα
V (dξ) (3.4)

mapping bounded measurable functions f on {+,−}Z to functions RU
V (f) on Ω.
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Definition 3.1. A probability measure ν on {+,−}Z is weakly Gibbsian if there
exists a potential U and a tail field set Ω of points of absolute convergence of U
such that

1. ν(Ω) = 1.

2. For all finite V ⊂ Z, for all events B measurable in V c and for every
bounded measurable function f

∫

B

f dν =

∫

B

RU
V (f) dν. (3.5)

4. Main results

Our main result is that µ is a weakly Gibbsian measure for an exponentially
decaying interaction. To explain and to be more specific, we need some further
notation.

Look at a large time τ to the sites in Λ ≡ {0, 1, . . . , N}. Ask for the proba-
bility that the ητ (i), i ∈ Λ, take specific values α(i). Then,

Prob[ητ (i) = α(i), i ∈ Λ] ≡ Prob[ητ (i) = −, i ∈ Λ] exp[−Hτ
N(α)] (4.1)

defines a “Hamiltonian” Hτ
N , α ∈ {+,−}N+1.

The problem is to understand that Hamiltonian is a sum of potentials UN,τ
A ,

indexed by the finite sets A ⊂ Z. We must then show that UN,τ
A (α) decays

sufficiently fast, uniformly in N and τ , as the set A gets a large diameter, at
least when α is “typical” for µ.

To be specific about the typicality, we introduce the set

Ω ≡
⋂

k∈Z

Ωk, Ωk ≡ ΩL
k ∩ ΩR

k (4.2)

with

ΩR
k ≡

{

α ∈ {+,−}Z : ∃ `(α) < +∞,
∑̀

j=k

α(j)

` − k
≤ −1/2 for all ` ≥ `(α) + k

}

and analogously for ΩL
k (summing to the left of k).

Clearly Ω is translation invariant and is tail. We consider µτ , the measure
at time τ when starting Stavskaya’s PCA from all minuses.

Proposition 4.1. For ε sufficiently small and for all τ ≥ 0

µτ (Ω) = µ(Ω) = 1. (4.3)
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Proof. Consider the probability

Prob
[1

`

∑̀

i=0

ητ (i) > −1/2
]

for ` large. By monotonicity, that probability is smaller than the one for τ =
+∞, i.e., in the stationary measure µ+∞ = µ, and converges to

µ
[1

`

∑̀

i=0

η(i) > −1/2
]

. (4.4)

These probabilities can be rephrased in the percolation language of Section 2.2.
The fraction of minus values in {ητ (0), ητ (1), . . . , ητ (`)} equals the fraction of
sites in the set {0, 1, . . . , `} from which there is a path of es(k) = 0 to some
vertex at time zero. Uniformly in τ , with probability going to one exponentially
fast as ` goes to infinity, that fraction is larger than 1 − g(ε) with g(ε) ↓ 0 as
ε ↓ 0. As a consequence, (4.4) goes to zero exponentially fast in ` whenever
g(ε) < 1/4. We can choose ε > 0 small enough so that is the case.

By translation invariance and subadditivity it suffices to show µ(ΩR
0 ) = 1.

µ
[

∃`0, ∀` ≥ `0 :
1

`

∑̀

i=0

η(i) ≤ −1/2
]

≥ 1−

∞
∑

`=L

µ
[1

`

∑̀

i=0

η(i) > −1/2
]

, ∀L.

(4.5)
The last sum is converging and can be made arbitrarily small by taking L large.

2

Proposition 4.2. There are UN,τ
A (α) non zero only if A = {k, k+1, . . . , `} and

α(k) = + = α(`) for some 0 ≤ k ≤ ` ≤ N so that in (4.1)

Hτ
N (α) =

∑

A⊂Λ

UN,τ
A (α)

and for small enough ε > 0,

|UN,τ
A (α)| ≤ −3 ln ε (4.6)

while there is F < +∞,

|UN,τ
A (α)| ≤ F exp[−V (ε) a] (4.7)

for large diameter |A| = a, with V (ε) ↑ +∞ as ε ↓ 0 whenever α ∈ Ω.

Theorem 4.1. For all times t > 0 the evolved measure µt and the stationary

measure µ are weakly Gibbsian for a translation invariant potential obeying the

bounds (4.6) and (4.7).
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5. Proofs of Proposition 4.2 and Theorem 4.1

5.1. Telescoping potential

The potential will arise as terms in a telescoping expression for the Hamilto-
nian. The method goes back to [2] and was already applied for a similar problem
in [7, 9, 10].

We start from the definition (4.1) for which we write

Hτ
N (α) =

N
∑

k=0

Fk(α)

where

Fk(α) ≡ Hτ
N (−, . . . ,−, α(k), . . . , α(N)) − Hτ

N (−, . . . ,−, α(k + 1), . . . , α(N)).
(5.1)

If therefore we put

UN,τ
k,` (α) ≡ Fk(α(0), . . . , α(`),−, . . . ,−) −Fk(α(0), . . . , α(` − 1),−, . . . ,−),

(5.2)
then

Hτ
N (α) =

N
∑

k=0

N
∑

`=k

UN,τ
k,` (α) (5.3)

and UN,τ
k,` (α) depends only on the values of α(k), . . . , α(`). In that way we have

defined our candidate potential

UN,τ
A (α) ≡ UN,τ

k,` (α)

when A = [k, `], non-zero only if A is a lattice interval [k, `], and parameterized
by N and τ .

5.2. Potential as correlation function

By construction, when (α(k), α(`)) 6= (+, +), we have UN,τ
k,` (α) = 0. Hence-

forth, we put α(k) = + = α(`). We also need not worry about the cases ` = k
or ` = k + 1 which give no extra difficulties and continue with k ≤ ` − 2.

We abbreviate
Prob[ητ (i) = α(i), i ∈ Λ] = P(α)

so that

expUN,τ
k,` (α) =

P(−, . . . ,−, α(k + 1), . . . , α(` − 1), +,−, . . . ,−)

P(−, . . . ,−, +, α(k + 1), . . . , α(` − 1), +,−, . . . ,−)

×
P(−, . . . ,−, +, α(k + 1), . . . ,−, α(` − 1),−, . . . ,−)

P(−, . . . ,−, α(k + 1), . . . , α(` − 1),−, . . . ,−)
. (5.4)
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Factors can be taken together to write conditional expectations, e.g.,

P(−, . . . ,−, +, α(k + 1), . . . , α(` − 1),−, . . . ,−)

P(−, . . . ,−, +, α(k + 1), . . . , α(` − 1), +,−, . . . ,−)

= E[f`(ητ−1) | η0 ≡ −, (ητ (i), i ∈ Λ) = (−, . . . ,−, +, α(k + 1), . . . ,

α(` − 1), +,−, . . . ,−)]

≡ E
α[f`(ητ−1)]

where

f`(η) ≡
p(− | η(` − 1), η(`))

p(+ | η(` − 1), η(`))

and the expectation E
α is with respect to Stavskaya’s PCA started from all

η0(j) = − and always conditioned on (ητ (i), i ∈ Λ) = (−, . . . ,−, +, α(k +
1), . . . , α(`−1), +,−, . . . ,−) (and hence also depending on N, k and `). We will
also use Pα for the corresponding probability law.

As a consequence, proceeding similarly for the other fractions in the right-
hand side of (5.4), we obtain

UN,τ
k,` (α) = ln

[

1 +
E

α(f`(ητ−1)) E
α(fk(ητ−1)) − E

α(f`(ητ−1)fk(ητ−1))

E
α(f`(ητ−1)fk(ητ−1))

]

. (5.5)

We start with the denominator E
α(fk(ητ−1)f`(ητ−1)) in (5.5). Clearly

(

ητ−1(k − 1), ητ−1(k)
)

= (+, +)

or
(

ητ−1(` − 1), ητ−1(`)
)

= (+, +)

implies that either fk(ητ−1) or f`(ητ−1) will equal zero. On the other hand,
when

(

ητ−1(k−1), ητ−1(k)
)

6= (+, +) and
(

ητ−1(`−1), ητ−1(`)
)

6= (+, +), then
fk(ητ−1)f`(ητ−1) = (1 − ε)2/ε2. Therefore,

E
α(fk(ητ−1)f`(ητ−1)) =

(1 − ε

ε

)2

Pα[F ] (5.6)

where F denotes the event that
(

ητ−1(k − 1), ητ−1(k)
)

6= (+, +) and
(

ητ−1(`−

1), ητ−1(`)
)

6= (+, +).
Remember now that in Pα we condition, among other things, on ητ (k) =

ητ (`) = + so that F cannot occur when eτ (k) = 0 or eτ (`) = 0. If on the other
hand, eτ (k) = 1 and eτ (`) = 1, then ητ−1(k − 1) and ητ−1(`) are free and the
conditioning on α has no influence on them. More precisely,

Pα[F ] = Pα[F | eτ (k) = 1, eτ (`) = 1]Pα[eτ (k) = 1, eτ (`) = 1]

≥ Pα[ητ−1(k − 1) = −, ητ−1(`) = − | eτ (k) = 1, eτ(`) = 1]

×Pα[eτ (k) = 1, eτ(`) = 1]

≥ (1 − 2Cε)Pα[eτ (k) = 1, eτ(`) = 1].
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The last factor is the probability that the noise acts at time τ to decide the value
at sites k and `. That is independent of the values of α(k + 1), . . . , α(` − 1),
hence larger than ε2; conclusion:

E
α(fk(ητ−1)f`(ητ−1)) ≥

(1 − ε

ε

)2

(1 − 2Cε) ε2. (5.7)

The functions fk also satisfy the upper bound (1− ε)/ε. That takes care of
an upper bound to (5.5). A lower bound is obtained in exactly the same way.
We thus see from (5.5) that the potential is uniformly bounded:

|UN,τ
k,` (α)| ≤ ln

[

1 +
2

(1 − 2Cε)ε2

]

thereby proving the boundedness of the potential, uniformly in N and τ , see
(4.6).

5.3. Percolation event

We must prove that UN,τ
k,` (α) decays sufficiently fast in |` − k|, uniformly in

N ↑ +∞ and τ ↑ +∞, at least for a large class of α, i.e., for α ∈ Ω.
From the above computations we conclude that in order to control the po-

tential, we need to find an upper bound for the covariance appearing in (5.5).
We use a standard trick to rewrite the covariance in a doubled space:

E
α(f`(ητ−1)) E

α(fk(ητ−1)) − E
α(f`(ητ−1)fk(ητ−1))

= E
α

[

f`(ητ−1) [Eα(fk(στ−1)) − E
α(fk(στ−1) | ητ−1(` − 1), ητ−1(`))]

]

= E
α[f`(ητ−1) E

α,η(fk(ητ−1) × 1 − 1 × fk(ητ−1))] (5.8)

where E
α,η is the expectation with respect to the product coupling

P
α,η ≡ Pα ×Pα,η (5.9)

where the second marginal is

Pα,η ≡ Pα[ · | ητ−1(` − 1), ητ−1(`)]

The coupling defines a random field ((σ1
s (j), σ2

s (j)), (j, s) ∈ Wτ
N ) on the space-

time region
Wτ

N ≡ {(i, t) ∈ Z
2 | 0 ≤ t ≤ τ, t − τ ≤ i ≤ N}.

As a first estimate, from (5.8)

|Eα(f`(ητ−1)) E
α(fk(ητ−1)) − E

α(f`(ητ−1)fk(ητ−1))|

≤
1 − ε

ε
|Eα,η((fk(ητ−1) × 1 − 1 × fk(ητ−1))|. (5.10)
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Suppose now that there is a fixed path γ which goes from a vertex (j, τ − 1)
(for some j ∈ {k + 1, ` − 2}) to a vertex (j, 1) on which all σ1(v) = σ2(v) =
−, v ∈ γ. Then, the function fk is shielded away from what happens around the
vertex (`, τ−1): conditioned on such a negative path, changing the configuration
around (`, τ − 1) can have no influence on the distribution of fk.

We formulate that more precisely using the percolation event

Ec ≡ {(σ1, σ2) | ∃γ ∈ ΓN
τ , ∀(k, t) ∈ γ : (σ1

t (k), σ2
t (k)) = (−,−)}

where ΓN
τ is the collection of paths on Wτ

N going from the lattice interval [k +
1, ` − 2] at time τ − 1 to time 1. The complement of Ec is denoted by E. By
construction

E
α,η [fk(ητ−1)×1−1×fk(ητ−1)] = E

α,η [fk(ητ−1)×1−1×fk(ητ−1 | E] P
α,η[E]
(5.11)

which is useful to continue our estimate (5.10). We get

|Eα(f`(ητ−1)) E
α(fk(ητ−1)) − E

α(f`(ητ−1)fk(ητ−1))|

≤ 2
(1 − ε

ε

)2

Pα ×Pα[E]. (5.12)

We now have the coupling Pα×Pα with distribution obtained from Stavskaya’s
PCA and remembering that σ0(j) = − for all j, στ (j) = − for all j except that
στ (k) = στ (`) = + and that στ (i) = α(i) for i ∈ {k + 1, . . . , ` − 1}.

It is left to prove that the probability of finding some sort of wall blocking
directed (−,−)-percolation starting from some vertex (i, τ−1), i=k+1, . . . , `−1,
is exceedingly small as |k − `| grows, uniformly so in N and in τ , at least for
α ∈ Ω of (4.2).

5.4. Final estimates

Event E contains all (double) configurations (σ1, σ2) except those with a
percolating path of (−,−), starting somewhere in [k + 1, ` − 2] at time t =
τ − 1 up to t = 1. We must estimate its probability in the product coupling
Pα×Pα. The superscript α reminds us that we should also condition on having
στ (0) = . . . = στ (k − 1) = −, στ (k) = +, στ (k + 1) = α(k + 1), . . . , στ (` − 1) =
α(`− 1), στ (`) = +, στ (` + 1) = . . . = στ (N) = −. Our first step is to get rid of
this conditioning.

To that end we define the set S(α) = S ≡ {i ∈ Λ, α(i) = +}.

Lemma 5.1.

Pα ×Pα[E] ≤ exp
[

2|S(α)| ln
[

1 +
1 − ε

ε(1 − Cε)

]]

P × P [E]. (5.13)
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Proof of (5.13). We start with a lower bound for P(α). For every i ∈ S we use
the bound

p(+ | a, b) ≥ p(− | a, b)
ε

1 − ε

to get

P(α) ≥ (
ε

1 − ε
)|S| Prob[στ (i) = −, i ∈ Λ]. (5.14)

Secondly, p(+ | a, b) is either equal to 1 (when (a, b) = (+, +)) or equal to
εp(−|a, b)/(1− ε) (when (a, b) 6= (+, +)). As a consequence,

Prob[στ (i) = α(i), i ∈ Λ |στ−1] =
( ε

1 − ε

)|T |

Prob[στ (i) = −, i ∈ Λ\S∪T |στ−1]

(5.15)
where T = T (στ−1) ≡ {i ∈ S, (στ−1(i − 1), στ−1(i)) 6= (+, +)}. We combine
(5.14) with (5.15) to get

Prob[στ−1(j) = β(j), j ∈ Λ∗ | στ (i) = α(i), i ∈ Λ]

=
(1 − ε

ε

)|S\T (β)| Prob[στ (i) = −, i ∈ Λ \ S ∪ T (β) | στ−1(j) = β(j), j ∈ Λ∗]

Prob[στ (i) = −, i ∈ Λ]
(5.16)

for every β(j) = ±, j ∈ Λ∗ ≡ {−1, 0, 1, . . . , N}. Observe that α has disappeared
from the right-hand side in (5.16). We use that for (5.13):

Pα ×Pα[E] =
∑

T1,T2⊂S

Pα ×Pα[E, T (σ1
τ−1) = T1, T (σ2

τ−1) = T2]

≤
∑

T1,T2⊂S

(1 − ε

ε

)|S\T1|+|S\T2| Prob[E, F1, F2]

Prob[στ (i) = −, i ∈ Λ]
(5.17)

where Fk , k = 1, 2, is the event σk
τ (j) = −, j ∈ Λ \S ∪ Tk. Each term in the last

sum of (5.17) can be written as

Prob[E, F1, F2]

Prob[στ (i) = −, i ∈ Λ]
=

R1

R2

with R1 ≡
Prob[E, F1, F2]

Prob[F1, F2]
and

R2 ≡ Prob[σ1
τ (j) = −, j ∈ S \ T1 | F1]Prob[σ2

τ (j) = −, j ∈ S \ T2 | F2]. (5.18)

It summarizes (5.17) to

Pα ×Pα[E] ≤
∑

T1,T2⊂S

(1 − ε

ε

)|S\T1|+|S\T2| R1

R2
. (5.19)
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R1 is the probability that no directed percolation of (−,−) occurs in the product
coupling conditioned on F1, F2. By monotonicity R1 ≤ P ×P [E]. Similarly,

R2 ≥ (1 − Cε)|S\T1|+|S\T2|

so that

Pα ×Pα[E] ≤ P ×P [E]
∑

T1,T2⊂S

( 1 − ε

ε(1 − Cε)

)|S\T1|+|S\T2|

(5.20)

which immediately yields the required (5.13) 2

Lemma 5.2. There is a constant K < ∞ so that

P × P [E] ≤ (K ε)|k−`|. (5.21)

Proof of (5.21). We refer to Section 2.2: if there is (0, 0) percolation in the
double Bernoulli field, then there is (−,−) percolation of the Stavskaya fields.
As a consequence, the event E implies that there is no path of (0, 0) for the
field (es(k)1, es(k)2) from the interval Λ at time τ to time one. For ε small, the
density of (0, 0) is however arbitrarily close to one. Standard percolation results
finish the proof. 2

Proof of (4.7). We collect all estimates starting from (5.5) and (5.7). Finally
we use (5.12) combined with (5.13) and (5.21). 2

Proof of Theorem 4.1. To prove that the time-evolved measures µτ are weakly
Gibbsian, it suffices to inspect (4.1) and to combine it with the results of Propo-
sition 4.2. In particular, the measures µτ are translation invariant and the
construction of the potential (UN,τ

A ) is also translation invariant. The absolute
convergence of the potential is uniform in N and each term

UN,τ
A (α) → Uτ

A(α)

converges to a well-defined limit as N ↑ +∞. That follows form the expres-
sion (5.5): the functions f`, fk and the products fkf` are all local non-negative
decreasing functions. Therefore each expression like E

α(f`(ητ−1)) which de-
pends on N , converges monotonically as N ↑ +∞.

The proof that the stationary measure µ is also weakly Gibbsian proceeds
similarly but now uses the uniformity in τ . Expressions like

E[f`(ητ−1) | ητ ]

are monotone in τ , bounded and positive. The potential converges term by term
and the bounds are preserved enabling the definition of the relative Hamiltonian
for α ∈ Ω. 2
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6. Additional remarks

Remark 6.1. A natural question is to ask whether perhaps Stavskaya’s measure
is (fully) Gibbsian (and not just weakly Gibbsian). We believe (but do not
prove) that the answer is negative. One may indeed wonder what happens in
the case where α = +. The following is crucial:

Prob[ητ−1(i) = +, i ∈ Λ∗ | ητ (j) = +, j ∈ Λ] =
Prob[ητ−1(i) = +, i ∈ Λ∗]

Prob[ητ (i) = +, i ∈ Λ]

does not decay with N . As a consequence, the probability to find a minus
somewhere in Λ∗ at time τ −1 does not go to one when Λ is full of pluses. That
is why a good fraction of minuses in α over arbitrarily long intervals is needed
to have good decay of the constructed potential.

Remark 6.2. The method of proof can be exported to various other PCA’s.
There is certainly no restriction to one dimension (see e.g. [7, 8]). Of course,
the estimates do not come for free. So far, we have no answer to the question
whether for example the extremal stationary measures in Toom’s north-east-
center model are (weakly) Gibbsian, [12, 17]. On the other hand, the extension
to more general percolation processes, as e.g. defined in [18], does not seem
to present extra difficulties. The application of our method to continuous time
dynamics, like the contact process, has also not been tried yet but we do not
expect important difficulties.
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