e

222 MIKLOS AJTAI and AVI WIGDERSON

[KUW] R. M. Karp, E. Upfal, and A. Wigderson, “A fast parallel algorithm for
the maximal independent set problem,” 24th STOC 266-272 (1984).

[KW]R. M. Karp and A. Wigderson, ““A fast parallel algorithm for the maxima]
independent set problem,” 24th STOC 266-272 (1984).

[Lu] M. Luby, “A simple parallel algorithm for the maximal independent set
problem,” 17th STOC (1985).

[Ma] G. A. Margulis, “Explicit construction of graphs without short cycles and
low density codes,” Combinatorica 2(1): 71-78 (1982).

[Ru] W. L. Ruzzo, “On uniform circuit complexity,” J. Comput. Sys. Sci. 22(3): 1
365-383 (1981).

[RT] J. H. Reif and J. D. Tygar, “Towards a theory of parallel randomized
computation,” TR-07-84, Aiken Computation Lab., Harvard University, SELF-CORRECTING
1984.

[‘ [Si] I\;I?;()Si3p3s;:r(,l‘9‘;;\3)complexity theoretic approach to randomness,” 15th STOC TWO_DIMENSION AL ARRAYS

[Sh] Shamir, “On the generation of crytographically strong pseudo random
sequences,” 8th ICALP, Lecture notes in Comp. Sci. 62: 544-550. Springer-

' Verlag, Berlin, 1981. ‘

| [St] L. Stockmeyer, “The complexity of approximate counting,” 15th STOC

i 118-126 (1983).

” [VV] L. G. Valiant and V. V. Vazirani, “NP is as easy as detecting unique Peter Gacs

| solutions,” 17th STOC (1985).

I [Ya] A. C. Yao, “Theory and applications of trapdoor functions,” 23rd FOCS
| 80-91 (1982).

| ABSTRACT

|
| | We continue the program begun in two earlier works: to find simple
f : and efficient ways to implement computations of arbitrary size by a
homogeneous array of unreliable elementary components. The
homogeneity of cellular arrays makes the maintenance of the error-
correcting organization the biggest technical problem. This problem
could be completely avoided in the earlier three-dimensional con-
struction, where almost no structure was needed. All error correction
was performed using Toom’s voting rule. The structure maintenance
problem dominates the earlier one-dimensional construction since
there is no Toom’s Rule in one dimension. Here, we present a
two-dimensional solution, desirable for several reasons. Information
maintenance is no longer possible by Toom’s Rule, forcing us to
adopt a hierarchical design. But Toom’s Rule is still applicable to

Advances in Computing Research, Volume 5, pages 223-326.
1 Copyright © 1989 by JAI Press Inc.

Al rights of reproduction in any form reserved.

"~ ISBN:0-89232-896-7

223

B S

224 PETER GACs

structure maintenance, giving a significant complexity-dimension
trade-off. The second achievement of the present work is the
constant space redundancy. Despite the noise in its elementary
components, our computing device has a positive capacity as a
“communication channel” from input to output. Great care wag
given to terminology and structured presentation to create a
reference point on which further developments (e.g., the introduc-
tion of asynchrony) can be built. The first third of the paper serves
as an informal overview of the subject.

1. ASSUMPTIONS

There are some general assumptions underlying our investigation
that distinguish it from many other studies addressing problems of
fault-tolerant computing. These assumptions are as follows.

e We have to build computing devices of arbitrary size from a
few types of elementary components.

e Faults occur in each component independently at different
space-time positions. Faults thus do not conspire: only the
computation creates dependence between the results of faults.

e Faults are transient: they change the local state but not the
local transition rule.

e The probability of component faults is bounded by some
small parameter ¢ independent of the size of the computing
device.

e There are no other restrictions on the type of fau
occur. Thus, faults can cause arbitrary local stdte changes.

The goal is to find architectures coping with all combinations
of faults likely to arise for devices of a given size. We also want
to estimate the needed sacrifice in time and memory to make a
computation reliable.

1.1. Transient Faults

The requirement that the faults be transient restricts us severely.
This is the kind of fault that is only a one-time violation of the rule
of operation. It does not incapacitate the component permanently
in which it occurs. In the following steps, the component obeys its
rule of operating again, until the next fault.

2

£

Self-Correcting Two-Dimensional Arrays 225

The toughness of the condition become§ clear if we try to
implement each component of a theoretica}l device by a small network
of transistors. In a typical implementation, the states of the com-
ponent are mapped into some configurations of the network. But
most configurations will be illegal. Therefore the fault of one
transistor brings the network probably into an illegal conﬁguratlop
not representing any state of the implemented component. It‘ is
better therefore to understand under implementation something
like a computing crystal: a compound Whose transition rules are
determined by physical law. It is unlikely, of course, that some
chemist will find or synthetize a compound with exactly the same
transition laws that we propose. Our constructions must be viewed
as existence proofs. However, they help to clarify what properties of
the local transition rule are needed for reliable computation.

Transient faults are not an exotic kind. Their main source is
thermal noise that becomes more significant as the scale of physical
devices goes down.

The case of nontransient component fault is of practical import-
ance, but it has not been investigated in the same generality. There are
reasons to believe that many of the techniques developed for the case
of transient faults will be applicable to the case of permanent faults.

1.2. Parallel Architectures

A reliable computer, all of whose components are unreliable,
must use massive parallelism. Indeed, information stored anywhere
during computation is subject to decay and therefore must be
actively maintained.

Problems concerning serial computers are of less “‘ideological
purity,” since they must except a part of the device from the
influence of faults. Still, the following problem seems technically
very challenging. Manuel Blum asked whether reliable computatiop
is possible with Turing machines in which only the internal state is
subject to faults: the tape is safe. Presently, it seems that the solution
of this problem requires a construction analogous to the one given

in [G].
1.2.1. Inhomogeneous Devices

von Neumann [VN] designed a Boolean (acyclic) circuit that
works reliably even if its components are unreliable. In his model,

220 PETER GA(Cg

each component had some constant probability of fault. For ,
deterministic circuit consisting of N components, he built a circyijt
out of O(NlogN) stochastic components, computing the same
function with large probability. (For an efficient realization of pjg
ideas, see [DO2].) The key element of his construction is arestoring
unit. This unit is supposed to suppress the minority. If among
its n Boolean input values fewer than 0.3n are different from the
majority then among the n Boolean output values, fewer than 0.1,
values differ, even if each component of the restoring unit fails with
probability 0.01. The restoring unit of [DO2] achieving this consistg
of several layers of majority gates. The inputs for each such gate are
three randomly selected sites of the previous layer.

The redundancy factor log N in von Neumann’s construction
seems to be essential. The number N can be called the size of the
computation. In other models of computation, it corresponds to the
number of elementary events (including information storage)
during the whole computation, i.e., roughly to the product of the
number of components by the number of computational steps. This
estimate is a little weak if the only goal of the computation is
information storage.

For purposes of information storage, it is better to use the model
of clocked circuits. These are Boolean circuits in which special one-bit
memory elements called shift registers are also\permitted. Cycles are
permitted but each cycle must contain at least one shift register.

We cannot store even one bit in n registers ofsuch a circuit for
longer than 2" steps, since during that time quite probably a step
will occur in which the content of all cells changes simultaneously.
But the paper [Kuz] showed that once we have n registers, it is
possible to store there ¢ -+ n bits for 2 steps, where the positive ¢
depends only on the fault probability of the individual components.
This work used Gallagher’s low-density parity-check codes, as

proposed in [Ta], but improved both in performance and proof by
Pinsker.

1.2.2. Cellular Automata

The above constructions suffer from the same theoretical Sfaw:
the circuits use a rather intricate connection pattern that cannot be
realized in three-dimensional space with wires of constant length.
On the other hand, the natural assumption about a wire is that as
its length grows, its probability of fault converges to 0.5.

.f

’ 5;',If-Co

* dimensional space W

: 7
rrecting Two-Dimensional Arrays 22

' i is a lattice of automata in, say, three-
el P (mlf::jrl;l I:\?ery automaton takes its input from a
few of its closest neighbors. First iptrod}lced by von I\igllli?:;lrr; ;gld
Ulam, such devices are now sometimes known as “sys 3
or “iterative arrays.” Mathematical physicists use the more genera

i jve particle system. '
ter;n lfiiézgft;"lfi’ zli)utomatayare required to have the same trqnsitlon
func)?i)on an(’i are connected to the same .relati\{e neighbors, 1e., tﬁe
device is translation invariant. The gpatlal uplfqrm1ty suggests the
possibility of especially simple physical realization. It reducels the
number of ingredients thalt are assumed unchangeable by faults to
i - the transition rule. N
Jus(tjeoliflar media are desirable computing devicgs, and. it is easy to
construct a one-dimensional cellular space tha!t is a unlYersal com-
puter. Let us indicate how a one-tape Tur}ng machine can be
simulated by a cellular array, since these machines are better known
to be universal. o

A Turing machine is defined to have an infinite array of tape cells
and a head. Each cell can be in a finite number of possﬂ)le states,
and so can the head. In each instant, the head i§ scanning a cell.
Nepending on the state of the scanned cell and 1ts'own state, the
siead makes one of three possible movements (left, right, stay), and
changes its own state and the state of the scanned cell. The rule of
operation of the machine describes this depeqdence: ‘

In a possible simulation, the cellular array simulating the Tur%ng
machine has one cell corresponding to each tape cell of the Turing
machine. A state of a new cell indicates the state of the representefi
tape cell, the fact whether the head is scanning the tape (?ell anc} if
yes, what is the head’s state. The transition rule of this supulatmg
array is easy to derive from the transition rule of the simulated

Turing machine.

A

2. PHILOSOPHICAL DIGRESSION
2.1. Notions of Complexity

Our remarks make use of several very different notions of com-
Plexity, and it will be important to keep them apart. nge of thqse
notions have now very adequate mathematical definitions, while
some other ones do not.

228 PETER GACS
2.1.1. Descriptional Complexity

Kolmogorov and Solomonoff introduced the notion of descrip-
tional complexity. In its current version (see [Le]), the complexity
K(x) of a finite string can be defined as the length of the shortest
self-delimiting program needed to direct some fixed univeral com-
puter to output x. This complexity could be also called ”information
content,” or “measure of disorder,” “measure of randomness,” or
“individual entropy.” According to this notion, a typical string of
n bits arising from a coin-tossing experiment is maximally complex.
Let Prob,(x) be the probability to obtain x as output on some fixed
universal Turing machine [the same one used in the definition of
K(x)] in ¢ or fewer steps from a coin-tossing input. The relation
K(x) = —logProb,(x) + O(1) is known (see [Le]).

2.1.2. Computational Complexity

In the Theory of Computation, another notion of complexity has
widespread use. This complexity is the property of a function. The
function g(x) is a lower bound on the time complexity of function
f(x) on Turing machines if for each Turing machine T there is a
positive constant ¢ such that for all x, T takes at least cg(x) steps
to compute f(x).

2.1.3. Logical Depth

Descriptional complexity helped define individual information
and individual randomness. It also helps define a notion that
can be considered the “individual computational complexity”
of a finite object. Some objects are clearly the result of long
development (computation), and are extremely unlikely to arise
by any probabilistic algorithm in a small number of steps. This
property of objects was formally defined by Bennett as follows
(see [B)).

depth,(x) = min {z: Prob,(x)/Prob, (x) > ¢}.

Thus, the depth of a string x is at least ¢ with confidence 1 — ¢ if the
conditional probability that x arises in ¢ steps provided it arises at
all is less than .

Self-Correcting Two-Dimensional Arrays 229
2.1.4. Conceptual Complexity

There is alsc an informal notion of conceptual, or organizational
complexity that will certainly be applied to the present paper to
some extent, and to [G] to a great extent. It will probably never be
formally defined, though it may be related to an informal version
of depth,(x) defined above, with the length of x too small to be
amenable to formal treatment.

2.2. Noise Resistance and Biological Organization

Even serious scientists indulge sometimes in speculations about
“what is life.”” The goal is to formulate some abstract criteria that
among the existing structures in nature, only biological (or, possibly,
social) systems satisfy. It is not easy to find such criteria: self-
reproduction is clearly insufficient. Answers to this type of question
may influence our perspective on some of the more immediate
problems of science.

Work on fault-tolerant computation led us to the conjecture that
the requirement to perform in a noisy environment forces rather
elaborate structures, with some resemblance to the ones in biological

¢ istems. Two extremal cases of the “performance” we have in mind

are information storage and the production of depth.

Much of the apparent conceptual complexity of biological
systems might be due to the simple requirement of reliable infor-
mation storage. Here is an informal argument in favor of this
(informal) thesis: without systems of biology or human society,
there seems to be no method to save 300 bits of information from
decay somewhere in the universe for 10° years. But life has preserved
much more information in the DNA for longer.

A similar thesis could be stated about systems starting with zero
information but producing structures of ever increasing logical
depth, in a noisy environment. Again, only systems involving
biology or society seem to be capable of this.

The above general observations are in contrast with most early
€xperimental and theoretical work on cellular automata. The
Physical investigations were concerned with systems whose conver-
gence to equilibrium could be taken for granted, and only the
properties of these equilibria were of interest. The computational
applications built structures with logical depth. Examples are
algorithms involving systolic arrays, or the structures to simulate

230 PETER GACS .

arbitrary computations by simple rules like Conway’s Game of
Life [BCG] or Margolus’s Billiard Ball rule [M]. However, if faults
are permitted then all structures built in these computationa]
applications turn rapidly into shallow chaos.

We are interested to find out what properties of the elementary
building blocks can help counteract chaos.

2.3. On the Need for Proofs

We deal with media whose reliability can be proven mathemati-
cally. Nobody suggested yet candidates for reliable media found by
experimentation. Simple reliable—or almost reliable—media with-
out proofs probably exist: such media might underly biological
systems. But elementary constructions coupled with rigorous
elementary mathematical analysis yielded more information for the
present research than experimentation.

One reason (suggested by the reviewer) for the lack of more experi-
mentation with error-correcting schemes in the model we are con-
sidering is that the fault probabilities of the elementary components
are generally very small, even if constant. Experiments could
therefore take a long time before an interesting effect turns up.

3. A THREE-DIMENSIONAL RELIABLE MEDIUM
3.1. Toom's Results

The first questions about the possibility of storing information in
arbitrary interactive particle systems were asked in the context of
ergodicity. Without giving a formal definition here, we recall that an
ergodic system converges to a unique statistical equilibrium in-
dependent of the starting configuration. Such a system therefore
cannot store even one bit of information, and cannot increase depth
too much.

It was a nontrivial result of Toom that there are infinite two-
dimensional cellular media that can store reliably a bit of infor-
mation. Let us assume that in the initial configuration, each cell has
the same state s. We try to limit the probability of a state different
from s in each cell at all later steps. It is not easy to find “voting”
rules that achieve this, and even if we find one, it is not easy to prove
that it works. This is what Toom did; moreover, he characterized
all such monotonic rules.

Self-Correcting Two-Dimensional Arrays 231

For the rest of the paper, we choose one rule in the above family.
To determine the state of a cell in the next step, this rule tgkes the
majority of its northern, southwestern and sputheastern nel’ghbors.
In what follows we will refer to this rule simply as.Toom s Rule.

Toom’s proof in [Too] uses an elaborate topological argument
that we could not adapt to an efficient finite version of the theorem.
A new proof technique, the technique of “k-noise,” was develope,d
in [G] and [GR]. It gave a more straightforvx./ard proof of Toom’s
theorem with efficient finite implications. It is also the .oply prqb-
abilistic tool of the present paper. Mathematical physicists point
out that it belongs to the broad class of techniques known under the
name renormalization.

3.2. Application to Computation

Let D be any one-dimensional medium (cycle) of size K working
for L steps. We can simulate its work reliably using a three-
dimensional medium D’ on a torus of size K xd xd wh;re
d = log'**(KL). Each trajectory x[t,n] of D (the function givmg
the state of cell n at time ¢ when the medium evolves according to
the rule D) is mapped into a trajectory z[t,n,i,j] of D" by

z[t,n,i,j] = x[t,n]. 3.D)

Thus, each symbol of D is repeated over a whole two-dimensional
slice of D’. In each step, the transition rule of D" uses first Toom’s
Rule within the slices then rule D across the slices. Without errors,
(3.1) holds for all ¢,n,1i,j. It is shown in [GR] that with errors, the
same relation will still hold with large probability. The space
requirement of the reliable computation, compared to the original
one, is increased by the factor d*. The medium D’ will simulate D
reliably step-for-step, without any time delay. ‘
This simulation is the simplest design for reliable computation
ever proposed. Its simplicity seems to depend on some special
circumstances, especially on a too high number of dimensions, and
on synchrony. When these do not hold, we have to rely on much
more complicated models. N
No attempt was made in [GR] to maximize the error probablhty
permissible for reliable computation. Bennett’s experiments on
Toffoli’s Cellular Automata Machine give convincing empirical
evidence that Toom’s medium is nonergodic at error probabilities

232 PETER GACS

below 0.05. Piotr Berman and Janos Simon, using Toom’s original
proof, brought error bound needed for the proof to 107 (see [BS)).

3.2.1. Heat Production

There are some physical reasons to look for lower dimensional
error-correcting media. A three-dimensional error-correcting
medium is thermodynamically unrealizable. Indeed, any error-
correcting operation is inherently irreversible. Such an operation
turns a certain minimum amount of free energy into heat. Therefore
each cell Wivate “supply line” for feeding it with free
energy and relieving it of the produced heat. This is possible only
if the medium is at most two-dimensional.

3.2.2. Synchrony

Toom’s Rule keeps a bit of information in a two-dimensional
medium even if the cells do not all fire at the same time. But the
three-dimensional computing medium defined above is heavily
dependent on the synchronous operation of all cells within a cross
section. All simple synchronization techniques that we are aware of
interfere with error-correction.

4. HIERARCHY OF SIMULATIONS
4.1. Coding

Reliable computation always requires coding with redundancy.
Without it, part of the input is lost in the first step, and part of the
output in the last step. During the computation therefore, infor-
mation must live in encoded form. .

In general, reliability seems to require that we break up the task
into manageable pieces in space and time, and, with each subtask,
we go through a cycle of decoding, computation and encoding.
Each cycle is repeated several times, since an error can ruin the
work of the whole cycle.

In the three-dimensional case, we enjoyed the exceptional situation
that the orthogonality of the computation to the repetition code
permitted immediate parallel access to each bit of the code. The
repetition needed to counter errors in the computation happens to

Self-Correcting Two-Dimensional Arrays 233

be identical to the repetition used as redundancy in coding. Due to
the lack of decoding or transport, no special structures are required
to support the error-correcting activity.

In the general case, information needs to be transported from
storage to the place where it is processed. There, it must be decoded.
After processing, it must be transported back for storage. All this
needs elaborate organization devoted to the task of error correc-
tion. In the homogeneous media we are discussing now, this organ-
ization can exist only as “software,” just as perishable as the rest of
information, and it needs maintenance.

The program also must have some continuity property: small
errors have small consequences. This property will be achieved
by insisting that in any one phase of the program, only a small
part of the information can be changed. To enforce this require-
ment, it will be necessary to keep track of phase and relative
position by especially robust methods.

4.2. Increasing Reliability by Repeated Decoding

In a computation of size N there will be arbitrary groups of
fealts of size of the order of log N. Reliable computation must
be organized in such a way that no crucial piece of information
18 committed to a number of cells smaller than log N. Whatever
coding we use it must operate with units greater than log N.
The tasks of decoding, shipping, etc. with these units are large-
scale computational tasks in themselves that must be organized
reliably.

The greater units can be derived mathematically only from the
Primitive “physical” cells of our original medium M, using decod-
ing. Decoding transforms the original probability distribution in M
into a different one, in which the great units will operate much more
reliably than the original cells.

We could view the greater units as a new kind of cell with a large
State space (always as large as needed). It is more advantageous to
view them as colonies built of the cells of a standard universal
medium Univ. From colonies of a given size P, we will arrive at
Colonies of a larger size P* and higher reliability in the following
Way. We choose a certain parameter Q, group the colonies in arrays
of size Q by Q (called alliances), and apply the decoding of a certain
Crror-correcting code to the configuration found in the resulting

«, array of size QP by QP.

234 PETER GACS

Hierarchy was used in the context of inhomogeneous one-
dimensional cellular arrays in [Ts]. The transition rule of the cells
was required to vary hierarchically in space and time, to organize
a voting scheme, with the sole purpose of remembering one bit of
information.

The paper [Kur] made a rather elaborate proposal for such a
hierarchy of simulations. Several ideas of this proposal were used
in

5. MAINTENANCE OF THE ORGANIZATION

5.1. Structure Maintenance

Above, we referred to a hierarchy of simulations that we had to
use for reliable computation in dimensions 2 and 1. On each
level of the hierarchy, for some parameters P, Q, P*, colonies
of size P (“small colonies””) are grouped in a Q by Q array
(the alliance) to simulate a colony of size P* (a “big colony”).
All these configurations are in the universal medium Univ. Each
small colony has some work period 7, and the alliance has a work
period TU.

5.1.1. Health

Each small colony will, of course, have to obey a certain
program. In order for the program to have the desired effect, the
configuration of the colony must be somewhat standardized. The
standardization need not be very elaborate: we will just mark the
boundaries of the colony at the beginning of its work period. We
will say in this case that the colony is healthy. If health is lost then
it seems that we cannot keep our view elevated from the alliance to
the colony simulated by it, since the small colonies no longer work
by their original program.

5.1.2. Legality

Even if the members of the alliance are healthy they must
share some information that is of no use for the decoder but is
needed for the orchestration of their work. An idea that reduces the
structure maintenance problem to a manageable size is that all the

Self-Correcting Two-Dimensional Arrays 235

information needed for this purpose falls into one of the following
categories.

e Parameters of the alliance: some constants that are the same
for each small colony;

e Two remainders mod Q describing the position of each small
colony in the alliance;

e A remainder mod U describing the current clock value in the
work period of the alliance.

The last two pieces of information are called phase variables. The
activity of the colony can be made very predictable, provided that
the value of the phase variables is correct, even if the rest of the
information it handles is in doubt. In particular, the colony can
consult the phase variables every time it is about to write to certain
places—to make sure it writes only when the program permits this.
This reliance on the phase variables will guarantee the continuity
property mentioned in Section 4.1. We will call a healthy small
colony legal when its parameters and phase variables have the
required values.

In some sense, the values of the parameters and phase variables
are not information. Indeed, they are a simple periodic function of
space and time. Legality can therefore be restored by methods more
local than those needed for the rest of the information. This obser-
vation solves the problem completely for two dimensions. Healthy
colonies will maintain or restore their legality by Toom’s Rule.

As a result, the two-dimensional reliable medium built in the
present paper has the following property:

Legality of colonies of the lowest order will be restored over an arbitrarily
large damaged area if only the frequency of faults remains small in each of
their alliances. This will happen even if none of the higher order colonies is
healthy.

There is no Toom Rule in one dimension. Structure maintenance
is still possible by more complicated methods, as shown in [G]. That
they are more complicated can be seen from the fact that the above
property will no longer hold. Legality and health can be defined in
one dimension similarly to the way they were defined above. If the
legality of colonies of the lowest order is damaged in an area needed
for simulating a colony of order k then, even without noise, it will

26 PETER GACS

be restored only if outside this area, still healthy colonies of order
k are simulated. Thus, in two dimensions, to restore the legality to
lowest order colonies in a damaged area, it was enough if it was
surrounded with an area of comparable size containing legal
colonies. In one dimension, not only the size of the surrounding
area matters: it must be of comparable size and organized to the

maximum level, even if only the restoration of the legality of the
smallest colonies is required.

; \/ 5.2. Health Maintenance

Toom’s Rule restores legality to healthy small colonies. It is not
clear yet how will health be restored to damaged small colonies, in
order for them to be able to apply Toom’s Rule. However, if we
assume that health is restored by “magic” then we can program the
same kind of magic into the simulation of big colonies. Indeed, at
the beginning of the simulation of a big colony by an alliance, the
latter will cast the big colony into the standard initial form required
by health.

Because of the initializing step, the simulation of colonies by
alliances is not like ordinary simulation: periodically, a certain
structure is forced on the simulated colonies, whatever their
previous state was.

Essentially, this is the method also used in [G], but there, setting
all parameters had to be part of the initialization. This type of
organization resembles that of biological systems: each cell has the
genetic code of the whole organization.

The health of colonies of the lowest order will be assured because
these colonies will be single cells of the reliable medium M and, as
such, they will be defined to have only healthy states.

At the end of the computation, whatever information is in the
alliance must be cast in the form of a redundant code. Due to

heightened requirements of efficiency, this problem is harder to
solve here than it was in [G].

6. MINIMUM REDUNDANCY

All past and present results discussed in this chapter indicate that
if the size of the computation is N then the size of the simulating
computation must be at least Nlog N, provided that some real
computation is being performed. The last qualification is necessary

237
Self-Correcting Two-Dimensional Arrays

since information storage needs only a cpnstan~tbtl‘actt(c))rdi1;1t i;egduLil;lI;
f cellular arrays, it 1s possible :
dancy. In the model o . Possible to
i equirements of the comp ,

between the time and space r d e duct of
it i ible to represent the redundancy :

it is therefore possible ‘ ' saproduct s

ies i d time. Thus if ¢ steps of comp
e redundancies in space and ’ : /
g}n cells of a deterministic medium are 51mu1'ated re}lably zy tdztzgs
of n’ cells of a stochastic medium then t’/t is the time redun y
d »’/n is the space redundancy. o
anThe/results available to date on cellular arrays 1nd1cate. tllllat. tl}z
product of the time and space redundancies must be logarltt :::11(12) L)
i ion. We can state this as a conjecture,
the size of the computation. ' u
it seems a difficult one to prove, especially that the case of “no real
ion” ted.
omputation” must be excep ’ .

) Tlll)e logarithmic redundancy can be shifted entirely to space, or
almost entirely to time, as the following examples show.

The three-dimensional simulation in [GR] iii reag-time:o tfh:;;z
i i edundancy
is no time redundancy, but there 18 space T .
10g2“N (reduced to log N in [BS]). The ideas of [GR] applied
to [G] give a real-time two-dimensional reliable simulation
2
ith space redundancy log™N. . .
vTvile t\?vo—dimensional simulation described in the present
chapter has constant space redundancy, and time redundancy

log?*¢N.

7. THE CONCEPTS AND THE RESULT
7.1. Sites and Events

Let Z be the group of remainders mod mfif m is ;imte,ciﬁ;:l svl:ﬁ
i i is 1 | t W of sites of our
of integers if m is infinite. The se ‘ '
IS;:ZZ2 If m % oo then W is the two-dimensional rectangular laxtlce
’ - . . a
7? 6therwise, it is a lattice over a torus of filameterlm.d rse 2
no‘tational convenience, we define, in analogy with Pascal an

analysis, the intervals
[a..b) = {xeZ:a<x<b}.

The following definitions are given fqr two dimensions butt gl?;l Siag
be generalized to any number of dimensions. For a se

238 PETER GACS

vedtor v in Z2, and integer n we define

v+ G ={v+uueG}.

A partition of the plane and the three-dimensional space into
squares and cubes will be used so often that we introduce a special
notation for it. For a positive integer P, we write

[P;i] = [iP..(i+ 1)P)

for the intervals of length P shifted by a multiple of P from the
origin. Similarly, we write

[P;i, jT" = [P;i] x [P; j]

for squares of size P shifted from the origin horizontally and
vertically by a multiple of P. The cubes [P; h,i,j]’ are correspond-
ingly defined. The intervals of type [P;i], [P;i, j]* and [P;h,i, jT
will be called P-intervals, P-squares, and P-cubes, respectively.

7.2. Configurations and Evolutions

Let S be a finite set, the set of all possible states of our cells. Let
B be a set of sites. A configuration x over Bis a function that orders
a state x[p]e S to each element p of B. Let x,y be two configur-
ations, over the sets of sites B and C, respectively. We will say that
yis a translation of x, if there is a vector u such that C = u + B, and
for all p in B we have y[p + u] = x[p].

Let x be a configuration over the set B of sites, and C a subset of
B. Often, we will talk about the configuration x[C] that we obtain
by restricting x to C. However, if C’ is obtained by translation from
C and x’ is obtained by the same translation from x then we
consider x’[C’] equal to x[C]. One dimensional example: if C =
{—1,0,1} then x[t,p + C] is the string

(x[tap - l]’ x[tap]a x[t’p + l])

(indexed by 0, 1, 2).

An evolution with set S of states over the set W of sites in the time
interval I is a function x from I x W to S. we will write x[z, p] for
the state of cell p at time ¢ in the evolution x. The function x[¢,]

Self-Correcting Two-Dimensional Arrays 239

is a configuration for each ¢. Therefore x[z, C] is defined according
to the notation above.

7.3. Media and Their Trajectories

We will use the convenient term medium for an array of cellular
automata. The set of sites is not part of the definition of a medium
since we will consider the behavior of the same medium over
various sets of sites (in particular, for various values of m).

A medium Med will be defined by giving a finite subset G of W
(the interaction neighborhood of the site 0), a finite set S = S),,4 of
states, and a transition function Med: S® — S. Thus, the transition
function Med orders a value Med () in S to all configurations y
over G. A medium with a particular set of sites (always a torus in

this paper) will be called an iterative array. We will often refer to the
number

IMed| = [log, | Syedl |

as the cell capacity of medium Med.

Some evolutions of an iterative array are called trajectories.
These are the evolutions x for which the value x[z + 1, p] depends
only on the values x[z, p + p’] for p’ in the neighborhood G, in a way
determined by the transition function. An evolution x is called a
trajectory of the medium Med if for all (¢, p) we have

x[t+ 1,p] = Med (x[t,p + G)). (7.1)

The simplest example of an interaction neighborhood is G =
{‘— 1,0,1} in one dimension. There, the function Med (y) can be
S{mply viewed as an operation of three arguments in S, i.e., the
right-hand side of (7.1) can be simplified to Med (x[t,p — 11, x[1,],
x[p + 1]).

In our context, the word ““error” could denote two different con-
cepts. To distinguish these we call them ““faults” and “deviations,”
and reserve the word “error” to informal discussion. We say that
a fault occurred in x at (¢ + 1, p) (with respect to Med) if (7.1) does
Not hold. If y is a trajectory then the event x[v] # y[v]is a deviation
(of the evolution x from »). Intuitively, a medium is reliable if it
Can keep the number of deviations small despite the occasional
occurrence of faults.

240 PETER GACS

ExampLE 7.1 [Toom’s two-dimensional error-correcting medium).
This medium can be defined for any state-space. Let us define first
the majority function Maj(x, y,z). If two of the three arguments
coincide then their common value is the value of Maj, otherwise
Maj(x,y,z) = x. The interaction neighborhood is defined by
H = {(0,1), (=1, = 1), (1, — 1)}, and the transition function R by
R(x[H]) = Maj(x[H]). Rule R computes the majority among the
states of the northern, southwestern, and southeastern neighbors.
Any constant function is a trajectory of R. (There are also some
nonconstant periodic trajectories.) Suppose that x[0,p] = 0 for
all p. We have a fault in x[¢, p] if it is not the value obtained by
voting from the triple x[t — 1, p + H]. We have a deviation if
x[t,p] # 0. O

Let (¢[t, p): t€[0..1), pe W) be a system of random variables with
a joint distribution. We say that ¢ is a g-perturbation of medium
Med if for each subset B of [0../) x W the probability that for al//
ve B a fault occurs in & at v is less than @', (This condition is
satisfied if the faults occur independently with probability g, but it
includes some other cases important in statistical physics.) We will
say that ¢ is a g-perturbation of a trajectory y over the same
space-time set if it is a g-perturbation of Med with &[0, p] = y[0, p]
for all p in W. Our goal is to find situations in which if the
probability ¢ is small then the probability of deviations is also
small: in other words, faults do not accumulate.

7.4. Coding and Simulation

By reliability we mean the possibility of simulating the computa-
tion of a deterministic medium by an error-prone medium. For this,
of course, the simulation must use an error-correcting, redundant
code.

In this chapter, we will want to encode the information content
of a square array of cells into a larger square array. Let P be a
positive integer, and let C be a P-square. The set S€ is the set of all
configurations over C.

Let S, and S, be two alphabets, and P, P, two integers, with C;
being the corresponding squares. A (two-dimensional block-) code

Vo= W)

Self-Correcting Two-Dimensional Arrays 241

from S, to S, with blocksizes Py, P, is characterized by source
blocksize P, and target blocksize P,, encoding function

. oG Co
Yy Si' > S

and decoding function y* where y*(,(x)) = x. A code can be
extended to configurations larger than those over a single square:
over a union of aligned squares, by encoding resp. decoding each
square separately. We have a single-letter code if P, = 1.

Let us be given two media Med, and Med,, with state sets S, S|,
and a code ¥ with blocksizes P,, P,, further the natural numbers
T,, T,. We say that is a simulation of Med, by Med, with
parameters Py, P, T, T, if for any multiples m, of P,, any trajec-
tories x; of Med, over the spaces W, = Z,, , the relation

%o[0, Wo] = ¥4(x,[0, W,])
implies
xo[To, Wol = ¥u(x[T,, W,]).

The parameters P, P, are still called the blocksizes. The parameter
T, is called the source work period, while T, is called the target work
period. Thus, a simulation sets up a correspondence between the
evolutions of two media. A simulation is single-step if T, = 1.

A medium is universal if it can simulate any other medium by a
total single-letter single-step simulation. There are many possible
universal media in two dimensions. Some of them (the ones built
like universal Turning machines) are easy to program. Others (like
Conway’s Game of Life, or Margolus’s Billiard Ball rule) are very
simple to define. For the purpose of the following theorems, let
Med, be a fixed medium.

7.5. The Result

Our goal is to find a “reliable” simulation of our fixed arbitrary
medium Med, by a suitable medium M, as Med, computes on a
certain set Z? of sites for a certain number ¢ of steps. The simulation
7 used will depend on the sizes n, ¢ of the computation and the error

- Probability ¢ permitted in the result.

242 PETER GACS

The medium M and the structure of the code y is complicated to
describe, and we leave the description to the proof. However, there
are two reasons why it is not possible to “‘cheat’ and hide the whole
computation in the code.

e The code is independent of the computation (except for' its
size), and decoding is an inverse of the encoding. To begin a
computation on the output, we do not have to decode and
encode again.

e The code can be computed rapidly.

Let m denote the target blocksize of the code y. We say thazt the
trajectory y of M on Z2 is in the range of y if we have y[0,Z;] =
7,(u) for some configuration u of Med, on Z}.

THEOREM 7.1. (MAIN THEOREM). There is a medium M, 2a fault
probability bound ¢ > 0 and for each n, t, € with L = log(n t/s)f a
simulation y with parameters n, m, T, T’, such that the following
holds.

o for any h < [t/T’], the probability of the event
YEIT, Z3) = y*(y[hT, Z3))

is at least | — ¢ for all trajectories y of M in the range of y, and
all g-perturbations & of y.

e The periods are (almost) logarithmically small: we have
P, T = OQ2"¢""). The redundancies can be estimated by
m = O(m+ P), T/T" < L**°0,

e The code vy is computable in O(T) steps on a suitable deter-
ministic medium.

The code given in the theorem implements every compgtation 91
the ideal fault-free medium Med, in the “physical” medium M in
such a way that the probability of deviations rema‘ins quer control.
The space requirement n of the original computation is increased to
m in the implementation. Hence according to the statement of the
theorem, the space redundancy is a constant factor, except when .the
space n is too small to accommodate even one (logarithmic-size)
block of the simulation.

Self-Correcting Two-Dimensional Arrays 243

8. ERROR-CORRECTING CODES

8.1. Burst Error Correction

It is not surprising that the theory of reliable computation
makes use of the theory of error-correcting codes. (What is
surprising is how much more is needed besides error-correcting
codes.) Indeed, if information is not stored in encoded form then
one step of computation will be enough to cause irreparable
damage.

A one-dimensional binary code y (i.e., a code from strings to
strings) is said to correct t errors if for all strings u, v, if y,.(«) differs
from v in at most 7 places then y*(v) = u.

ExaMmPpLE 8.1 [Repetition code]. Let V«(#) = uuuuu over strings
uof length k. Let the decoding function be defined over strings v of
length 5k. The decoding goes as follows: to determine the @+ Dth
symbol of y*(v), we look at the symbols with indexes Si,51+k, ...,
5i + 4k in v and take their majority. It is easy to see that this code
Yy corrects two errors. Repetition coding uses too much redundancy.
There are better error-correcting codes. O

The kind of error correction we need is measured rather in the
number of error bursts of a certain size corrected than in the number
of errors corrected. We say that code y, mapping binary strings of
length Kn to binary strings of length Nn, corrects t bursts of size n
if it corrects any pattern of errors covered by at most ¢ intervals of
the form [n;].

The present section sketches the proof of the following theorem.

THEOREM 8.1. Suppose that n has the Jorm 2 - 3" Then for all
integers N < 2", 1t < 2" there is a code from strings of length
(N=20nto strings of length Nn correcting t error bursts of size n.

here is a universal one-dimensional cellular array performing the
decoding and encoding for these codes, for all n, N, 1, in space O(Nn)
and time O(Nnlog Nn).

This theorem is a straightforward application of the theory of
gebraic codes. The details of the proof are not original and are not
Deeded for the rest of the chapter. We advise the average reader to
Just use the theorem and skip the rest of the present section.

al

A e M

244 PETER GACS

8.2. Shortened BCH Codes

The BCH codes are treated, e.g., in the textbook [BI]. A (shortened)
BCH code correcting ¢ error bursts of size n has a space of symbols
that is a Galois field GF(2"), and needs 2¢ symbols devoted to
redundancy. We represent the field as the set of remainders with
respect to an irreducible polynomial. To make things completely
explicit, we use the fact, derivable from the theory of fields (see
[La]), that the polynomial

Py 41

is irreducible over GF(2). We choose 7 to be an integer of the form
2 -3, and use the above irreducible polynomial to represent the

field GF(2").
Let o be the element of GF(2") represented by the polynomial y.
Then the elements 1, a, o, ..., a" ' are all different. Our codewords

are the vectors ¢ = (¢, . ..,cy_;) over GF(2") with the property that

chaff =00G=12,...,2¢).
j

or in other words, the polynomials c¢(x) of degree N — 1 over
GF(2") with the proper*v that ¢(o') = 0 for i = 1,...,2t. Let

g(x) = (X—oc)(x_a2)...(x_a21)

Then the codewords are the polynomials ¢(x) of degree < N over
GF(2") divisible by g(x). Hence the information strings can be
represented by polynomials of degree N — 2t — 1 over GF(2"), and
encoding is multiplication by g(x).

We need efficient decoding and encoding algorithms to avoid
significant time delay. Moreover, the total space used by our
algorithms can be at most constant times more than the amount of
information processed. To achieve this, we adapted some well-
known algebraic algorithms to our iterative array.

8.3. Algebraic Operations

All needed algebraic operations can be performed in O(nlogn)
time and in O(n) space. It is likely that time can be brought down
to O(n) but we do not need this fact.

Self-Correcting Two-Dimensional Arrays 245

Addition can obviously be done in O(n) time and space.

Fast mu}tiplication needs the fast Fourier transform (over
an appropriate smaller field). The latter can be done by an algorithm
F(n) in f(n) = O(n) steps, within a one-dimensional cellular
array of length O(n), as follows. In stage 1 of F(n), we separate
the even and odd digits into the two halves of the array: this
can be done in O(n) steps. Now a recursive call of F(n/2) simul-
taneously transforms both halves in f(n/2) steps. (For the sake
of the Fourier transform, we can pad n to a power of 2.) Finally,
the even and odd bits are restored from the two halves using
O(n) steps. This shows f(n) = O(n). The overhead (e.g., a firing-
squad-type organization for timing) does not take up more than
O(n) space.

The O(n) Fourier transform gives O(n) polynomial multipli-
cation (convolution), and division, which give O(n) multiplication
over GF(n). For division over the field, the Euclidean algorithm is
needed. It is known that the Euclidean algorithm can be organized
?n O(nlog n) serial operations (see [Bo]). The same algorithm can be
implemented here, even with the O(n) space requirement, in
O(nlogn) steps.

8.4. The Complexity of Encoding and Decoding

‘Computing the polynomial g(x) can be done in O(N) field oper-
ations and linear space, using fast Fourier transform over GFQ2").
Encoding is multiplication by g(x), hence it can be done with fast
Fourier transform at the same time and space cost.

The ﬁ;st step of decoding is the computation of the syndromes
tS} = ¢(«'). Computing the values of the polynomial ¢ at 2¢ places
18 a well-known operation doable on a sequential machine in
O(Nlog N) operations. It does not cause any problem to adapt the
{:nown algorithm to the requirement of linear space on our cellular

rray.

- The next step of decoding uses the Euclidean algorithm over
GF(2"), for finding the error-locator polynomial and error-evaluator
Polynomial: see Chapter 7.7 of [BI]. Therefore it can be done
I O(nN) space and O(NlogN) field operations, hence in
O(nNlognN) operations altogether.

This completes the outline of the proof of Theorem 8.1. O

246 PETER GACS

9. OUTLINE OF AN ERROR-CORRECTING STRATEGY
9.1. Correcting a Sparse Set of Faults

The assumption that faults arise randomly and independently is
a natural one but not easy to deal with technically. In practice, if the
fault probability is small then usually the different but similar
assumption is made that faults just arise rarely. This could mean,
e.g., that in not too large domains of time and space, no two faults
will ever occur. Under such assumptions, error correction becomes
easier. One can hope to find a mechanism to correct one fault,
provided no new faults occur during the correction process. It turns
out that even this problem needs an elaborate solution, outlined in
Sections 10 and 12.

A little more generally, we introduce two integer parameters U
and r. We will say that the set of faults is (U, r)-sparse if in each
U-cube in space-time, there are at most r faults. If 7 is small enough
with respect to U then media will be constructed that resists a
(U, r)-sparse set of faults.

The present section outl; 1es how these contributions can help in
fighting probabilistic faults.

9.2. Probabilistic Noise Bounds

Let us be given some probability distribution on all possible sets
in the space-time V = Z x Z.,,. This distribution gives rise to a
random set &. For a parameter p, we say that the distribution of &
is p-bounded if for all k and all finite sets A = {v,,...,7;} of
space-time points, we have

Prob(4 < &) < p~.

Let us define a new space-time V* = Z x Z. whose points are the
U-cubes of V. Point v = (h,i, j) of V* corresponds to the cube
vy = [U;h,i, j} of V.If C = [U; h,i, j]’ then we will write C* =
(h,i, j). For each subset E of V, we define the set E*(r) in V'* as
follows: v is in E*(r) if there are more than r elements of E in the
U-cube v,. Via this mapping, the random noise & gives rise to the
random noise £*(r) in the space V'*.

Self-Correcting Two-Dimensional Arrays 247
LEMMA 9.1 (Noise Bounp). Suppose

p < U—3(r+l) (91)
and that the noise & is p-bounded. Then the noise £*(r) is p’-bounded.

Thus, the derived noise is bounded with a much smaller probability
than the original one.

Proof. By the definition of p-boundedness, for any set D of k
space-time points, the probability of D < & is at most p*. We can
therefore increase the probabilities of all such events by assuming
that individual points belong to the noise independently with

probability p. Let us make this assumption. The following state-
ment follows then immediately.

LEMMA 9.2. For any sequence By, B, , . .. of disjoint U-cubes, the
events B* e &* are independent.

It follows from this lemma that it is enough to prove for a single
U-cube B that the probability of B* e &* is less than r.

For any sequence of r + 1 points in B the probability that they
are allin & is p"*'. The total number of such sequences is less than
U**D_ Therefore the probability that B*e &*, i.ec., that there is
such a sequence in B is less than U*"*"pp’. Hence, inequality (9.1)
implies the statement of the lemma. O

9.3. Increasing Reliability by Simulation

~ Suppose that we could solve the problem of reliable computation
in the presence of a (U, r)-sparse set of faults. This could mean, in the
most simple-minded sketch, that for all U, r and media Med, satisfy-
Ing qertain simple conditions, we have a simulation ¢ and a new
medium M, such that the decoding ¢* maps configurations x of M,
over U-squares [U; 1, j]’ in the space W = Z2,, into states x*[i,]
of M‘edo in the space W* = Z2 . (We suppressed the dependence on
U,rin t'his notation which is local to the present subsection.) The
Success in eliminating a (U, r)-sparse set of faults from the evolution
ic Wgulq mean that the degoded evolution x*[h, i, j] is a trajectory.
cg ectlogs 1'0—12, we will indeed solve the problem of reliable
thmputatlon'm the presence of a (U, r)-sparse set of faults, though
€ results will have a somewhat more complicated form.

248 PETER GACS

If the set E of faults in x is not (U,r)-sparse then there will
probably be faults in the evolution of x* at the points of the derived
set E*(r). If the faults were confined to the set E*(r) then the problem
of error correction would be essentially solved. Indeed, according
to the above lemma, the random set &*(r) is p"-bounded. We
recreated therefore the original situation of a medium Med, to be
implemented, and probabilistic faults, with the only difference that
the probability bound is now p” instead of p. We could call the
simulation ¢ a “reliability amplifier,” or in short, an amplifier.
Concatenating several amplifiers, we can get probability bounds p",
p', etc. Soon the probability of faults becomes negligibly small.

9.3.1. Too Big Cells

Before being carried away with this plan let us take a closer look.
Each time we apply an additional amplification the cell capacity (we
defined it as the logarithm of the number of states) of the simulating
medium could increase. The number of amplifiers depends on the
need to decrease the fault probability, and this depends on the size
of the original computation. But this means that the cell capacity of
the simulating medium depends on the size of the computation to
be carried out, which is not what we want.

Due to this problem, Sections 13 and 14 modify the construction
of Section 12, replacing each cell of the simulating medium by a
block of some universal medium Univ. These blocks will be called
colonies, and an array of colonies will be called an alliance. In the
simulation thus modified, alliances in Univ will simulate blocks in
the simulated medium Med,. The working time T of colonies will
be different from their size P. In case the simulated medium 1s
also Univ the simulated blocks will also be called colonies. The
simulated colonies are called big, the simulating colonies are called
small.

9.3.2. How to Restore Colony Structure

Once we introduced colonies, a new problem arises, as mentioned
in Section 5.2: the simulating colonies will need some minimal
structure to work according to their program: how will this struc-
ture be restored after the faults? We will postulate this restoration
axiomatically. Evolutions satisfying these axioms will be called
self-correcting evolutions.

Self-Correcting Two-Dimensional Arrays 249

9.3.3. How to Obtain Self-Correcting Evolutions

We are willing to restrict ourselves to self-correcting evolutions
if, in case the simulated medium is Univ again, the following holds:

All evolutions obtained by decoding from evolutions that are self: -correcting
with respect to small colonies will be again self-correcting, with respect to
big colonies.

The simulation, ¢, will be modified in Section 16 to have this
property. This will complete the construction of amplifiers.

10. A PERIODICALLY VARYING MEDIUM
RESISTING SPARSE NOISE

10.1. The Noise Condition

In the present section, we start the investigation of a special kind
of error correction. The concepts developed here have some interest
in their own right. However, they are justified in the present chapter
as a building block of the proof of the main theorem.

The noise condition used in the present section depends on a time
period U and a fault bound r. Let us say that an evolution x is a
(U, r)-trajectory if in every U-cube, x has at most r faults. We say
t‘hat a (U, r)-trajectory is a (U, r)-perturbation of a trajectory yif
it f:oincides with y at time 0. Our goal here is, for an arbitrary deter-
ministic medium Med,, to find a simulation ¢ of Med, by a suitable
medium M, that withstands (U, r)-perturbation. The simulation has
source- and target-blocksizes Q” and Q and source- and target-
workperiods U” and U. It is simulating the work of Med, on z,.

' The medium M, and the simulation ¢ used will not depend on the
size n. They do depend on the medium Med, and the constants
Q,U,Q’,U’,r. Thus, the error correction is block-for-block, using
the fact that there are only r faults by U-cube.

The target blocks of our simulation will be called alliances. Each
alliance has the form [Q;i, j], consisting thus of Q x Q cells that,
at least under fault-free conditions, form a cooperating unit.

10.2. Periodically Varying Media

L§t us temporarily relax the requirement of homogeneity for the
medium M, . We permit the transition rule M, to be inhomogeneous:

250 PETER GACS

it can change periodically in space (in both directions) with period
Q and in time with period U. In other words, M, at space-time
point ¢, i, j will depend on tmod U, imod Q, and j mod Q: in the
equation of a trajectory instead of 7.1 at a point (¢, u) withu = (i, j)
we have

x[t+ 1,u] = My(x[t,u+ G], tmod U, imod Q, j mod Q).

We imagine such a transition rule as a computer program telling
each cell of the alliances in each step of the working period specifi-
cally, what local action to perform.

Let m = nQ, denote the output blocklength of the code ¢, and
let W = Z2.

Before stating the theorem let us note that the parameters Q, U,
Q’,U’ are not completely arbitrary. The size Q must be large
enough for 18r errors to be correctable. We require Q > 3Q’ to
represent easily nine neighbor Q’-squares within one alliance. This
requirement could be eased considerably since we can choose a
larger cell capacity for the medium M,,. The time period U must
clearly be long enough to carry out the error-correcting simulation.
This will involve some decoding, coding, and repetition. A constant
factor could again be hidden here by choosing a larger cell capacity
in the simulating medium. For convenience, we also require the
time period to be divisible by the blocklength. This leads to the
following assumption.

ConprtioN 10.1 (S1zE).
0 > max(3Q’,Q’ + 22r),
U=[U0 10 log 0,
Q|U.

There are many ways to satisfy these conditions. Given an arbitrary
rand Q’, U’, we can choose Q greater than the right-hand side of
the first inequality. Then we can choose U to be any multiple of Q
greater than the right-hand side of the second inequality.

THEOREM 10.1. Suppose that the Size Condition 10.1 holds. Then
there is a periodically varying medium M, with periods U,Q and
capacity |M,| = O(log(Q + U)), and a simulation ¢ with parameters

Self-Correcting Two-Dimensional Arrays 251

0,0, Q, U’ such that the following holds. For all n, all trajectories
y of My in the range of ¢ over ZﬁQ, all (U, r)-perturbations x of y, and
all nonnegative integers h we have

P*([hU,W]) = @*(y(hU, W)

The rest of the present section is devoted to the proof this
theorem.

10.3. The Construction

Error-correcting devices have a crucial feature: continuity. The
property of continuity means that every elementary event of the
computation (happening at one space-time point) influences only a
small part of the result. The continuity property will be achieved as
follows. We subdivide the alliance into a certain number of columns
and the working period into the same number of stages. We estab-
lish that in stage i, only column i can change its information
content. In this way, stage i influences only column i.

10.3.1. Variables

As we often do in the analysis of Turing machines, the state-set
§ = S, of the medium M, will be the Cartesian product of several
sets: S = §; x -+- x S,. Thus, the value x[h, i, j]is the collection of
several values Z,[h,i, j],..., Z,[h,i, J1. For a Turing machine, we
would say that we divided the tape into k individual “tracks.” We
call log|sS;| the width of track i.

Borrowing the terminology of computer programming, we will
refer to the value

Zl [ha la]] = Zl ()C)[/’l,i,]]

as the value of variable Z, at site (i, J) at time 7 (in the evolution x).
The. transition rule M, will therefore say how the individual variables
at site (i, j) depend on those in the neighbor sites at time 4.

' The notion of tracks (variables) is another tool to achieve con-
linuity. We agree that the information used by the decoding func-
tion ¢* is in the variable InpMem, i.e., the value ¢* (x[t, A]) for the

o alliance 4 depends only on InpMem[t, A]. Now the program can

252 PETER GACS

move information across any cells (i, j): as long as it does not
require to change the variable InpMem(i, j] and no fault happens at
(i, j), the variable will not be changed.

Actually, the continuity requirement applies only to the variables
in InpMem and the ones used immediately for their updating, called
OutMem. We extend the notion of deviation to tracks, i.e., variables.
When we compare the evolution x with the trajectory y of the same
medium, we will say that there is a deviation at space-time point
(t,i,j) on track Z, if Z,(x)[t,i,j] differs from Z,(y)[z, 4, j]. Of
course, if x deviates from y on any one track at the space-time
point (¢,1, j) then there is a deviation in the absolute sense at this
point, i.e., x[t, 1, j] and y[t, i, j] are different. But in general, we will
be more interested in the deviations on particular tracks than in
deviations at all.

Let us outline the major operations that the inhomogeneous
medium M, performs in the U steps of the work period in the
alliance and the neighbor alliances.

10.3.2. Decoding

Let b be the first integer of form 2 - 3 greater than both the cell
capacity |Med,| and log Q. The Size Condition and Theorem 8.1
implies the existence of a code Algeb from binary strings of length
bQ’ to binary strings of length bQ that corrects 11r error bursts of
length b. The simulated Q’-square of Med, will be encoded row-by-
row by the code Algeb.

Now we can define the code ¢. It takes a Q" by Q’ configuration
of Med,. It encodes each row into a binary string of length 5Q".
Then it applies the code Algeb to each row, and writes the result
onto the ImpMem track of a row of length Q, writing b bits into
one cell. (Thus, the ImpMem track must be at least b bits wide.)
The other tracks are set to an arbitrary initial state. There will be
Q — Q' unused rows in the target square: we can ignore them.
Decoding is the inverse. We take the ImpMem track, and apply the
decoding function Algeb to each of its rows.

The first task of the program is decoding. Indeed, we do not know
how to manipulate the information in encoded form.

The decoding process, as well as all other operations mentioned
later, uses tracks different from InpMem or OutMem. We will
not give names to all these other tracks: they have the collective
name Workspace. The result of the decoding in each alliance is a

Self-Correcting Two-Dimensional Arrays 253

configuration of M(.ed0 overa Q" x Q' square. The original content
of the Imp Mem variables is not changed. The result of the decoding
is stored on a Workspace track.

10.3.3. Input

Due to the Size Condition, we can store the result of decoding in
a subsquare of size Q/3 of the alliance, in a part of the Workspace
called the Simulator track. In this way, the Simulator track of an
alliance could store the decoded information not only from the
allﬁapce itself but also from its eight neighbors, arranged in their
original geometrical relation, in nine subsquares. This is necessary,

since the state of the alliance after U steps will also depend on the
neighbor alliances.

10.3.4. Computation

On the fiecpded contents of the original blocks of Med,, the work
of Med, is simulated step-for-step for Q* steps, in the Simulator
track. This procedure Compute(t) is simple: the Workspace track

of the cells of M, is programmed to behave like Med, for ¢
steps. ‘

10.3.5. Encoding, Output, Repetition

The square of size Q/3 on the Simulator track is encoded again.
. Now, we resist the temptation to write back the encoded result
lnto. the OutMem track of the colony. While decoded, the infor-
mation was vulnerable to even a single fault. The computation
performed on it could spread the errors even farther. Therefore
We cannot completely trust the result. We will use only a single
column of it, column s, therefore this part of the program can
be called the procedure Output(s). In this procedure, we write
column s of the result back into column s of a new track called
OutMem. The rest of the result can be discarded. The reason we
have to use a new track is that the old value of InpMem 1is still
needed. Only the last step of the program replaces Inp Mem with
OutMem.

The part of the program defined until now can be summarized in
the following procedure.

254 PETER GACS

procedure CompColumn(s, t);
begin

Decode;

Input;

Compute(t);

Encode;

Output(s);
end;

One more level of repetition is needed. The parameter ¢ above
will always be chosen smaller than Q. Indeed, more steps of the
computation would depend on alliances farther away thap the
immediate neighbors. Therefore the program part defined until now
must be repeated U’/Q’ times. o

The program below also has some idle steps at the begmpmg.
These are not important for other than technical convenience in the
later proofs.

The whole program can now be written as follows. Let

N =UQ |

idle 2Q steps;
for / := | to N + 1 do begin
if/<Ntbent:=Q elset:= U — NQ'.
for s:=1to Q do
CompColumn(s, t);
ImpMem = OutMem;
end

Since the rule M, is allowed to be space-time dependent{ Fhe
implementation of the above program in the form of a transition
table does not cause any principal difficulty. We do not do it
because it is tedious. It is clear from Theorem 8.1 that all five parts
of CompColumn take O(Q log Q) steps, hence the whole program
takes at most O(Q*(U’/Q")log Q) steps. A constant factor in 'the
running time can be eliminated by the unusual speedup tI“ICk,
increasing the cell capacity and combining several steps into
one.

Self-Correcting Two-Dimensional Arrays 255

10.4. Proof of Theorem 10.1

Let y be a trajectory of M, over W in the range of ¢. Let x be a
(U, r)-perturbation of y. We have to prove the relation

(x[hU, W]) = @(y[hU, W])
for all h. We will actually prove a little more:

LEMMA 10.1. Let C be an alliance. Then JSor all h, in each row of
C, on the InpMem track there are at most 10r deviations of x from y.

The theorem will follow since the decoding ¢*, which is essen-
tially the decoding Algeb*, corrects 18r errors. O

Proof of Lemma 10.1. The lemma certainly holds for 4 = 0,
since x and y coincide there. We will assume that it holds for 4 and
proveit for 4 + 1. Let C be an alliance. From the inductive assump-
tion, it follows that at time AU, there are at most 10r deviations on the
Imp Mem track in any row of any neighbor alliance of C at time AU.

The events happening in the evolution x during the time interval
[U; h] that can have any effect on the configuration in C at time
(h + 1)U can obviously be covered by nine U-cubes. According to
the assumption that xis a (U, r)-trajectory, in these nine cubes there
are at most 9r faults.

The inner part of the program given above consists of Q calls to
the procedure CompColumn(s, 1), and a last step copying OutMem
to InpMem. We are going to show that only those columns s of
InpMem will have deviations on the InpMem track at time (h + 1)U
for which either there was a fault during the sth call or a fault in
column s at some other time. The number of these columns is
at most 97 +r = 10r.

It is enough to show that in the calls of the procedure Comp-
Column(s, r) when no faults happen, no deviation is created in the
sth column of the OurMem track. Certainly no deviations will be
created during these calls on the ImpMem track, since nothing will
be written there. Therefore columns containing deviations on the
InpMem track in any of the neighbor alliances of C come from two
Sources. 10r of these columns were inherited from the beginning
hU of the work period. r others are created by faults. Therefore

256 PETER GACS

at the beginning of a call of CompColumn(s, t), there are at most 11r
columns per alliance containing deviations on the .Ianem track.
Since the code Algeb can correct 11r errors per alliance, the §ﬁ"ect
of these deviations is eliminated by the procedure Decode during a
fault-free call of CompColumn(s, t). O

11. TOOM'S RULE
11.1. Shrinking Deviations

Let us review the way a finite amount of informat.ion can be
remembered in a two-dimensional homogeneous medlurq. For a
finite set S of states, Toom’s Rule R is defined in Sectlor} 7:3.
Why is Toom’s Rule R likely to preserve a pearly constant initial
configuration? Let us define the linear functions

L@p) = =20+, bLp)=20+p Lp)=—p

For an arbitrary subset F of Z* we define

m;(F) = sup [;(v).

veF

We call m;(F) the measurements of F. For any real numbers
a,,a,,a;, let us define the triangle

I = L(alaa2aa3) = {(x’y): l](x’y) < aj forj = 1a2a 3}

The numbers g, are the measurements m;).

The following assertion is easy to verify. Let‘ ¢ be some constant,
and let y be the constant evolution, i.e., for which y[t,u] = ¢ for all
times ¢ and sites u.

LemMa 11.1. Suppose that x is a trajectory of R ifl which at tf'me
t, the set of deviations from the constant evolution y is gnclosed m{o
the triangle L(a, b, c). Then at time t + 1, the same set is enclosed in
La—1,b—1,c—1).

It is this speed of shrinking, independent of size of the set of
deviations that distinguishes Toom’s Rule.

Self-Correcting Two-Dimensional Arrays 257

11.2. Triangles

11.2.1. Size and Separation

For later use in proofs concerning Toom’s Rule, let us introduce
some more geometrical concepts. We call

] = (@a+ b)/2 + ¢

the size of triangle L(a, b, c). [This expression must be chosen since
the relation (/; + 1,)/2 + I; = 0 will then make sure that the size of
a point is 0.] If the size is negative then the triangle is empty. For
finite diameter m of the torus, the above definition does not work
since inequality is not defined in Z,,. But the definition can be easily
extended as long as the size is less than m. Let us add this require-
ment to the definition of triangles.

For a set ¢ of sets we denote by U # their union and by | #| the
sum Y, , [J|. We say that ¢ covers a set if its union does so. We
denote by # ¢ the number of elements of L.

It is easy to verify the following: If the triangles 7 and J have non-
empty intersection and |I| + [J| < m (where m is the diameter of
the torus) then the size of the smallest triangle containing their union
is smaller than |I| 4 |J|. We can transform a finite set .# of triangles
with |.#] < minto a set .#’ of disjoint triangles in the following way:
we successively replace any pair of intersecting triangles in the set
with the smallest triangle containing their union (this process will
be called merging), as long as we find intersecting triangles. We have

£ < |#).

Figure]. Triangles L(0, 6, 2)and L(—1,5,1), of sizes Sand 3, respectively.

260 PETER GACS

THEOREM 11.1. Assume m > 16. Let y[t, u] be a trajectory of R*
over Z2,. Then G, ({cons)ym) is either empty or is the whole torus.

The estimate {cons)m is certainly too high, but the present
chapter cannot attempt to find the best coefficient of m in this
theorem.

11.3.1. Geometrical Definitions

For the present subsection, triangles will be defined with the help
of the linear functions

l{(d,ﬁ) = -, lZ’(a’B) = '—B’ lg(aaﬁ) = o+ B

These are the triangles naturally associated with rule R” as the old
triangles were with rule R. Now R’ shrinks a triangle L'(a, b, c) to
L'(a,b,c — 1). The size of a triangle L'(a, b, ¢) is givenbya + b + c.
Thus, the rule decreases the size of each triangle by 1. We also
introduce a new neighborhood relation on the two-dimensional
lattice Z2,. The new neighbors of a cell 0 are all vectors (@i, j) with

max (|7],1/1, 11 +) < L.

(These are the old neighbors with the exception of the northeastern
and southwestern ones.) We will view the set of sites as a graph
where the edges connect the neighbors.

The mapping

@i, j) — (i mod m, j mod m)

will be called the wraparound. For any cycle u,,u,,...,u, in our
graph we can compute the sum

(, —) + (s —) + -+ + (wy — u,)

not taken mod m but as the sum of integer two-dimensional vectors
in the plane (not the torus). This sum always has the form (mi, mj)
for some i, j. When i = j = 0 we say that the cycle is contractable.
A connected subset of the torus is called contractable if all cycles in
it are contractable. A noncontractable cycle is called a belt. The
following lemma is elementary.

Self-Correcting Two-Dimensional Arrays 261

LEMMA 11.3. A connected subset C of Z?, contains no belt if and
only if there is a set C’ in Z* whose wraparound is C, such that the
wraparound has an inverse on C that maps neighbors to neighbors.
The set C’ is unique up to translation.

For a connected contractable set C we call the C” of the above
lemma the lift of C. The size of a contractable connected com-
ponent is the size of the smallest triangle containing its lift.

11.3.2. Global Behaviour of Toom's Rule

It is sometimes easier to think of the rule R’ as applied not to a
configuration x over ZZ2 but to the set G,. Thus, for any transition
rule D with a state-space {0, 1} and any set E = Z,,, wesay D(E) =
E’ if D has a trajectory y such that E = G,(0), E” = G,(1).

LEMMA 11.4. Let C be a set of sites.

(@) Suppose that R'(C) is nonempty. Then C is connected if and
only if R'(C) is connected.

(b) The set R'(C) contains a belt if and only if C does. Suppose
that C is connected, contractable with size n > 0. Then the
size of R'(C) isn — 1.

(o) IfC = Cyu---uC, is the breakup of C into disjoint con-
nected components then R'(C) = R'(C,)u---UR'(C,) is
the breakup of R’(C) into disjoint connected components
(some of whom may be empty).

The verification of this lemma is not difficult but requires the
sgmewhat tedious examination of a few special cases, so we do not
give it here.

THEOREM 11.2. Let y[t, u] be a trajectory of R’ over Z,. We have
G,(t) = 0 for a large enough t if and only if G,(0) contains no belt.

Proof. 1t follows from Lemma 11.4 (b) that if there is a belt in
G,(0) then G, (f) never becomes empty. Suppose there are no belts
G,(0). Then it follows from (c) and (b) of Lemma 11.4 that its
components disappear after a finite number of steps. O

262 PETER GACS

11.3.3. Combining Inflation with Toom’s Rule
The following lemma is easy to check.

LemMA 11.5. Let C = C,u---uC, be the breakup of C into
disjoint connected components. Then each of the connected com-
ponents of Inflate(C) is the union of sets of the form Inflate (C;).

The following inequality for an arbitrary set of sites follows from
the monotonicity of the rule R’.

Inflate (R'(C)) = R'(Inflate (C)). (11.3)
The following lemma follows easily from Lemmas 11.4 and 11.5.

LEMMA 11.6. (a) Let C = Cu U C, be the breakup of C into
disjoint connected components. Then each of the connected com-
ponents of R* (C) is the union of sets of the form R (C;).

(b) If C is connected and R* (C) is contractable with size n then C
is contractable with size n + 1.

Let y be a trajectory of R*. A connected component C’ of
G,(t + 1) is said to be an immediate successor of a component C of
G,(?) if R* (C) is nonempty and is contained in C". A component
D of G, (t + k) is a successor of a component C of G,(?) if there is
a sequence C, = C, Cy,...,C, = D such that C, is a component
G,(t + i) and is an immediate successor of C; _,. The above lemma
says that each component has at most one successor at all times.

LeEmMMA 11.7. Let y be a trajectory of the rule R™, let n < m. Let
C be a connected contractable component of G (t) which has only a
single predecessor C; at time i for all i in (t —2n..t). Then C,_,
contains a triangle of size n.

Proof. Since C is nonempty the predecessor at time ¢ — 1 has
size at least 2. It follows from Lemma 11.6 that if C,_,,,, is con-
tractable then its size is at least 2n. Let us denote temporarily
t —2n+ 1 = s. We have, using (11.3):

Cr_ni1 = (RT)(C,) = (Inflate-(R')*)"(C,)
> Inflate"((R')"(C,)). (11.4)

Self-Correcting Two-Dimensional Arrays 263

Since C, either contains a belt or has a size at least 2n, Lemma 11.4

implies that the set (R")*"(C,) is not empty. Therefore the right-hand
side of (11.4) contains a triangle of size n. O

Proof of Theorem 11.1. Let y be a trajectory of R*. Let us

assume that G,({cons)m) is not empty. Let t, = {consd>m. For
i=20,1,..., let us define

o, = [\48(0.6)"’m], ., = 1,— 34,

i

First we show ¢, > 0 for all i < 4logm. Indeed, we have

t, = [0_(50+..,+5i_1)

> to-i—“\/zgm
1 — /0.6

> {cons)m — i — 3lm = m — 4logm > 0.

In th1e6last two inequalities we used the definition of {cons) and
m = 16.

If some G,(t;) with i >0, t,> 0 contains a belt then G ()
contains a belt. In the &, > \/48m steps until 7, the componelit of
this belt will be inflated over the whole space. Suppose therefore
that G,(¢;) with i > 0, ¢, > 0 has no belts.

Let n; be the number of components in G,(t;). Let us call a
connected component in G,(1;) persistent if it has exactly one
predecessorin G, (¢) for all ¢in [¢, +1--1;). Letj be the first i such that
at lqast n; /6 of the connected components in G, (1;) are persistent.

First we show j < 4logm. For any i <j, at least 5n,/6 of the
connected components are not persistent. Each of these com-
ponents has at least two predecessors in G,(t; ;). We have therefore
Wiy 2 5n/3 for all i<j. It follows that n, > (5/3) > 2/2. For
1 > 4logm this would give n, > n?, i.e., the number of components
would exceed the size of the whole space.

Let C be a persistent connected component of G,(t;). It follows
from 'Lemma 11.7 that the predecessor of C in Gyj(t —[6,/27])

contains a triangle of size [§,/27, i.e. it contains at least b,, /8 pc;ints.
Altogether, the set G,(4, — [6,/2]) contains thus at least as many

points as
1§><§’5_f
6 8 3) 48

264 PETER GACS

Using the definition of §,, this is greater than number m’ of points
in the torus. O

12. A HOMOGENEOUS MEDIUM RESISTING SPARSE
NOISE

12.1. Eliminating Space—Time Dependency

In this section, we construct a medium M, that does everything
that M, does in Theorem 10.1, but it will be homogeneous, i.e., a
medium in the original sense of our definitions.

For the sake of the present section, let us denote

(sicky = 18
(devy = (sick) + 18
(corr) = 10¢sick) + <(dev>.
CoNDITION 12.1 (SIZE).
Q > max(3Q’, Q" + 2(corr)r),
Uz (U/QDQlog 0,
Q|U.

There are many ways to satisfy these conditions, as shown in the
remark after Condition 10.1.

THEOREM 12.1. Suppose that the Size Condition 12.1 is satisfied.
Then there is a medium M, and a simulation ¢ satisfying the asser-
tions of Theorem 10.1.

The present section is devoted to the proof of this theorem.

We can eliminate the inhomogeneity from M, formally, by intro-
ducing an extra restriction on the evolution. We add three new
tracks, i.e., three new variables denoted by 7, n,, 7, called the phase
variables. The variable 7 takes its value from the set [0..U). The
variables 7, 7, take their values from [0.. Q). The new local state
space is that of M|, multiplied by the ranges of the phase variables.

Self-Correcting Two-Dimensional Arrays 265

We could restrict our attention to evolutions x over the new

state-space with the property that at all space-time points (¢, i, j) we
have

©(x)[t,7, j] = tmod U,
T (X)[t,i,j] = imodQ,
T(X)[t,i,j] = jmod Q. (12.1)

This requirement means that even the faults cannot change the
values of the phase variables. Now we can modify the transition
rule of M| in such a way that instead of depending directly on time
and space, it will depend on the phase variables. This new medium
M; is homogeneous, and obviously satisfies Theorem 10.1, if we
restrict ourselves to evolutions satisfying (12.1). In what follows we
show how to eliminate the requirement (12.1).

12.1.1. Toom'’s Rule for Periodic Stable States

We will use Toom’s Rule in a slightly generalized form. What we
need to preserve are the periodic evolutions of the variables T, M, T,
rather than all-constant evolutions. (The generalized formulation
of Toom’s Rule is used in [Too] first.)

The rule for 7 is (arithmetic operations are mod U):
tlh+ 1,4, j] = Maj(e[h, i, j+ 1], t[h,i — 1,7 — 1],
thyi+ 1,j— 1)+ 1.
The rule for r, is (arithmetic operations are mod 0)
77:l[h + l’la]] = Maj(nl[h,isj+ l]a nl[h,i - 1,] - l] + l’
mlhi+ 1,7 —1]-1).
The rule for =, is analogous.

12.1.2. The Medium M, and the Code ¢

Let us define the medium M, as follows. It works as the medium
Mg on the variables different from the phase variables. To the phase
Variables, it applies a generalized Toom’s Rule as defined above.

266 PETER GACS

The medium M, is homogeneous. We will prove that it satisfies
Theorem 10.1, even if the property (12.1) is not required.

The code ¢ is defined similarly to its definition in the previous
section. Decoding is exactly the same. In encoding, the phase
variables must be set correctly. The phase variable © will be set
to 0. In this way, the result of the encoding is always an alliance at
the beginning of its work period.

12.2. Legal Cells

Let x be an evolution. We will say that the cell at site (i, j) is legal
at time ¢ if the equations (12.1) are satisfied. Toom’s Rule has the
property that, in the absence of faults, it decreases the set of illegal
cells. This property can be spelled out in a lemma similar to Lemma
11.1. In words, if the set of illegal cells is enclosed in a triangle then
in the next moment, it will be enclosed in a smaller triangle. We
generalize to sets of triangles. If there are several enclosing triangles
then they will be able to contract onto the illegal cells only if each
of them is surrounded by legal cells. For technical convenience, we
will express this in the following form: there is a set of disjoint
triangles whose deflation covers the illegal cells. Thus, we will use
the following property of Toom’s Rule.

LEMMA 12.1. Let y be a trajectory of M, (not necessarily in the
range of ¢). Suppose that at time t all illegal cells are enclosed into
D(4,1), where £ is a disjoint set of triangles. Then at time t + 1, all
illegal cells are enclosed in D(4,2).

Let m = nQ, let y be a trajectory of M, over W = Z in the
range of ¢. Let x be a (U, r)-perturbation of y.

Let E be an alliance. The set of sites at time ¢ — U that can have
any effect on the state of E at time ¢is I'(E, U). Since squares of the
order of magnitude U occur this way, we will try to use U-squares
as much as possible. Condition 12.1 required U to be divisible
by Q. Therefore each U-square is the union of some alliances. Let
us call the U-squares therefore alliance clusters.

We will say that an alliance cluster C is locally healthy at
time ¢ if there is a set .# of disjoint triangles with || < {sick)r
such that the deflation D(#,1) covers the set of illegal cells in
r'CUu).

Self-Correcting Two-Dimensional Arrays 267

LEMMA 12.2. Assume that the conditions of Theorem 12.1 hold.
Let C be an alliance cluster. Then at all times hU, the
statements hold:

Sfollowing
(@) In each alliance E of C, in each row of E, on the InpMem

track there are at most {dev>r deviations of x from
(b) Cis locally healthy.) xrom

Of course, this lemma implies the theorem. O

To prove the lemma, we will use induction on 4. It holds by

definition for 2 = 0. Let us assume that it holds for h, we prove it
for h + 1.

12.3. Singularity

First~we will prove statement (b) of Lemma 12.2. Let us call a
space-time point (¢, 1, j) singular if either a fault occurs in the evol-
ution x at this point or (i, j) is illegal at time 7. Otherwise, the point
is called regular. At a regular space-time point (¢, 1, j), the medium
M, computes the value x[z + 1,7, j] just like the inhomogeneous
medium M, did. Therefore our immediate goal is to obtain a bound
on Fhe set of singular points. The next lemma bounds their time
projection by a small set of short intervals, and their space projec-
tion by a small set of triangles. First, some remarks and definitions

Let C be an alliance cluster. The set of sites at the time ge[U; hj
that can have any effect on the state of C at time (A + 1)U is ,

G, =T[C,(h+ 1)U —q].
Let us define
Ckill) = (4.5¢sick) + 18)r + 1.
Notice that the first inequality in Size Condition 12.1 implies
10<killy < Q. (12.2)
LemMMA 12.3 (SINGULARITY LOCALIZATION). There is a set Y of

times in [U; h] consisting of 9 intervals of length {killy, and sets A
&L of triangles with ,

|| < 9<sick)r, |&L| < sick)Hr

268 PETER GACS

such that the following holds. For any singular space—time points
(9,1, J) during [U; h] with (i, j) e C, we have

qe YU [hU..hU + (kill)), @, HeUD(H vy,).
For g > hU + (kill), the site (i, j) is covered even by the smaller set
D(Z,1).

This lemma implies statement (b) of Lemma 12.2. Indeed, inequality
(12.2) implies (h + 1)U > hU + <kill). Therefore the set of singular
sites, and thus certainly the set of illegal cells at time (& + 1)U is
covered by D(¥4,).

12.4. Triangle Development
12.4.1. Noise

The set C,,, consists of nine U-squares. The domain of space-time
involved is covered by the nine cubes above these squares. Since
x is a (U, r)-trajectory, there are at most 9r faults in these cubes.
For a number ¢ in [U;h], let #, be the set of projections of the
faults in this domain happening at time g. The number g will
be called singular if the set &, is nonempty. Otherwise, it is called
regular.

Let the set X consist of all singular numbers g. We define

Y = | lq..q+ <kill)).

qeX

By definition, the set Y can be covered by 9r intervals of length
Ckall).

It is convenient to take the set &, into account via the following
set of triangles:

%, = D(Z, -1).

Here, each point of %, was enclosed into a triangle of size 0 (itself),
and then this triangle was blown up by 1. The blowup provides for
the possibility of a later deflation by the same amount. The size of
each element of .Z, is 2. Therefore the sum of their sizes is at most
18r.

Self-Correcting Two-Dimensional Arrays 269
12.4.2. The Triangle Sets S,

Let us define for all ¢ in [U; 4] a set 4, of disjoint triangles such
that the following proposition holds.

LEMMA 12.4. At time g, the system D(F,, 1) covers the illegal
cells in C,.

The set .#, will be defined inductively. Since we assumed that Cou
is locally healthy at time AU, for each of the nine alliance clusters
in G, there is a set ; of triangles of size less than (sick yr for which
D(A;, 1) covers the sick cells at time hU. We define

%=%=<u%f,~)’.

We proceed to the definition of 4, for ¢ > hU. Let us assume that
4, 1s defined

(C AV Y if ¢ is singular,
JQ]H =

D(~s,,1) otherwise.

With this definition, the proof of Lemma 12.4 is easy by repeated
use of Lemma 12.1. O

12.4.3. Vanishing Triangles

.Tl.le next lemma states that by the time g = <kill) the deflations
eliminate the effect of the set ., .

I.“EMMA 12.5. .For all selhU..(h+ 1)U — <kill)) there is a
q in [s..s+ (kill)) for which S, is empty. Consequently, for

all hq = hU + (kill) the triangles in S, are covered by D(¥, 1)
wit

$=<g@y

Thg second statement follows because we built 4, by consecutive
merging of elements of Z, to .#,,,.

270 PETER GACS

Proof. Suppose that .#, never vanishes between s and s + (kill).
Let us calculate the decrease of the size of .#, during this interval,
combined with the sum of all increases since time AU. At singular
points g, there is a possible increase by the size of %,. The sum of
these increases is at most 18r. There are at most 9r such points. For
at least <kill) — 9r points in [s..s + <kill)), the decrease is at least
2. The total decrease from the size of .#,;, thus is at least

2(Kkilly —9r) — 18r = 2(kill) — 36r > 9{sick)r.

by the definition of (kill}. But 9{sick)r is the upper bound on the
size of .%,,. The size of ., would thus have decreased below 0. The
contradiction proves the lemma. O

Proof of Lemma 12.3. Let the space-time point (gq,i, j) be
singular. It follows from Lemma 12.4 and the definition of .#, that
(4, j) is in a deflation of an element of ., thus it is in D((X" L £)’, 1)
since (A" U &)’ covers all sets .#, . It follows from Lemma 12.5 that
q is in YU [hU..hU + (kill)), and that if ¢ > AU + <kill) then
(i,j)isin D(Z,1). O

12.5. Computation

To end the proof of the first statement of Lemma 12.2, let us
remember that we assumed its assertion for 4, and are proving it for
h+1.

Let us estimate the deviations at time (2 + 1)U. Since we obtained
an upper bound on the set of singular points during the space-time
period of the computation, we can follow the proof of Theorem
10.1, i.e., the proof of Lemma 10.1. The program still consists of Q
calls to the procedure CompColumn(s,t), and a last step copying
OutMem to InpMem.

LemMA 12.6. If site (i,j) in column s has deviations on the
InpMem track at time (h + 1)U then either the duration of call s
intersects the set Y or there was a singular event at (i, j) some later
time.

Proof. Only a singular event can create new deviations on the
InpMem track. According to the Singularity Localization Lemma,
the sites of the singular events are all covered by a deflation of the

Self-Correcting Two-Dimensional Arrays 271

set (A U £). Therefore each row contains at most |+ 2| <
10¢sick yr new deviations on the ImpMem track. Each row contains
at most {(dev)r old deviations, making the total (10<sick) +
{dev))r = {corr)r. Under the Size Condition 12.1, we can con-
struct a code Algeb just as in Section 10.3, to correct this many
deviations (error bursts, in the original terminology, but each
“burst” is confined here to one cell). Therefore if a call s has no
singular event its computation starts with the correct input and it
will write the correct value on the OutMem track.

Lemma 12.3 says that the times of the singular events are covered
by YU[hU..(hU + (kill))). After the first idling steps of the
program, the first call s = 0 begins at time AU + 2Q, which is,
according to inequality (12.2), greater than AU + <kill). Therefore
if a call s intersects with the time of a singular event then it intersects
with the set Y. O

To finish the proof of the first statement of Lemma 12.2, we
estimate the number of columns s for which either the duration of
the sth call intersects the set Y or there was a singular event at some
later time in the column.

' The set Y consists of at most 9r intervals of length <kill). Accord-
Ing to inequality (12.2) we have (kill) < Q. Therefore each of these
intervals can intersect the duration of at most two calls. This is at
most 18r calls. The number of columns s in any row in which a
singular event happened after iteration s can be estimated by
|| < {sick)r. The total number of deviations in any row at time
(h + DU is thus at most 18r + ¢sick)r = {dev)r. O

12.6. Reaching Consensus in the Presence of Noise

This section applies the technique developed in the present section
to the model introduced in Section 11.3. The notion of triangles, the

Tonstant cons) etc. used here are therefore those used in Section
1.3.

THEOREM 12.2. Let x[t,u] be an evolution over Z+ x 72, and r
aninteger less than m. Suppose that x has at most r Saults with respect
10 the rule R*. Then there is an integer b = 0 or | such that for all
1> {cons)(r + 1)m there is a set of triangles of total size less than
4r covering the set of sites u with x[t,u] # b. If at time 0, there is a
set of triangles of total size less than 4r covering the set of sites u with
x[0,u] £ b thenb = b, .

272 PETER GACS

The bound {cons) (r + 1)m is probably too high. We conjecture
that if r = o(m) then O(m) can be written in its place.

Notice that about m? processors are used here to fight r faults,
where r is approximately m. This is analogous to the results in [Ly]
where, in case of r permanent faults, approximately an r by r array
of processors is needed to achieve consensus. (By permanent faults,
we mean cells that can act arbitrarily.) The rule R" is sensitive to
even a small number of permanent faults. Two permanent faults
can keep an arbitrarily large triangle forever from shrinking. It is,
an interesting open question whether, in case the consensus must be
achieved by a homogeneous array of automata, an r by r array is
necessary to achieve consensus in the presence of r transient faults.
The rule R* can certainly be fooled by as many faults as the size of
the torus, whether they are placed at one time, or at a constant
number of places but for a long time. Is this true of all rules?

Sketch of proof. The proof of the second statement of the
theorem is similar to (only much simpler than) the proof of the
Singularity Localization Lemma 12.3. We build sets 4, of triangles
and estimate their size increases and decreases.

To prove the first statement of the theorem, note that there is a
time interval of length {cons)m between times 0 and {cons)(r + 1)m
when no faults occur. To this time interval, we can apply Theorem

11.1. O

13. COLONIES

In Theorem 12.1, we found a medium M, that, under certain noise
conditions, reliably simulates a given medium Med,. There is
no universal medium for this sort of simulation, even if we fix
the medium Med,. Indeed, the cell capacity of the medium M,
crucially depended on the pair (U, r). Nevertheless, we will bring
all the different simulated and simulating media to a “common
denominator.” To standardize the simulated media, let us first
choose some universal Turing machine Turing. For any medium
Med,, let us encode the alphabet Sy, into binary strings of fixed
length |[Med, |. This binary encoding is called expanding: we expand
a symbol s into the string bin(s). Now let Prog, be some program
(e.g., first one) that computes on Turing the transition function
Med, from its nine arguments when each state s is represented by
bin(s). The program Prog, describes the parameter |Med,| as well.

Self-Correcting Two-Dimensional Arrays 273

The common denominator will be more interesting to find for the
simulating media M, and different noise conditions (U,r). We
define a new wuniversal medium Univ. In the previous section, we
simulated each Q’-square of Med, by a QO-square of M,. Now for
some integers P, T where T is a multiple of P, we subdivide the
plane into squares of size P that will simulate, in a working period
of size T, the cells of medium M, . Just as we used a name for the
Q-squares of medium M, calling them “alliances,” we will use a
name for the P-squares of medium Univ, calling them colonies.

Actually, we will dispose of the intermediate medium M,
altogether. Instead of saying that we simulate M, by Univ and
combine this with the simulation of Med, by M,, we will just say
that we simulate the Q’-squares of Med,, using Q P-squares of Univ
called alliances. Here the medium Univ does not depend on Med,
or any of the parameters.

13.1. Cells with Nonunit Size and Worktime

Later, we will consider evolutions of Univ that were obtained by
decoding from some other evolution of another medium. In such
cases, it is useful to measure the size and worktime of cells by the
cost in space and time in the simulating medium. For this later goal,
we generalize slightly the model considered so far. We introduce
two, not necessarily integer, parameters, the cell size o = 1 and cell
worktime B > 1. If there are m cells across the torus then the space
W will consist now not only of sites with integer coordinates but of
all points with coordinates (i, J) where (i, j) are real numbers in
[0,ma). Each cell of the space W occupies a square of size a.
Similarly, each transition of the medium Univ will take p time units.
Of course, the notions of evolution and trajectory are modified
accordingly: evolution x|z, u] is defined only for instants ¢ that are
multiples of f. Let us introduce the integers

P =P, T =T

During T units of time, only 77 actual state transitions of the
medium Univ occur, and the number of cells across a colony is only
P ". It is reasonable to require that T’ be significantly larger than P’,
In order for the colony to have time to receive information from the
neighbor colonies and some time to process it. Let us require

T">=9P. (13.1)

274 PETER GACS
The numerical parameters determining the model are thus
P,7T,0,U,Q,U,PT,r.

13.2. Noise

To the assumption that the medium M, has at most r faults in
every U-cube, we make a corresponding assumption under the new
conditions. The correspondence cannot be perfect since sites of M,
correspond to squares of size P and working period 7. Since we
want to look at the colonies only at times 4 = ¢T, and since the
effect of faults can be expected to spread during each work period,
we account for faults by the abstract notion of noise. The noise is
a given union A" of some T-cubes.

Let us generalize the probabilistic noise bounds of Section 9. Let
us be given some probability distribution on all unions of T-cubes.
This distribution gives rise to a random union & of T-cubes. For a
parameter p, we say that the distribution of & is p-bounded if for all
k, all finite sets A = C, U --- U C, of disjoint T-cubes, we have

Prob(4 < &) < p*.

The noise in a UT-cube C will be called (U, r, T')-sparse if at most
r of the T-cubes of C belong to it. Since in the present section,
U,r, T are fixed, we will not indicate the dependence on them. The
noise is sparse over a union of UT-cubes if it is sparse on each of
them. It is sparse over some other space-time set E if it is sparse
over a union of cubes covering E.

Faults in M, were transient. After the fault happened, a cell of M,
obeyed again the transition rule. Why would a fault in a colony
have only a transient effect? The simulation that the colonies perform
most probably depends on some structure within the colony that
will be destroyed by the fault. Our present solution to this problem
will be to define it away. We will make further restrictions on the
permissible evolutions. The particular form of the restrictions is
dictated by our needs to be able to prove them under certain
circumstances.

Since T-squares [T i, j]* will appear frequently below, we give
them a name: we call them clusters. For a cluster E, we call the set
['(E, T) its neighborhood. It is the union of nine clusters.

Self-Correcting Two-Dimensional Arrays 275

13.3. Parameters and Phase Variables

Before we present the structure restoration condition we must say
something about the notion of structure.

To find the boundaries of the colony at the beginning of the work
perl(?d, let us mark the left-most column and the top row by a
special symbol.

To give us some freedom for later tuning, let us add one more
parameter: a number modif of yet unspecified role that will later be
used to modify the action of Univ. Let us set aside the row second
from the top for the parameters P’, Prog,, modif, r abbreviated as
P’,...,r. This area is called the parameter field.

In the ponstruction of the medium M, in the preceding section
three variables called the phase variables played a special role The;
ro}e of these variables will here also be a distinguished one. We set
aside a fixed field for them in the colony called the phase variable

Jfield: the row below the parameter field.

Now we are ready to define a standard initial state for the colony
Let us assume that a special symbol set .

Sinit < SUniv

and an element
toplefte Syn,\ St

are given. A colony C = [P;i, j]*is called healthy at time gT (wi
A t
respect to the evolution x) if g oo

. x[q.T, u] = topleft for all sites u that are either in the top row
or in the leftmost column of C.

* Xx[gT,uJe S, for all sites in C not in the top row or left-most
column.

o The first two integers in the parameter field are P’ and T".

Thc notion of health thus depends on the parameters P’ T'. This
Is not essential, but convenient.

P’A healthy polony .is [P;i, jis legal with respect to the parameters
>« - -, rattime gTif the parameter field contains these parameters,

and the ph i i i]
Tt Q.p ase variable contains the integers g mod U, i mod 0, and

276 PETER GACS

The medium Univ supports colonies if the following condition
holds, for all P’, T’ with P’| T", for all trajectories y with unit cell
sizes and worktimes and for all colonies C healthy at time 0.

C is healthy at time 7.

The configuration of C at time 7 depends only on the

configuration of its nine neighbors (including itself) at time 0.
e Assume that in addition, two of the northern, southeastern,

and southwestern neighbor colonies are legal at time 0 with

respect to some parameters P’,...,r. Then Cis legal at time 7.

We will be interested only in media Univ supporting colonies.
Colony support will be easy to add to the program of a medium that
does not have it.

Let ¢ be a simulation whose code maps Med,-configurations
z[B] over a square B of size Q” into Univ-configurations x[C] =
¢,(z[B]) over a square C of size QP. We say that the simulation ¢
is standard if for each configuration x[C] of the form ¢, (z[B]), all
colonies in the alliance x[C], are legal with the value 0 in the phase
variable t.

13.4. Damage, Quarantines

We introduce a way to keep track of the bad parts of a configur-
ation x[¢T]. For all g, we introduce a set Damage(q7) = W. This
set consists not only of points that are sites (i.e., whose coordinates
are multiples of) but may contain also other points of the torus
W. For all clusters C the set C n Damage(gT) will be the union of
a finite number of convex polygons. The set Damage (0) will be
assumed given, and the set Damage(¢7') will be defined inductively
for g > 0.

It is often convenient to take the set Damage(g7’) into account
by a set of disjoint triangles containing it. Let C be a union of
clusters. We will say that a set .# of disjoint triangles is a quarantine
at time g7 on C if we have

C nDamage(qT) = U D(#,T).

The deflation D(#, T) is used in the above definition because the
quarantine must cover the damage by a well-separated system of
triangles.

Self-Correcting Two-Dimensional Arrays 277

For all C and ¢T there is a minimal quarantine. Indeed, the set
C n Damage(gT) is the union of a finite set # of convex polygons.
The set D(#, — T') (see Section 11.2) is then the minimal quarantine.

Suppose that Damage(¢T) is defined. Let C be a cluster. Let .#
be the minimal quarantine for C’ = I'(C, T'). We define

Cn Damage((q + 1)T)
_ {Cm UDSI,T+P) N N(T;qlxC) =,

C otherwise.

Thus, t.he damage shrinks in the absence of noise, and it maximally
grows in the presence of noise. We will be interested only in evolu-
tions that satisfy the following condition.

ConDITION 13.1 (RESTORATION). All colonies disjoint from
Damage(qT) are legal at time qT.;

This condit?on says, implicitly, that if, in the neighborhood of a
cluster‘ C, the illegal colonies are confined to well-separated triangles
then, in the absence of noise, these triangles shrink.

We call.q cluster C = [T, j’ regular at time ¢T if the following
two conditions are satisfied.

e The ne‘ighborhood C’ = I'(C, T) of C does not intersect with
the noise during the interval [T; g].
e (C’'nDamage(¢qT) = 0.

OFherwise, we will call C singular at time gT. We will also call the
triple (g, i, j) singular.

The fgllovying condition requires that the evolution of Univ we
are considering should behave like a trajectory on regular clusters.

‘ CoNDITION 13.2 (COMPUTATION). Let the cluster C be regular at
time qT. Thgn the configuration x[(q + 1)T, C] is what it would be if
X was a trajectory of Univ starting from the same configuration

x[qT, C’].
13.5. Summary of the Primitive Notions

We can divide the ingredients of the model into two parts. The
first group contains those ingredients chosen by us, the machine

278 PETER GACS

designers. The second group relates to the constraints imposed on
the evolution that is otherwise chosen by nature.

Our choice:

e The parameters P’, 77,0, U,Q’,U’, P, T, Prog,, modif,r. (The
notions of health and legality are now defined.)
The colony-supporting medium Univ.
The standard simulation ¢.

Nature’s choice:

e The evolution x[t,1, j];
e The noise A
e The set Damage(0).

The triple (x, .4#", Damage(0)) will be called a self-correcting evol-
ution if it satisfies the Restoration Condition and the Computation
Condition. Thus, when we say that the evolution x is self-correcting,
we assume that the other two ingredients of the triple are also given.
The notion of a self-correcting evolution depends on the parameters
P’,...,r and the medium Univ.

A self-correcting perturbation of a trajectory y in the range of the
simulation ¢ is a self-correcting evolution (x,.4",®) such that x
coincides with y at time 0. A random self-correcting perturbation of
a trajectory y is a self-correcting p-perturbation if the random noise
A" is p-bounded. The problem of how to find random self-correcting
perturbations with a small noise probability will be partly addressed

in Section 13.7.

13.6. Size Conditions and Simulation Theorem

The theorem stated in the present section is analogous to the
theorem of the previous section, using the Restoration Condition in
place of Lemma 12.1. To emphasize the analogy and save notation,
we will use some of the names and notation used in the preceding
section with slightly different but analogous meaning. For the
present section, let us define the constants

{sicky = 72,
{dev) = 180,
{corr) = {dev) + 27({sick) + 6). (13.2)

Self-Correcting Two-Dimensional Arrays 279

In the new.Size Condition below the lower bound on QP’ is needed
for the existence of a code correcting enough error bursts and
enough simulation space. The lower bound on P’ makes sure
that number§ smaller than U,Q and T as well as the program
of the transition rule Med, are representable within a colon

The bopnd for UT" is similar to the one found in Size ConditioZ;
12.1,. Wlth UT’ replacing U and (QP/TQT’ replacing Q% The
multlpl%er OP/T is the number of repetitions in the program. The
expression QT’ measures the time taken by O colony work pefiods
i.e., the time tq get any information across the alliance. The lower,
bound on 7” is the same as (13.1). The divisibility assumptions
serve only convenience. The constant Step, measures the time
needed by the Turing machine Turing with program Prog, to
compute the transition function Med,. We assume that the 0size

IProg,| of the program also meas
‘ ures the space n
oot p eeded for the

ConbiTiON 13.3 (S1ZE).

QP’ > max <3Q’lMedol,Q’|Med0| + M), (13.3)

P’ > max (log U,log T, |Prog, |, Imodif]), (13.9)

ur’ > QE Q?P QT’log (QP’)Step,, (13.5)
T >9p, (13.6)
P|T, % 0, 0|U.

i LeF us show hqw to satisfy all these conditions but (13.4). This
emaining condition can be easily satisfied if we do not choose our
};arameters to be exponentially large compared to P’. Let Q’, U’
'Pfogo and r:nodif be arbitrary. Let P’ be large enough such ,that,
enr(;)gol|1< P’.Let P>P'. Let T>T bea multiple of P large
P I;g Lfor (13.6). Let ‘Q be a multiple of T/P large enough for
h 3). Let U t?e a mult}ple of Q large enough to satisfy (13.5). In
S way, all Size Conditions will be satisfi.

280 PETER GACS

THEOREM 13.1. There is a medium Univ supporting colonies
such that for all P’,...,r satisfying the Size Condition 13.3 with
modif = 0, there is a standard simulation ¢ of Med, by Univ such
that the following holds.

Let y be a trajectory of Univ in the range of ¢ over the space
W = ZﬁQP, and let (x, /", 0) be a self-correcting perturbation of y. If
the noise N is (U,r, T)-sparse then for all nonnegative integers h
we have

@*(x[hUT,W)) = ¢*(y[hUT, W)).

This theorem will be proved in the next section. The rest of the
present section discusses the ways in which we will find self-correct-
ing perturbations.

13.7. Implementations

We can view the medium Univ as the ideal, programmable
medium to be used for computation. In order to achieve reliability
in the real world, we have to find some physical “implementation”
of Univ, in such a way that arbitrary evolutions of M are decoded
into self-correcting evolutions of Univ.

The main ingredient of the implementation is a simulation y.
Let the medium Univ support colonies. Let P’, 7', P, T be given
satisfying

T =29P, P <P, T"<T, P|T. (13.7)

Let M be a medium and let be a simulation with parameters
P, P, T, T, that maps from the space W* of Univ into the space W
of M. (With the introduction of nonunit cell sizes, it is not restric-
tive to require that the simulating colonies in M have the same size
and worktime as the simulated ones in Univ.) Let z be an evolution
of M. We define the evolution x = y*(z) for values t = ¢gT as
x[qT] = Y*(z[qT)), i.e., we obtain x by decoding from z. We define
x[t, u] for values ¢ that are not a multiple of 7 in an arbitrary way.

Besides the decoding y*, we must say how noise and the damage
are found in the space W*. Let

¥ = (¢, Ny, Damagey)

Self-Correcting Two-Dimensional Arrays 281

be a triple where s is the code assumed above. To each evolution,
z of M, the mapping A4(z) orders a union of T-cubes in the
space-time over W*. The mapping Damagey (z) (0) orders a subset
of W* to each evolution z.

Let 0 < p,,p, < 1. We call the triple ¥ an implementation with
parameters

P/’ T/’P, Tap]5p2
If the following properties hold.

e Suppose that the parameters Q, ..., r supplement P, 7, P, T
in a way satisfying the Size Conditions. Then for all evolutions
z of M, the triple

(¥*(2), A (2), Damagey(2)(0))

is a self-correcting evolution.

e Suppose further that for some trajectory y of Univ, the
random evolution { is a p, -perturbation of ¥ ,(y) (in the sense
of Section 7). Then the triple [y/*({), 44 ({), Damagey ({)] is a
self-correcting p,-perturbation of y.

Of course, the notion of implementation depends on the choice
of Univ. Our goal is to find implementations with constant p,
and small p,. This will be achieved in the following way. First, we
find a trivial implementation in the paragraph below. Then, in
Section 16, we show how to turn an implementation into one with
a smaller p,, using a special self-simulation of Univ that we will call
an amplifier.

Let us give a trivial but important example ¥, of an implemen-
tation.

Lemma 13.1. Let P’, T’, P, T be parameters satisfying (13.7), and
0 < ¢ < 1. There is an implementation with the parameters P’', T,
P,T,0,0.

Proof. We introduce a new medium M over the state set S,, =
S&, whose states are the healthy configurations over clusters
[T;i, jT*. The transition rule computes from the states of nine
neighbor cells in one step what would have been computed in 7’

282 PETER GACS

steps by Univ from the corresponding clusters. The encoding y,, of
the code y, are equal to the identity function, defined on the healthy
cluster configuration. In the space W of the medium M, we intro-
duce cell size and cell workperiod T.

For an evolution z of M, a cube [T;q,i, j]’ in W* belongs to
the noise A4, (2) if the corresponding ‘“‘cube” [T;q,i, j] in the
evolution z contains a fault. The set Damagey, (z)(0) is the union of
illegal clusters at time 0.

The Computation Condition will be satisfied automatically for
an evolution x defined this way. Health is not a problem, since in
this evolution, all colonies are healthy at all times, by definition.
The Restoration Condition can be proved by induction on g since
the medium Univ supports colonies. O

14. UNIVERSAL ROBUST SIMULATION WORKS
14.1. The Form of the Universal Simulation

The program of the simulation of an arbitrary medium Med, by
colonies of Univ will be almost like the one for cells of M,. In
particular, the period-for-period application of the Toom Rule
results in the colony-supporting property of Univ. Let us still point
out some small differences.

14.1.1. The Error-Correcting Code
We represent each row of a Q’-square as a binary string of length
Q’[Med,|. Let n be the greatest integer < P’T/P of the form 2 - 3°.

We subdivide each row into segments of length n, using possibly a
partial segment at the end: there are K segments, with

K = [Q'|Med,|/n].

We use Theorem 8.1 to find an error-correcting code Algeb
encoding these strings into strings of length

Nn = (K + 8{corryr)n < Q’|Med,| + (8¢corryr + 1)P'T/P

and correcting 4<{corryr bursts of errors of length n. By Size
Condition 13.3, these codewords are smaller than QP’, therefore

Self-Correcting Two-Dimensional Arrays 283

will fit into a row of the alliance. The n-cell segments can reach
across colony boundaries.

Now the code ¢ is defined much as in Sections 10 and 12.
Decoding is the same. The encoding creates legal colonies that are
about to start the working period of the alliance.

14.1.2. Variables into Fields

Some variables will now occupy several cells. This will happen,
e.g., to the phase variables. Since the size of their field depends on
0, U, they cannot be part of the state of a single cell. We assigned to
them the phase variable field.

14.13. Toom Phase Protection

To make colony support complete, we must apply Toom’s Rule
to the parameters and phase variables in every work period of every
small colony. As long as a colony is healthy it does not cause any
problem to do this. The parameters and phase variables of the
northern, southeastern, and southwestern neighbor small colony
are read in. After the application of the Toom’s Rule to the
parameters, the result is written into the parameter field. After this,
using Q and U, the generalized Toom’s Rule is applied to the phase
variables. This operation is repeated in every 7T-interval, e.g., in
parallel (using separate tracks) with everything else done by the
colony.

14.1.4. Computation

Even after decoding by the code Algeb, the cell states of Med, are
represented by binary strings of length |[Med,|. The simulation part
Compute of the program will be less direct now than it was when
one cell of the simulated medium was represented in one cell of the
simulating medium. The simulation of one step of Med, will be
carried out for each cell of Med, with the help of the program Prog,,
simultaneously on all these strings.

14.1.5. Output Columns

Another slight difference between the new program and the old
one is that in the old program, in the procedure Output(s, t), only

284 PETER GACS

a single column was written. Now this procedure will write in a
column of width T at once, i.e., in the part of the alliance whose
projection is the interval [T;s]. This is the reason for the factor
QP|T in the Size Conditions.

14.2. Local Health

Just as clusters (7-squares) are often more convenient than
colonies, UT-squares are often more convenient than alliances.
They will be called alliance clusters.

We will say that an alliance cluster C is locally healthy at time qT
if it has a quarantine .# with

| £ < {sick>rT.
For g in [U; A, let
C, =T (h+1HU—-qT). (14.1)

This is the set of those sites whose state at time g7 can have some
effect on the state of the UT-square C at time (h + 1)U. The next
lemma is analogous to Lemma 12.2.

LemMMA 14.1. Assume that the conditions of Theorem 13.1 hold,
and the medium Univ and the code ¢ are defined as above. Let C be

an alliance cluster. Suppose that at time hUT, the following state-
ments hold.:

o In each row of each alliance of C,;, the deviations of the
InpMem track of evolution x from the trajectory y are covered
by {dev)r T-intervals.

o C,y is locally healthy.

If the noise is sparse over C,y, x [UT; h] then the same statements hold
at time (h + 1)UT.

The two statements of the lemma hold, of course, for 4 = 0.
Therefore the lemma implies that they hold for all A, which will
prove the statement of Theorem 13.1. O

Self-Correcting Two-Dimensional Arrays 285
14.3. Triangle Development
We begin with the lemma analogous to Lemma 12.3. Let
killy = 11<sick)rT/P.
The relation
10<kill) < Q (14.2)

follows immediately from the Size Conditions 13.3.
For any set .# of triangles, let us denote

#° = D(#, T).

LEMMA 14.2 (SINGULARITY LOCALIZATION). There is a set Y of
times in [U; h] consisting of at most 9r intervals of length (kill), and
sets A", & of triangles with

|&| < (sick)rT, || < 9¢sick)rT (14.3)

with the following properties. Let § = (A 0 £L). At all times qT
with q in [hU..(h + U], the set ¢ is a quarantine for C,. For
g > hU + (kill), the same is true for & . .

Suppose that cluster E in C, is singulaf at time qT fqr
g<(h+ 1)U. Then q is in YU [hU .. hU + kally), a{m' I'(E,T) is
intersected by #°. If ¢ = hU + <kill) then T(E, T) is intersected by
the smaller set ¥°.

This lemma implies the second statement of Lemma lft. 1. Indeed,
it says that the set &, of size < {sick)rT, is a quarantine for C at
time (h + 1)U.

14.3.1. Noise

The set C,, = I'(C,UT) consists of nine allianf:e clusters. The
domain of space-time involved is covered by the nine cubes aboye
these squares. Since the noise is sparse, at most 9r of the T-cubes in
this domain belong to the noise. For a number ¢ in [U; h],‘ let.ﬂ'q bp
the set of projections of the T-cubes belonging to the noise in this

286 PETER GACS

domain at time ¢7. The number g will be called singular if the set
#,is nonempty. Otherwise, it is called regular. Let Y be the union
of intervals [g..q + <kill)) for all singular numbers q.

To each T-square Fin #,, we order a triangle L = D(I'(F,T), — T)
with size |L| = 8T. Performing this operation for each element F of
#, we arrive at the set £, of triangles. Let us define & = (|, %,)".
We have

Ll <9-8T = {sick)rT.
14.3.2. The Triangle Sets 5,

Let us define for all g a set ., of disjoint triangles such that the
following proposition holds.

LEMMA 14.3. At time qT, the set .9, is a quarantine for C,. If E
is a cluster in C, singular at time qT then D(S,0 4, |, T) intersects
I'(E, T).

The set .#, will be defined inductively. Since we assumed that C,,,
is locally healthy at time AUT, for each of the nine alliance clusters
in it there is a quarantine J; of size less than {sick)rT. We define

9
jhu =A = (U %)
i=1
Then A" is a quarantine for C,,. We proceed to the definition of .7,
for ¢ > hU. Let us assume that .7, is defined. We define

g+1

(DI, P)V L) if ¢ is singular,
B D(4,, P) otherwise.

We see that all sets .4, are covered by ¢ = (4 U L)

Proof of Lemma 14.3. This lemma is essentially an immediate
consequence of the definitions.

Let us prove first that .#, is a quarantine for all g. We use
induction on g. For ¢ = hU, the statement follows from the
definition of .%,. Suppose it is true for g. If ¢ is regular, it follows
by the definition of C,,, n Damage((q + 1)T') given in 13.4.

Self-Correcting Two-Dimensional Arrays 287

If g is singular, it will also follow by this definition, applied to a
smaller area B that is unaffected by the noise. We define

B = C,,\UT(%,.T).

The set I'(B, T') is disjoint from the noise during the interval [T g].
It follows from the damage definition that D(.#,, P) is a quarantine
for B at time (¢ + 1)7. We have now

Damage((g + 1)T) c D(#,, P + T) UI(Z,, T).

By the definition of .%,, the second term on the right-hand side is
contained in D(¥,, T). Using the definition of .4, ,, this proves
that it is a quarantine.

Suppose now that the cluster E in C, is singular at time ¢g7. Then
one of the two conditions of regularity is not satisfied. If this is the
first one then the set ., , contains %, whose deflation contains E.
If the second one is not satisfied then by the Restoration Condition
the set D(4,, T'), as the deflation of a quarantine, intersects I'(E, T').

(]

14.3.3. Vanishing Triangles

Lemma 14.2 will follow from Lemma 14.3, the fact that ¢ covers
U, 4, and the fact, to be proved in the present paragraph, that &
covers (J o> <kiny Fg- O

LEMMA 14.4. For all se[hU..(h + 1)U — (kill}) there is a q in
[s..s + (kill)) for which 4, is empty. Consequently, the triangles in
Uy ciny #, are covered by L.

Proof. Suppose that ., never vanishes between s and s + <kill).
Let us calculate the decrease of the size of .#, during this interval,
combined with the sum of all increases since time AU. At singular
points g, there is a possible increase by the size of £,. The sum of
these increases is at most |.%Z)|.

There are at least (kill) — 9r regular numbers in the interval
[s..s + <kill}). At each of these times, there is a deflation by P, i.e.,
a size decrease by 2P. The total size decrease at these times is at
least 2(¢kill> — 9r)P. Combining with the possible increase of |.%|

288 PETER GACS
and the original size ||, this gives

| Ity | < 1]+ 1.ZL1 + 18rP — 2(killy P
< (10¢sicky + 18)rT — 2<(killYP < 0.

By the definition of (kill), the size would thus have decreased
below 0. This contradiction proves the lemma. O

14.4. Computation

Now we prove the first statement of Lemma 14.1 for 4 + 1. Let
A be an alliance in the cluster C. Let us estimate the colonies with
deviations at time (A + 1)U in a row of 4. Since we obtained an
upper bound on the set of singular points during the space-time
period of the computation, we can follow the proof of Theorem
10.1, i.e., the proof of Lemma 10.1. The program still consists of
calls to the procedure CompColumn(s, t), fors = 1,...,QP/T, and
a last step copying OutMem to InpMem.

The following simple geometrical lemma is useful.

LeEMMA 14.5. Let # be a set of triangles. The number of clusters
E in a horizontal row with the property that T'(E, T) intersects #° is
at most 3|.5|/T.

Proof. Let us estimate the number of elements of .#. We can
assume that each element J of .# has a size of at least 27, since
otherwise, D(J, T') would be empty. Therefore their number is at
most |#]/(2T). It is easy to see that for a triangle J, the number of
clusters E'in a row for which I'(E, T') intersects J is at most |J|/T + 4.
Therefore the total number of intersected T-intervals in a row is at
most

£, IS Ed

LEMMA 14.6. If site (i, j) in column s will have deviation on the
InpMem track at time (h + 1)UT, then either the duration of call s
intersects the set Y or there was a singular event at (i, j) at some later
time.

Proof. Before time (h + 1)UT, only a singular event can create
new deviations on the InpMem track. According to Lemma 14.2,

Self-Correcting Two-Dimensional Arrays 289

if cluster E is the site of a singular event then its neighborhood
I'(E, T) intersects #°. According to Lemma 14.5, the number of
such clusters in a row is at most 3| #|. Each row contains at most
(dev)r T-intervals with old deviations, making the total

(dev)r + 3|J|/T < ({dev) + 27(<sick) + 8))r = {corr)r.

These T-intervals intersect at most four times this many n-intervals,
according to the definition of the number # in the Section 14.1. The
code Algeb was constructed to correct a pattern of 4{corr)r bursts
of errors of length n. Therefore if a call s has no singular event it will
write the correct value on the OutMem track.

It follows from Lemma 14.2 that the singular numbers g > hU +
(killy are covered by the set Y. Since the call s = 1 begins only aft.er
20T’ idling steps in the program and since we have inequality
(14.2), the times of singular events during calls CompColumn(s) are
covered by Y. O

Let us apply the above lemma to estimate the number of
deviations at time (4 + 1)UT. The set Y consists of 9r intervals of
length <kill). By inequality (14.2), each of these intervals can
intersect the duration of at most two calls. This is at most 18 calls.
The number of intervals [T; s] in any row in which a singular event
happened after iteration s can be estimated similarly to the proof
above by 3|.%|/T. The total number of deviations in any row at time
(A + 1)U is thus at most.

31L)/T + 18r < 180r = (dev)r.

This proves the first part of Lemma 14.1. The second part was
proved after Lemma 14.4. O

14.5. The Spreading of Local Health

The second statement of Lemma 14.1 says that, under the
conditions of Theorem 13.1, alliances always stay locally healthy.
Let us strengthen this statement. A set .# of triangles is a local
quarantine for the alliance cluster C if there is a set # of triangles
of size (sick)rT such that (D(#, UT) u #’) is a quarantine for C.
We say that .# is a local quarantine for a union of alliance clusters
if it is a local quarantine for each of them.

s o=

290 PETER GACS

The deflation by UT corresponds to the earlier deflation by 7. Let
us therefore define the abbreviation

J' = D(4,UT).

LEMMA 14.7. Suppose that the medium Univ supports colonies
and the parameters P’,...,r satisfy the Size Conditions. Let
(x, A", Damage(0)) be a self-correcting evolution. Let C be an
alliance cluster, h a natural number, and ¥ a local quarantine for C,,,
at time hUT. Suppose that the noise A is sparse over the set
C,u X [UT;h]. Then D(F,QP) is a local quarantine for C at time
(h+ DHUT.

This lemma is a generalization of the second statement of
Lemma 14.1 speaking about the preservation of local health. That
statement becomes a special case with an empty set .#. The lemma
is a step in our plan to prove the Restoration Condition for “‘higher
order” colonies, simulated by alliances.

We will prove the above lemma by proving the following, some-
what stronger but less transparent, lemma which also contains a
generalization for some parts of Lemma 14.2.

LEMMA 14.8. Assume that the conditions of Lemma 14.7 hold.
Let us define, for q = (kill},

#, = D(S",(q — (killY)P).

Assume that the noise is sparse over C,, during the time interval
[UT;h). Let the sets A", ¥, Y be defined as above. Then the
set (J'U A U L) is a quarantine for C, at time qT for all q in
[AU..(h +)U]. For q = (kill), the same is true for the smaller set
(A0 2).

Suppose that cluster E in C, is singular at time qT. Then I'(E, T)
is intersected by

DS v ULy, T).

If g = <kill) and T'(E, T') is not intersected by %0 then it is inter-
sected by ¥° and q is in Y.

Self-Correcting Two-Dimensional Arrays 291

Lemma 14.7 follows immediately from Lemma 14.8. Indeed, the
Jatter lemma implies that for all ¢, the set D(#,(q — <kill})P) is
a local quarantine for C,. Therefore for g > (kill) + O the set
D(S, PQ) is a local quarantine for C,. It follows from (14.2) that
Kill) + Q0 <20 < U. ‘ O

Proof of Lemma 14.8. We build a new sequence of quarantines
#, just like in Section 14.3, satisfying Lemma 14.3. The recursive
deﬁmtlon step is the same, but the starting quarantine .#,; is
different. The set C,, is the union of nine alliance clusters B, for
i=1,...,9. Let &, be the set of triangles with size {sick)rT such
that (#' U &) is a quarantine for B;. According to the assumption
of the theorem, there is such a triangle set for all i. We define

- (U %) Sy = (F UK.

The latter set is obviously a quarantine for C,, at time hU.

The process of creating ., involves three kinds of steps.
Sometimes we added a new triangle. Sometimes we deflated an old
triangle. And sometimes we merged two triangles into the smallest
one containing both. For each element of .#, we can define the set
of their ancestors. New triangles are their own ancestors. Deflating
a triangle does not change its ancestors. Merging two triangles
unites their ancestry. Those triangles that have some ancestry in .¥
are called big, the rest are called small.

LemMA 14.9. Each big triangle has exactly one big ancestor.

Proof. We have to show that in the process of constructing .7,
two big triangles will never be merged. Let H and I be two such
triangles. They are disjoint, so according to Lemma 11.2, there is a
J such that their j-separation d,(H,I) is positive. The construction
begins by deflating each big triangle by the amount UT. This
increases the j-separation by 2UT. From that time on, the big
triangles suffer only merging with small triangles and further
deflation. Each deflation increases the separation. The merging
decreases the separation at most by the size of the small triangle
merged with the big one.

292 PETER GACS

The small triangles come from elements of # or %, for some g,
using merging and deflation. Hence the small triangles are covered
by # whose size is bounded by 10¢sick>rT. The Size Conditions
imply that this is smaller than 2UT. O

Let g > (kill). We find just as in the proof of Lemma 14.4 that
there is an s between AU and (kill) for which the small triangles
disappear from .. From this time on, the small triangles are
covered by &.

For each big triangle Iin .#, let us denote by A, (I) the big triangle
in .#, whose ancestor it is. Then we have

A,y = D', P(q — (killY)), (14.4)

Indeed, just as in the proof of Lemma 14.4, we find that the total
extent of deflation of A (7) is

qP —9rP — | #|
= (g — <kill))P + (kilH>P — 10sick>rT — 9rP
= (q — <kill))P.

Of course, we use Lemma 14.9 here.

This completes the proof of Lemma 14.8. Indeed, we showed that
the big triangles and % together form a quarantine, and that the big
triangles are deflated from #' by at least (g — (kill})P. O

15. FORCING CODED OUTPUT

Section 14.5 indicated that the set of illegal colonies will shrink in
the absence of noise. Thus, legality is restored automatically.
Another important condition (used in the proof of Lemma 14.6) of
successful computation in the presence of noise is that the input is
close to a codeword of the error-correcting code Algeb. This con-
dition will not be restored automatically, even if the colonies of the
alliance are healthy, and even though the output of each fault-free
computation is a codeword. Indeed, suppose that some input words
have a larger number of deviations than the one correctable by
Algeb. Then faults can change the input in such a way that the
outputs of fault-free repetitions will be different from each other.

Self-Correcting Two-Dimensional Arrays 293

We keep only a small part of each repetition in OutMem. The result
will therefore be a mixture of different codewords, which is in
general not a codeword. .

If the InpMem track contains words deviating only little from a
codeword of Algeb then the result of the computation will be the
same in all fault-free repetitions. In our program this implies that
the result (even if it is otherwise wrong) will be close to a codeword.

The present section shows that a procedure can be added to the
end of the program of the medium Univ that brings all words on the
horizontal rows of the InpMem track of an alliance close to a
codeword of Algeb, without significantly changing words that are
already near codewords. This property will be important for the
self-simulation in the next section.

Forrowk = 0,...,QP — 1 of alliance E, let u,(q, E) denote the
word on the InpMem track in the kth row of E at time ¢qT. Let
CodeDiff(u) denote the number of T-intervals in which the word u
differs from Algeb,(Algeb*(x)). With an eye on the later application,
we will only consider values k > 2, and will not try to change the
top three rows of the alliance.

For the following lemma, two Size Conditions need some change
with respect to Condition 13.3. Let

{dev)’ = 2{corr) — {dev) + 6{sick) + 360.

We obtain {corr)’ by replacing {dev) in its definition (13.2) with
{dev)":

(corr)” = (dev)’ + 27({sick) + 6).
The change in the Size Conditions is the following. In the first one,
{corr) is replaced with {corr)’. In the second one, QP/T is now
squared.
ConbiITION 15.1 (S1ZE).

9{corr)'rP’'T
QoP > max<3Q’|Med0|,Q’|Med0! + <—L—>

P

, U (QPY ,
ur’ > 0 <7> Q0T log(QP’)Step,,

294 PETER GACS

P’ > max (log U,log T", |Prog,|, Imodif|),

T > 9p’,

P|T,

SN

o, QluU

THEOREM 15.1. There is a procedure ForceCode, with the Sfollow-
ing property. Suppose that the definition of the medium Univ and the
code ¢ differs from the one given in Section 14 only in that ForceCode
is attached to the end, and Algeb must be correct now {dev)’r errors.
Assume that the conditions of Theorem 13.1 hold, with the modifi-
cations in the Size Conditions indicated above.

Let C be an alliance cluster. Suppose that at time hUT, the set
Cuy is locally healthy. Let f, denote the beginning of the procedure
ForceCode. Then in each alliance E of C in each row k > 2 of E,
we have

CodeDiff(u, ((h + 1)U, E)) < {(dev)r.
If we had CodeDiff (u,(f,, E)) < {dev)r for all k > 2 then we have
Algeb*(u(fy, E)) = Algeb*(u,((h + 1)U, E))

Sor all k > 2. Thus, if all input words are close to a codeword the input
will not be changed by ForceCode.

The rest of this section is devoted to the proof of the above
theorem. The procedure ForceCode will attempt to decide whether
each row of InpMem differs only slightly from a codeword of
Algeb. If this is not the case then each row will be changed to a
standard fixed codeword w,.

The procedure works within each alliance independently. We
will therefore omit the notation of dependence on E from u.(q,E).
Whenever the time ¢7 refers obviously to the current time we also
omit the dependence on g.

In all of the following lemmas we assume that the number of
T-cubes belonging to the noise in the neighborhood of the cluster
of E in the given time period is at most 9r, i.e., that the noise is
(U, r)-sparse.

Self-Correcting Two-Dimensional Arrays 295

15.1. Computing the Votes

The crucial part of the procedure ForceCode wr.ites a “votg”
Voteli,s] = 0 or 1 in each cluster (i,s). The follqwmg properties
will hold, even in the presence of (U, r)-sparse noise.

e Thereis anumber b and a set .# of triangles of size O(rT') such
that Voteli,s] = b for all clusters (i, s) outside .#. _

e If, at time f;, for some k > 2, we have CodeDiff(u) >
(2¢{corry — {dev))r then b = 0. ‘

e If, at time f;, for all k > 2, we have CodeDiff (u,) < {(dev)r
then b = 1.

The first part of ForceCode is an assessment of the situation. For
the present section, let

n = PQ/T.

The
procedure CheckCode (i, s)

for i,s = 0,...,n — 1 does the following. After Q 'idling steps, it
checks, simultaneously in all rows k > 2 of the alliance, whether

CodeDiff(u,) < {corr)r.

Then it computes the conjunction of these tests and stores the result
in a bit Vote[i, s] in the cluster (i, s) of the alliance. Thus, only the
place where the result is stored depends on i and s. The first part of
ForceCode now looks like this.

procedure FindVotes
begin
fori =0ton—1do
fors=0ton—1do
CheckCode (i, s);
end

The »? repetitions are performed as a guard against noise. This is
the most time-consuming part of the whole program of Univ.

296 PETER GACS

We assumed that C,, is locally healthy. Let G, be the union
of all clusters F for which I (F, T) intersects a triangle in #°. They
include all clusters in which a singular event occurred during the
original program after the first O idling steps. (By that time q, as
shown in Lemma 14.8, the big triangles of the quarantine .# of the
definition of local health disappear in C,.) Let G, be the union of
all clusters (i,s) for which a singular event occurred during the
nonidling part of the computation of CheckCode (i, s). The follow-
ing lemma is obtained by an analysis of the above iteration similar
to the proof of Lemma 14.6.

LEMMA 15.1. (@) Suppose that at the beginning of the program
CodeDiff(u,) < (dev)r holds Jor all k > 2. Then at the end of
FindVotes, in each cluster (#,5) not belonging to G, UG, we have
Voteli,s] = 1.

(b) Suppose that at the beginning of the program we have
CodeDiff (u,) > (dev)r + 2(Ccorry — {dev))r for at least one
k > 2. Then at the end of FindVotes, in each cluster (i,5) not belong-
ing to G, U G, we have Vote [i,s] = 0.

15.2. The Consensus Problem

The real technical difficulty of the present section is that of
making a decision based on the contents of the array Votel[i, s]. We
cannot fight faults made during the decision as we did until now, by
mixing the results from different repetitions. In borderline cases, the
result could then namely be the mixture of some codeword and w,.
This mixture may not be a codeword, and we want a codeword
result in all cases. We can view the values of Voteli,s] as the
different opinions of some population. We want to achieve consensus
in this population, without reversing a near consensus. This
problem was essentially solved in Section 12.6.

To apply those results, the sites of a small torus (used there to
achieve consensus) will be simulated by the clusters of the alliance.
Now, a square is not a torus but a torus can be “folded over” to a
square. To be more formal, let us introduce the mapping i — 7from
Z,,t0[0..n) by

I =min(i,2n —i—1).

Self-Correcting Two-Dimensional Arrays 297

All points of the interval [0. . n) have two inverse images under this
mapping. We define a mapping

(L.5) > (1,5)

of the torus Z2, to a lattice square. This mapping maps points that
are neighbors in the torus to points that are neighbors in the square.
Let us temporarily denote by (i1,5),...,(,s,) the four inverse
images of (i, s).

We will use a new array Vote'[i, s] over the torus Z3,. The four
bits Vote'liy,s,],..., Vote'[i,, s,] will be kept in the cluster [T i, s
Initially, the array Vote will be quadrupled into the array Vote’, by
repeating each bit of a cluster four times. Of course, since one
cluster represents four sites of the imaginary torus Z2,, one fault
will affect all four of these sites. Now the second part of the
procedure ForceCode can be written as follows,

procedure Consensus
begin
for i,s = 0to 2n — 1 parallelly do Voze'[i,s] :== Vote [7, 5;
for i = 1 to 2({cons) + Dn(r + 1) do
Vote’ := R* (Vote'),
fori,s = 0ton— 1 parallelly do
Voteli,s] .= Vote'li,, s,];
end

In the last step, we just chose arbitrarily the first one of the four
votes in square [T’ i, s

15.3. -Analysis of the Consensus Algorithm

To avoid the awkward conversions between measurements, let
us give a new size T to each cell of the torus Z2 , converting
it into the real torus [0,2nT)* = [0,2PQ)? where the cells occupy
the points whose coordinates are divisible by T (see Section 13. 1).
Without loss of generality, let us assume that the alliance £ under
consideration is [PQ;0,0, i.c., its lower left corner is at the
origin. The mapping 4 now becomes min (@,2PQ — a). In the
torus [0, 2PQ)? we will also speak of T-squares. Each such T-square

olds one vote.

298 PETER GACS

In the reasoning below, we use both notions of triangles: the
usual one, as well as the one used in connection with the modified
Toom’s Rule. Let us call the latter special triangles. The ordinary
triangles are defined on the alliance cluster and its eight neighbors.
The special triangles are defined on the torus [0, 2PQ)?. Let us say

that a special triangle weakly covers a cluster C if it covers the
bottom of C.

LEMMA 15.2. There is a number b = 0 or | such that at the

end of the procedure Consensus, there is a set M of special triangles
with

|| < (6¢sick> + 360)rT

weakly covering each cluster [T i, s|* of the torus with Vote i, s] # b.
In the cases treated by Lemma 15.1, the value of b will be what is
stated there.

Proof. Let us first show that there is always a number 4 and a
time ¢, during Consensus such that all votes outside G,u G, are
equal to b. In the cases of Lemma 15.1 we can take ¢, to be the
starting time of Consensus. In the rest of cases, let us locate a
sequence of 2({cons) + 1)n noise-free iterations of the rule R*. The
first 2n iterations will be enough to eliminate the set 4,, and thus
make all clusters regular. By Theorem 11.1, the remaining 2{cons)n
noise-free iterations achieve consensus. Thus we can set t, equal to
the time after these iterations.

The remainder of the proof will show that the consensus achieved
by time #, will not be overturned. Assume b = 0. The case b = |
can be treated similarly but somewhat simpler. We construct a set
M of special triangles on the torus with the property that for all
iterations of R* after #,, they weakly cover every T-square in which
the vote differs from 0.

For a triangle I, let us consider the four inverse images I,,...,1,
of I under the above mapping (i, s) — (7,5). Let I, be the smallest

special triangle containing I,. For any set .# of ordinary triangles
let

Self-Correcting Two-Dimensional Arrays 299

Thus, we merge all special triangles obtained for all elements of .#
until we get a set J of disjoint special triangles. We have |I,| =

3/2|11, hence
£ < 6|41

Let us start from the set £ of triangles. The number of triangles in
& is at most 9r. These have the property that for‘every clgster F
that ever becomes singular during the computation cons'ldered,
['(F, T) intersects #. The same will be true for & a.nd all inverse
images of singular clusters. We have £ < 6|7 < §<51ck>rT. Let us
obtain the set .#, of special triangles by replacing each trlaggle
L(a, b, c) of & with L(a + 2T,b + 2T,c + 4T), and then merging.
Then all inverse images of singular clusters are (completely) covered
by .#,. We have

|, < | 2|+ 8T+ Z < 6¢sick)rT + 8+4-9rT
= (6¢sick) + 288)rT.

If case (a) of Lemma 15.1 holds then at time ¢, set G, u'G2 can
contain clusters (i,s) with Vote[i,s] = 1. We cov;red the inverse
image of G, by .4, . Let .4, be the set of special triangles obtalped
by covering the inverse images of the clusters of G, and merging.
One cluster can be covered by a triangle of size 27. We have
thus |.#,| <4-9r+2T = 72rT. Let M = (M, M,) . The above
estimates give |#| < (6¢sick) + 360)rT.

Let us first show that if before an application of R’, the set of
clusters (i, s) on the torus with Vote'[i,s] = 1 is weakly covered by
M then this is the case after the application, too. Suppose the
cluster (i,s) (the T-square [T;i,s}’) is not weakly covereq by %i
Then it is regular. It is not possible that both clusters [T} s + 1]
and [T;i + 1,s)* are weakly covered by .#. Indeed, .4 consists of
disjoint triangles, hence these two clusters would be weakly covered
by the same triangle, which would then also cover the cluster
[T;i,s]*. Suppose, e.g., that [T;i,s + 1} is not covered. Then tl}e
neighbor clusters [T;i,s]’ and [T;i,s + 1]’ are regular and contain
a 0 vote throughout the computation of R’. Therefore the compu-
tation of R’ will not change Vote'[i, s]. .

Suppose that after an Inflate, at time (¢ + 1)7, a cluster [T;i,s]
gets vote 1. We will prove that it is weakly covered by .#. Suppose

300 PETER GACS

it is not. Then it is regular. Suppose that one of the clusters
[T;i— 1,s],[T;i,s — 1} is singular. Then it is completely (not only
weakly) covered by a triangle of .. It follows that [T, s]* is weakly
covered by the same triangle. Suppose now that all three of these
clusters are regular.

If Inflate brought Vote'[i,s] = 1 by time (g + 1)T then at time
qT, we had either Vote'[i — 1,5] = 1 or Vote'li,s — 1] = 1. Without
loss of generality, let us suppose that we had Vote'[i — 1,s] = 1.
Since this is a regular cluster, this value of Vote’ at time g7 is
obtained by R’ from the votes in clusters [T;i —1,sP, [T;i,sP,
[T;i— 1,5 + 1]* at time (¢ — 1)7. Therefore two of these three
clusters must be weakly covered by .. It follows by simple geometric
inspection that [T}, s])* is also weakly covered. O

15.4. The New Codewords

For a word u and a number s in [0. . n) let us denote by u[T; s] the
part of u on the T-interval [T;s]. The next part

procedure Enforce

of ForceCode works simultaneously in all clusters of the alliance
E. In cluster [T;i,s]%, if Vote[i,s] = O then for all rows k > 2 in
[iT..(i+ 1)T), it changes u,[T;s] to w,[T;s].

LEMMA 15.3. Let q denote the time at the end of the proce-
dure Enforce. Under the conditions of Theorem 15.1, we have
CodeDiff[u(q, E)] < (dev)'r for all k > 2. In case (a) of Lemma
15.1, we also have

Algeb*(u,(fy, E)) = Algeb*(u (g, E)),
Jor all k > 2, i.e., the original codewords are not changed.

Proof. Suppose CodeDiff(u, (hU, E)) is at most {dev)r for all
k > 2. Then, by Lemma 15.1, we have the case b = 1 in Lemma
15.2. Due to the last lemma the clusters where the codeword is
changed will be weakly covered by .#. Therefore the number of
such clusters is bounded in each row by |.#|/T. This is the bound
on the increase in the number of deviations from a codeword.

Self-Correcting Two-Dimensional Arrays 301

Suppose now that CodeDiff (i, (hU, E)) is greater than {dev)r +
2({corry — {dev))r for some k > 2. Then by Lemma 15.1 we have
the case b = 0 in Lemma 15.2, and we get 4, = w, in all clusters
except for the ones weakly covered by .#. Therefore we get
CodeDiff(u,) < |.#|/T.

Suppose finally that CodeDiff[u, (AU, E)] is at most {dev)r +
2(<corr) — {dev))r for all k > 2. Lemma 15.2 still holds but we do
not know now the value of b. If b = 0 then the CodeDiff(u,) will
again be bounded by |.#|/T for all k > 2, while if » = 1 then the
number of deviations will increase by |.#|/T, bringing it to at most

(dev)r + 2({corr) — {dev))r + |#||T
= (2{corr) — {dev) + 6{sick) + 360)r
= (dev)'r. O

The final part of the procedure ForceCode is a procedure that
will decrease CodeDiff(u,) for each k > 2 from {dev)’r back to L
{dev)r. It will simply try to decrease the difference to 0. To fight ;
faults it is repeated for each output column of width T just as
CompColumn(s, t).

[

i

|
procedure Refresh i
begin i

fors =0ton—1do ‘
for k := 0 to PQ — | parallelly do ‘ i
u[T;s] = (Algeb(Algeb*(u))) [T’ s] !,
end .

End of proof of Theorem 15.1. The proof of Lemma 14.6 applied
to the procedure Refresh, together with the fact that the code Algeb
corrects {dev)’r bursts of errors, gives the desired conclusion. []

Let us summarize the procedure ForceCode.

procedure ForceCode
begin
FindVotes;
Consensus; :
Enforce;
Refresh; Ny
end. :

302 PETER GACS
16. AMPLIFIERS

Theorem 13.1 and Lemma 14.8 look similar to the Computation
Condition and Restoration Condition for alliances instead of
colonies. This section extends the similarity to equivalence. We will
show that by an appropriate choice of the code ¢, a new self-
correcting evolution can be defined by decoding. With the tools of
the present section, we learn how to turn an implementation into a
better one, as desired in Section 13.7.

In the previous section, the medium Med, was chosen arbitrarily.
Let us choose it now to be the medium Univ. There is no circularity
in this choice: the medium Univ was constructed to work for all
media Med,, including Univ itself. Let us refer to the spaces in
which the simulating and simulated iterative arrays of the medium
Univ operate by W* and W, respectively:

W =27, W=2Z.

Let us assume that the parameters P’,...,r satisfy the Size
Condition 13.3. Let ¢ be a code satisfying the conditions of
Theorem 13.1.

The decoding ¢* orders an evolution x* of Med, = Univ in W*
to the evolution x of Univ in W. Let us define

Y = @4(x). (16.1)

Note that the evolution y is now not necessarily a trajectory. The
target blocks of the code ¢ are the PQ-squares called alliances. The
source blocks are Q’-squares, which we will call big colonies. We
define

T* = TU, P*=PQ, of=TUU, p*=PQ/Q

Then we have P*|T*. We assign nonunit cell size a* and cell
worktime f* to the simulated space. With this definition, the size
and work time of the big colony is equal to the size and work time
of the alliance simulating it. The total sizes of the spaces W and W*
become identical. Both spaces are subdivided into the same number
of squares of size P* = PQ. However, the size of the individual
cells is generally larger in W* than in W.

Under the simulation ¢, the evolution x* on the big colony E =
[P*;i, jJ* during time interval [T*; h] corresponds to the evolution

Self-Correcting Two-Dimensional Arrays 303

x on alliance E, = [QP;i, j]” in the time interval [UT; h]. Just as
T-squares were called clusters, the T*-squares will be called big
clusters. The above correspondence will map each big cluster 4 into
an alliance cluster 4,. Therefore each T*-cube B = [T*;h] x A is
mapped into a UT-cube B, = [UT;h] x A,.

16.1. Noise, Health, Damage

We will say that the T*-cube B belongs to the noise 4/™* if the
noise A" is not sparse on the corresponding UT-cube B,. Notice
that the noise 4 * is defined in terms of the noise 4" and the sizes
T, U, r, independently of all other primitive notions.

Let us choose a Q* and U* > Q* such that log U* < Q’. Now
that we have P*, T* Q*, U*, the notion of health and legality for
big colonies will be defined just as it was for small colonies. The set
Damage*(0) is the union of all big clusters C for which not all of
following conditions hold at time 0:

The alliance cluster C,, is locally healthy.
In each row of each alliance of C,, the deviations of the
InpMem track of evolution x from the evolution y are covered
by {dev)r T-intervals.

e All big colonies in C are legal.

The first two conditions concerns the simulating evolution x. They
are identical, for # = 0, with the statements in Lemma 14.1. The
second condition can also be stated, using the terminology of
Section 15 as CodeDiff(u, (0, C,)) < {(dev)r for all rows k of C,.
The last condition concerns the simulated evolution x*.

16.2. Simulating a Self-Correcting Evolution

THEOREM 16.1. There is a universal medium Univ supporting
colonies with the following properties. Assume for parameters
P’ ... r, the Size Condition 15.1.

If modif = 0 then Univ satisfies Theorem 13.1.

If modif = 1 then there is a standard simulation ¢ of Univ
by itself such that for all self-correcting evolutions (x, N,
Damage(0)) the triple (x*, /*, Damage*(0)) is a self-correcting
evolution.

304 PETER GACS

This theorem forms the backbone of the proof of the main result,
Theorem 7.1. Its case with modif = 0 is simply Theorem 13.1. The
case with modif = 1 gives the desired amplifier simulation that
turns an implementation into a better one, with smaller probability
bound. It implies namely the following theorem.

THEOREM 16.2. Suppose that the parameters P’,...,r satisfy
the conditions of Theorem 16.1 and the medium Univ satisfies its
conclusion. Suppose that we have an implementation ¥ with the
parameters P, T', P, T,o,p, satisfying (9.1). Then the construction

®: (x, /", Damage(0)) — (x*, A/ *, Damage*(0))

gives a new implementation ¥ o ® with the parameters Q’,U’, P*,
T*,0,p".

The rest of the section is devoted to the proof of Theorem 16.1,
i.e., to the changes to the program of Univ to achieve the desired
effects for modif = 1.

First we prove an auxiliary statement.

LEMMA 16.1. Suppose that the medium Univ supports colonies
and the parameters P’, ..., r satisfy the Size Conditions 15.1. Let
(x, A", Damage(0)) be a self-correcting evolution. Let C be a big
cluster in W*, and h a natural number. Then any quarantine at time
hT* for C with respect to the triple (x*, /*, Damage*(0)) is a local
quarantine for C, with respect to the triple (x, /', Damage(0)).

Proof. This statement can be proven by induction on A. It is
true for A = 0 by the definition of Damage*(0). If it is assumed true
for h then it follows immediately for 4+ 1 using the inductive
definition of C~ Damage((q + 1)T) given in Section 13.4, the
definition of #* and Lemma 14.7. O

To make the triple (x*, #* Damage*(0)) a self-correcting
evolution we have to make it satisfy the Restoration Condition and
the Computation Condition.

The Restoration Condition says now that at all times AT'*, all big
colonies disjoint from Damage*(hT) are legal. We will prove the
following lemma.

Self-Correcting Two-Dimensional Arrays 305

LEMMA 16.2. There is a universal medium Univ supporting
colonies with the following property. Assume for parameters P’,...,r,
the Size Condition 13.3. Let h be a natural number. Assume that at
time hT*, for all big colonies E not intersecting with Damage*(hT),
the following conditions are satisfied.

(@) In each row of the alliance E,, the deviations of the InpMem
track of evolution x from the evolution y [as defined in (16.1)]
are covered by {dev)r T-intervals.

(b) E is legal.

Then the same is true at time (h + 1)T* for all big colonies not
intersecting with Damage*((h + 1)T*).

For h = 0, the assertions (a — b) in the lemma will be satisfied,
due to the definition of Damage*(0) in 16.1 above. Therefore this
lemma will imply that these conditions are satisfied for all 4, i.e., the
Restoration Condition holds.

Let C be a big cluster in W* containing the big colony E. If
the noise A4"* is not empty during the interval [T*;h] in C,;, =
I'(C, T*) then C belongs to Damage*((h + 1)T*), and the con-
clusion of Lemma 16.2 is automatically satisfied. Suppose now that
the noise .4#"* is empty in this region and .# is a minimal quarantine
for C at time AT*. Then by the definition of Damage(¢7) in
Section 13.4, we have

C A Damage*((h + 1)T*) = C | D(S, P* + T*).

We must design Univ therefore in such a way that if E does not
intersect D(#, P* + T*) then properties (a — b) are satisfied in E at
time (b + 1)T*.

16.3. Initialization

Our original definition of the medium Univ will not guarantee
that the big colony E becomes legal if it was not. Indeed, even in the
absence of noise, the small colonies just simulate the evolution of
whatever they find in the big colony and its neighbor. The simulated
medium is now Univ again. Though we made Univ to support
colonies, this property is usable only for a big colony that is already
healthy.

306 PETER GACS

To make the simulated big colony healthy “against its own will,”
a simple but crucial new procedure, called Init, will be inserted
between the procedures Input and Compute, at the beginning of
each big work period. After the procedure Input, the configurations
of these colonies are in nine subsquares of size Q P/3 of the alliance,
on the Simulator track. Let us agree that whenever we speak about
a big colony we mean one of these nine subsquares of the Simulator
track of our alliance.

The procedure Init puts the symbol topleft into the left-most
column and the top row of the simulated big colony and checks that
all other cells of this colony are in a state belonging to S;;,. If a cell
is in some other state then its state is changed arbitrarily to one in
S, Finally, Init writes the integers Q’, U’ in place of the first two
parameters in the parameter field. (They play the role of P’, T’ for
the big colony).

Now the new procedure CompColumn has the following form.

procedure CompColumn(s, t,1);
begin
Decode;
Input;
if modif = 1 and / = 1 then Init;
Compute(t);
Encode;
Output(s);
end;

It is crucial that in the procedures ForceCode and Init, the small
colonies intervene in the simulation of big colonies. The code ¢ thus
defined is therefore no more a pure simulation, since health is forced
on the big colonies. Since, however, ¢ is not a simulation, we do not
want to use this program always, and the parameter modif allows
us to make the choice.

Sections 15 and 16.3 engineered the “magic” recovery needed for
the big colonies to recover from loss of structure. The rest of the
present section proves that the magic works.

16.4. Legalization Works

Let E be a big colony disjoint from D(#, P* + T*). We have to
show at time (k + 1)T*, conditions (¢ — b) of Lemma 16.2 hold.
The following geometrical lemma is easy to verify.

Self-Correcting Two-Dimensional Arrays 307

LEMMA 16.3. Let # be a set of disjoint triangles. Let E be a
P*-square disjoint from D(#, P*). Let the P*-squares E,, E,, E; be
the northern, southeastern, and southwestern neighbors of E. At least
two of these three squares are disjoint from .

We apply this lemma to # = .#' as defined above and the
big colony E that we assumed at the beginning of the previous
paragraph to be disjoint from D(#', P *). It follows that two of the
three neighbors E; are disjoint from .#,. Without loss of generality,
we can assume that £, and E, are disjoint from .#'.

We assumed that .# is a quarantine at time 27* for the evolution
x*. Hence by Lemma 16.1, .# is a local quarantine at that time, and
E,,E, are legal big colonies at the same time.

We will now follow the reasoning of Section 14.4. Before time
(h+ 1)U, only a singular event can create new deviations on the
InpMem track. According to Lemma 14.8, if cluster F is the site of
a singular event then its neighborhood I'(F, T') intersects

D(F' v LZY,T).

The alliances E, ,, E,, are disjoint from .#' at time AUT. Just as in
the proof of Lemma 14.6, we can conclude the following lemma.

LEMMA 16.4. During the time interval [hUT..(h + 1)UT), in
each row of E,, and E, , the number of T-intervals with deviations on
the InpMem track is bounded by {corr)r.

The following lemma says that after time (hU + 2Q)T, in the
alliances E,, E,,, and E,,, the singular events are restricted as in the
proof of Lemma 14.6.

LEMMA 16.5. If cluster Fin E, U E,, U E,, is singular at time qT
Jor q in [(hU + 2Q)T..(h +))U) then I'(F, T) intersects ¥° and q
isin Y.

Proof. Remember P* = PQ. According to Lemma 14.8, the
neighborhood I'(F, T) is intersected by #, u £°. Here, #, =
D(S', (q — (killy)P). Let us show that for ¢ > hU + 20 the set #,
is disjoint from I'(F, T'). This will imply that the latter intersects #°.
Lemma 14.8 says that in this case, ¢ is in Y.

308 PETER GACS
We have

(g — <KillY)P > (20 — (kill))P
= PQ + (Q — <killY)P > PQ + 2T.

Here we used (Q — <kill))P > 2T, which follows from the Size
Conditions. It follows that H = D(#', PQ + 3T). We assumed
that D(#', PQ) is disjoint from E,, E,,, and E,,, hence it is disjoint
from F. Therefore by (11.2), the neighborhood I'(F, T') is disjoint
from D(#', PQ + 3T). O

Proof of Lemma 16.2. The program begins with 2Q idling steps.
After these, according to Lemma 16.5, the singular events are
restricted in E,, E,,, and E,, just as stated by Lemma 14.2.

We assumed modif = 1. Hence for/ = 1, in all regular calls s of
the procedure CompColumn(s,t,!), the procedure Init makes the
simulated colony healthy. The simulated medium Univ, by assump-
tion, supports colonies. Therefore since the big colonies E,, E, were
legal, by the end of the procedure Compute(t), the result represents
a legal colony.

The code ¢ is such that the top three rows of the alliance code the
top three rows of the corresponding big colony. Therefore the top
three rows of the alliance deviate in at most {dev)r T-intervals from
the code of the top three-rows of a legal big colony.

Finally, the procedure ForceCode decreases CodeDiff(u,) to
{dev)r, for all k > 2. O

End of the proof of Theorem 16.1. To make the evolution
(x*, /* Damage*(0)) self-correcting, it remains to prove the
Computation Condition. This condition says now the following:
Let the big cluster C be regular at time AT*. Then the configuration
x*[(h + 1)T*, C] is what it would be if x* was a trajectory of Univ
starting from the same configuration x*[AT*, C,,].

The regularity of the big cluster C at time A#T* means a condition
on the noise, and one for the damage. For the noise, it says that the
noise A" is sparse over the set [UT; h] x C,, in W. For the damage,
it says that Damage*(hT*) does not intersect C,,,. By the definition
of Damage*(0) and Lemma 16.2, this implies that each row of each
alliance of C,, differs from a codeword by at most {dev)r T-intervals.

Now Lemma 14.2 has essentially these conditions and the needed
conclusions. d

Self-Correcting Two-Dimensional Arrays 309

17. CONSTANT SPACE REDUNDANCY

In the present section, we sharpen Theorem 13.1, by weakening one
of the Size Conditions 13.3. This condition has the form

QP > max (3Q'|Med,|, Q'|Med,| + 9corryrP T/P).

We want to eliminate the factor 3|Med,|. This economy is necessary
only when our goal is constant space redundancy, as promised in
the main theorem. In that case, the factor 3|Med,| cannot be
tolerated, since the final simulation is a concatenation of several
simulations of this kind, multiplying the cell size (which is the
measure of the space redundancy) every time by 3|Med,|.

As long as we design the simulation it is convenient to use unit
cell sizes and cell worktimes in the simulated colonies [Q”; i, j]*. The
new cell size a* and cell worktime f* can then be computed at the
end, as done in Section 16. These parameters do not enter the Size
Conditions anyway.

17.1. Economical Trajectories

If we want to get rid of the factor [Med,| then most cells of the
Q’-square should not carry much information so that an encoding
into binary strings of length |[Med,| is unnecessary. Therefore the
largest part of the Q’-square will be destined to the passive storage
of information, i.e., it will be “memory.” We add more ingredients
to our model. We assume that there is a four-element subset
Shed,. mem Of the states of the medium Med,, called the set of memory
states that is invariant with respect to the rule Med,, i.e., the rule
Med, never changes a memory state into a nonmemory state.

We also assume that a parameter {wksp)” > 1 is given. A Q’-
square of Med, will be called economical if its cells in all but the
bottom Q’/{wksp)’ rows have memory states. These bottom rows
will be called the Workspace field of the Q’-square, the rest the
Memory field. Notice that the notion of an economical square
depends on the parameter {wksp)’ and the set Syeq, mem-

In Theorem 13.1, we simulated all possible trajectories of Med,.
Now we confine ourselves to trajectories that are economical, i.e.,
such in which all colonies are economical. Due to the invariance of
the set of memory states, if a trajectory starts from a configuration
of economical colonies, then it is economical.

310 PETER GACS

Though we make our task easier by confining ourselves to the
simulation of economical trajectories, we pay for this by making the
medium Univ and its simulating evolutions also economical. The
set Syem Of memory states of Univ will be part of the set S, , of initial
states introduced in Section 13.3. There will also be a parameter
{wksp) for the definition of economical small colonies. The small
colonies will be required to be both legal and economical.

The set of parameters of our model is now

P, T,Q0,U,Q, U, P, Q,{wksp), {(wksp)’, Prog,, modif, r.
We replace the Size Conditions 15.1 with the following.

ConpITION 17.1 (S1ZzE).

) 1 , [Med, | D
QP <l — W) >Q <1 +<Tks—1:%> + 9¢corr)’rP’T/P,

P’ > max (log U,log T, |Prog,|),

UT’ > ({wksp)|Med,|)?

U (epPy ., ,
x Q,(-) OT" log (QP")Steps,

T = 9P,
T

Only the bounds on QP’ and UT’ have changed. The bound on
QP’ is smaller: it will be asymptotically equal to Q’. On the other
hand, we pay with a factor ((wksp)|Med,|)* in the bound on the
time UT", for the fact that only a fraction 1/{wksp) of each colony
is devoted to workspace.

Now we can formulate the optimized version of Theorem 13.1.

THEOREM 17.1. There is an economical medium Univ supporting
colonies such that the following holds. Assume the Size Condition 17.1
for some economical Prog,, and numbers P’,...,r. Then there
is a standard simulation ¢ of Med, by Univ mapping economical
trajectories into economical trajectories, such that the conclusion of
Theorem 13.1 holds.

Self-Correcting Two-Dimensional Arrays 311

The rest of the present section is devoted to the proof of the
above theorem. It describes all necessary modifications to the
medium Univ and the code ¢. If the reader is not interested in this
optimization then this section can be skipped.

17.2. Drying

Ordinary self-simulation would proceed by expanding the
content of each cell to be simulated, as done at the beginning of
Section 13 and storing the result in the Memory of the simulating
colony. It is possible to avoid expansion by giving different treat-
ment to the Memory and the Workspace. Due to the small number
of memory states, only the Workspace must be expanded. The
operation can be viewed as drying a flower by pressing it between
the leaves of a book. The process will not change the parts that are
already dry.

Formally, one can define a code

Dry = (Dry,, Dry*).

It is applied to a Q’-square and encodes it into an array of memory
cells. The code leaves the Memory unchanged and expands each
symbol of the Workspace into a column bin(s) of height [Med,|.
Thus, each row of the Workspace is expanded into [Med,| rows.
The vertical size of the Q’-square increases therefore to

Q'(1 — 1/<wksp)”) + [Med,|Q"/{wksp)".

The crucial difference between drying and the error-correcting code
Algeb is that since drying is symbol-for-symbol, the simulating
alliance can manipulate the dry information without ever recon-
stituting it. The parameters of the alliance contain {wksp)’, hence
the small colonies of the alliance will know which simulated cells are
expanded and which ones are not.

17.3. The Code ¢

The Memory field of a Univ-colony is divided into a vertical strip
of width P/{wksp) on the right side, called the Channel field, and
the rest, called the Data field. The Channel field is needed only for
communication between the Workspaces of the colony and its
northern neighbor. Only the Data field, which still occupies most of
the colony, will be used for actual storage.

312 PETER GACS

The union of the Memory fields of the member small colonies will
be called the Memory field of the alliance. The Data, Workspace,
and Channel fields are defined similarly. Thus, the Workspace and
Channel fields of the alliance form a grid: a union of horizontal and
vertical strips of width P/{wksp). The Data field is the comple-
ment: it consists of Q” squares of size P(1 — 1/{wksp)).

Let us define the code ¢. The encoding ¢, is defined as follows.
First we apply the code Algeb, - Dry, to the Q’-square. Then we
distribute the result in the Data fields of the small colonies of the
alliance. Finally, for all i, j, we make each of the small colonies
legal, initialized to the beginning of a work period of the alliance.

The decoding ¢* is defined as follows. For each row of the alliance
intersecting with the Data, we take the information from the Data
parts of the row. We apply the decoding Dry*o Algeb* to the
rectangle obtained from all rows this way. This means reconstituting
the Workspace rows of the Q’-square from their expanded form.

17.4. Memory in the Universal Medium

How will we retrieve information from the Memory field of
Univ-colonies? For n = 0, 1,2, 3, if a cell has the memory state s,
then we say that this cell stores the pair of bits n,, n, in n. Memory
cells with shift their left bits up and their right bits down between
each other. Thus, if x is a trajectory of Univ and

x[t’ i’j] = sm|m07 ’x[t7i+ l’j] = snlno
for bits m,, m,,ny,n, then we will have
X[t+1,l,]] = smu’ X[t+ 19l+ l’.]] = svml

for some bits u, v. If the upper neighbor is not a memory cell then
the cell reads some fixed function of the state of the upper neighbor
into its right bit: the effect of this is that a workspace cell can
“write” into a memory cell. (Of course, it can also read.)

During almost the whole computation, the workspace cells at the
upper and lower edges of the Memory have states that keep the
information rotating in each column: flowing down in the right bits
and turned back at the lower edge to flow back up in the left bits.
An appropriate times, the workspace cells can write something into
the Memory or read from it.

Self-Correcting Two-Dimensional Arrays 313
17.5. Ranks and Slots

We must give up the luxury of separate InpMem and OutMem
tracks in Univ. Moreover, since the Workspace is only a small part
of the whole colony, we cannot store all nine coded neighbor big
colonies in the alliance for simulation. We solve these problems in
the present subsection by trading time for space.

Let

_ oP' }
k= {7|Med0|<wksp> '

Let us divide the Q’-square into horizontal strips called ranks. The
width of each rank is at least R but smaller than 2R. Each rank is
either completely in the Memory or completely in the Workspace.
These are the only requirements for ranks, and it is easy to find a
subdivision with these properties. With the Memory, €.g., we can
begin to divide it into strips of width R, leaving at the bottom a
somewhat wider last strip.

The computation will update the content of the simulatfed
Q’-square rank-by-rank. An extended rank is a rank extendeq by its
left and right neighbor ranks from the corresponding neighbor
colonies. After drying, a rank of width n will be represented by n or
IMed, | rows depending on whether it comes from the Memory or
the Workspace. The number R is determined in such a way that
even when they have 2R|Med,| rows after drying, three neighboring
ranks will fit comfortably into the Workspace of the alliance. To fit
there three neighboring extended ranks, we just store three symbols
per cell of the simulating medium Univ. (Each symbol consists of
at most two bits.)

Let

N = |U/R].

The computation will proceed in stages ! = 1,...,N + 1. Each put
the last stage computes the state of the Q’-square after R more time
units. Some care must be taken not to update information that will
be needed in the next stage of the serial simulation. One solution,
taken from Toffoli’s Cellular Automaton Machine (see [Tof]), is to
distinguish between the physical and logical positions of a rank.
The physical position of a rank will be called its slot. It will vary

314 PETER GACS

from stage to stage. Each slot is a strip consisting of a sufficient
number of rows in the simulating alliance, to store a certain rank.
The number

m = | QP'(1 — 1/{wksp)) |

of rows in the Memory of the simulating alliance is somewhat more
than needed to accommodate all ranks. Indeed, the number of all
rows in the dried Q’-square is less than Q’(1 + IMed,|/{wksp)"),
which, according to the Size Conditions, is still less than m.

We will use the m available rows for slots as a circular store. At
the beginning, sloz (i, 0) holds the initial content of rank i. These
slots are consecutive strips starting from the top row of the alliance.
Each stage / of the simulation consists of substages i, corresponding
to the ranks of the alliance. In stage /, at the beginning of substage
i, the new content of rank j for j < i — 1 is found in slot (j, 1). The
old content of ranksj > i — 1 is found in the slots slo? (J,/—1).In
the cycle of available rows modm, the slots slot (J,/I—1) for
J = i—1 are followed by slot(j, 1) for j <i— 1. The union of all
these slots forms a segment mod m.

In substage i, we load the old content of the extended ranks i — 1,
i,and i + 1 into the Workspace of the alliance from the correspond-
ing slots. The simulation is performed (with the repetitions s as
earlier), and the new value of rank i is stored in a new slot slot (i,1)
at the end of the segment. At the same time, slot Gi—1,1-1)is
released, since it is no longer needed.

17.6. Procedures

The above outline results in the following procedures. Let
(ranks) denote the number of ranks.

procedure Input(i,l)

fori = 2,...,{ranks) — land/ = 1,..., N + 1 loads the Data of
the extended slots

slot (i — 1,1 — 1), slot (i, — 1), slot (i + 1,1 — 1)

(representing the corresponding extended ranks) and spreads it in
the Workspace of the alliance. Fori = 1, (ranks), the information

Self-Correcting Two-Dimensional Arrays 315

of one of the three ranks must be taken from the appropriate. slot
of the upper resp. lower neighbor alliance. For extendgd rapk i, for
a row 7 in one of the above three slots, its destination is a row

Map (i, n)

in the destination alliance. The function Map (i, n)? as well as th
boundaries of all slots in all stages, could be described by explicit
formulas. The Workspace occupies only a portion 1 /(wksp>. of
each small colony. Therefore at its destination given by the funqtlon
Map (i,n), the information of a rank will occupy {wksp) times
more colony rows than in its slot.

procedure Output (i, s,1)

takes the information in rows Map (i, n) of the colonies in column
s of clusters and writes it back to the rows »n of column s of clusters

in slot (i,1).
After stage [= N + 1,

procedure Backrotate

rotates the alliance vertically back to the initial sta?e when raqk i
is stored in slot (i,0). This procedure is just a series of copying
operations. It cannot carry deviations from one column to another.

procedure Decode

decodes the Data loaded into all rows Map (i, n) using the code Algeb
described in Section 8. Procedure Encode performs the corres.;por'ldmg
encoding. After encoding as well as decoding, the information is left
in the same row.

procedure /nit (i)

depends now on i, since the top row of the simulated Q’-square is
located in a slot dependent on i.

procedure Compute (t,1i)

simulates ¢ steps (less than the width of the rank after decoding) of
the work of the three decoded extended ranks. Even after decoding,

316 PETER GACS

the information is still in dry form. Since the code Dry does not treat
all ranks the same way (the higher numbered ranks belong to the
Workspace of the Q’-square), procedure Compute depends on i.

procedure ForceCode

remains much as it was defined in Section 15, only it will also have
to work rank-by-rank, due to space shortage.

17.7. The Program

Small colony support can be added to the program below just as
easily as in Section 16.3.

begin
for / = | to N+ 1 do begin
if < Ntbent:= Relse t:= U’ — NR;
for i = 1 to {ranks) do begin
for s = 1 to QP/T do begin
Input (i, 1);
Decode;
if modif = 1 and / = 1 tben Init (i);
Compute (1,i);
Encode;
Output (i, s, 1),
end;
ForceCode;
end;
end;
Backrotate;
end.

It is easy to see that the procedures of this program can be written
now in such a way as to satisfy the new Size Conditions. Essentially,
the only new Size Condition to check is the bound on UT’. The
main difference of the present program from the earlier one is that
what was earlier an U’/Q’-fold iteration, is now replaced with an
iteration U’/R-fold, combined with an iteration (ranks>-fold. The
extra factor is therefore

Cranks)Q'/R < (Q'/R)* < (IMed,|{wksp))’.

Self-Correcting Two-Dimensional Arrays 317

The proof of Theorem 13.1 can now be almost literally carried over
to the proof of Theorem 17.1 when the program there is replaced
with the present one. 0

If we restrict ourselves to economical trajectories of Univ then
Theorem 16.1 will also remain true with the new Size Conditions,
and the proof carries over virtually without change.

18. PROOF OF THE MAIN THEOREM
18.1. A Series of Implementations

For k = 0,1,..., let us generate a sequence of parameter sets
P’,...,r each of which satisfies the Size Conditions 17.1. For the
reader who skipped Section 17: a sequence satisfying the earlier Size
Conditions 15.1 is even easier to construct. The only difference is
that P//P,_, will be about 3|Univ]| instead of converging to 1.

The noise bound r, and the probability p, are defined as

k recoTk

rk=2’ P =@

Let w be an integer parameter to be chosen conveniently large lgter.
Let us define the basic colony size P, and, for k > 0, the auxiliary
parameter g, as follows.

P = g = W,
o (18.1)
g = (wWk)'rigi_, fork>0

The absolute and relative colony sizes and work periods Py, T},
Oy, U, are defined as follows.

T, = Pg
P, = Wk)’r,T,_,, for k > 0,
Qk = Pk/kal = (Wk)zrkgk_] for k>0

U, = T,/T, , = (wk)r.g for k > 0.

318 PETER GACS

Finally, the represented colony sizes and work periods are defined
as follows.

P(; =W, Pll =|_Ql/2_Js
PUPL, = (1 —k)Q, fork>l,
T, = wP,.

THEOREM 18.1. For large enough w and small enough p, there is

a series of implementations ¥, for k >0, with parameters P/,

T, P, Ty, 0, P -
Proof. Let us fix k. We define the parameters
PP=P . T"=T,_,,P=PF_,,T =T_,,
0=0,U=0U,0Q0 =P, U =T
(wksp) = wk?, {wksp)’ = w(k + 1), r = r,.
We prove that if w is chosen large enough and ¢ small enough then

the above choices satisfy the Size Conditions 17.1 with Med, =
Univ, and for £ > 1 the inequality

Py S UG, (18.2)

[This inequality (18.2) corresponds to (9.1).] Then, the application
of Lemma 13.1, and Theorem 16.2 completes the proof.

Proof. The first Size Condition can be written as

OP(1 — 1/<wksp)) > Q’(1 + |Univ|/{wksp))a + 9<{corr)’rT.
(18.3)

We have Q'a = P{P,_,/P/_, = (1 — k ?)P,. Therefore the right-
hand side of (18.3) can be written as

[Univ|
w(k + 1)

< P.(1 — k™*(1 — |Univ|/w — 9¢corr)’/w?)).

P(l — k?) (1 +) + 9¢corr)’ P, (sk) >

Self-Correcting Two-Dimensional Arrays 319
Suppose that w is large enough to have
|Univ|/w + 9<corr)’/w? < 0.5.

Then the right-hand side of (18.3) is less than

1
OP(1 — 1/<wksp)) = P, (1 — W)

The second Size Condition says, with the substitutions made:
P/, > max (log Uy, tog T;_,, |Prog|).

Here, Prog, is the program of the transition function Univ on the
Turing machine Turing. The condition |Prog,| < P/_, follows if we

set
w > |Prog,|.

We have log T,_, = log P/_, + logw < P/_, since B/ , > w.
Before going further, let us find some explicit formulas and

estimates from the above recursive definitions. We have, with func-
tions 0 < A(k,i) < 1,

ge = wEn"22(") (18.4)
k+1
= exp2{2<)) + 11k(log (wk) — 2A(k, 1))}, (18.5)

Qi = (Wh) g,

Po= w (k) g, gk

k+1
=exp2{2<k:2>+ll< :)log(wk)/l(k,Z)}.

The relations

logU, < 0.50,_,,
(18.6)

log P, < wk’

320 PETER GACS
are now easy to check. The first one implies
logU, < 0.5Q0,_, < P/_,,

which finishes the proof of the second Size Condition. The third
Size Condition reads:

U > ({wksp)|Univ)*(U'/Q")(QP/T Y’ Q log (QP") Step,. (18.7)

We have

U')Q" = T{|P = w,
(QP|T) = (P/T,_\) = (wk)'r},
QP = QuP/_ | <P = QP
ur’' = U, 1,_, = wU,P/,_, > UP,_,.
Hence the right-hand side of (18.7) can be estimated, using (18.6), as

(wk*|Univ|)*w(wk)*r: Q, log P, Step,
< |Univ*w'k*r; Q, wk* Step,
< (Wk)“r/chk = Uk‘

This proves the third Size Condition. The remaining two Size
Conditions are satisfied by definition.

To prove (18.2), we prove the following stronger inequality, with
R = —logo.

*3h-3

logngrl"'rk_lR/4rk = R2

We have, from (18.4):

k+1
logU, = logg, + k + 2log(wk) < 2(5) + 12k log(wk).

This is clearly smaller than the right-hand side of the previous
equation, if only R is not too small relative to w. O

Self-Correcting Two-Dimensional Arrays 321
18.2. Divisibility Considerations

Let us return to the formulation of the Main Theorem. Given the
values n, t,¢, let K be the smallest k& with

(n+ P) 1" " <e.

It is convenient to assume that n is divisible by Py . Let us show that
if this is not the case then a simple extra coding # of Med, into a
slightly different medium Med, will achieve this. No subtlety is
involved, and we mention the details only for completeness’ sake.
We have seen in Section 15 that a medium on a torus can be treated
as it were folded to a medium working on a square, using the
mapping (i, j) = (3, j). If we surround the square by “blanks” then
the boundaries of the square are automatically marked. And there
is no difficulty in simulating a medium on a square by a medium on
a larger square. Let

n = P n/P{] (18.8)

be the smallest multiple of Py greater than n. Thus, using a step-for-
step simulation 5 we order to each configuration of Med, over 7.
a configuration of a new medium Med, over 7.

18.3. Deviation Probability

The simulation y of the theorem will be given as
Y = Yg_i1o@en.

Here, 7 is the simulation described in Section 18.2. The simulation
Wg_, is provided by Theorem 18.1. The simulation ¢ with par-
ameters Py, Py, Ty, Ty of the medium Med, by Univ is given by
Theorem 13.1, with the parameters as at the beginning of the proof
of Theorem 18.1, with k = K. The target space of code y is 72, with

n/ PK
_ , 18.9
"R, (189

We divide by 7, since in the implementation ¥,, the size of a single
cell of medium M was chosen 7.

322 PETER GACS

The number ¢ of steps of the original computation will be followed
for [¢/T¢] work periods of the simulation.

Now let z be a trajectory of Med,, theny = ¢,(z)isa trajectory
of Univ. Let ¢ be a g-perturbation of Y_1%(»). Then by the
definition of implementations, the random evolution YE (O is a
self-correcting Px—i-perturbation of y. In each Ty-cube, the prob-
ability that the noise belonging to this p,_,-perturbation is not
(UK, T4, Ty_1)-sparse, is at most p¥_, = p,. The number of T-cubes
in the space-time area in question is smaller than n’2¢. It follows
that the probability that over this area the noise is not sparse is at
most ntp, < &. With probability 1 — ¢, the noise is sparse. Using
Theorem 13.1 we conclude that with probability 1 — ¢, we have

P*WYE_ () = z.
18.4. Redundancy

First we prove
Py, Ty = OQ"M™). (18.10)

From (18.1)2, it follows that the quantities g,, U, grow approxi-
mately as 2%°:

__ "Hk2+O(klogk
2 = 2 (klog),

Uk — 2k2+0(k]ogk).

Therefore the quantities P, 7, grow approximately as 227

Tk — 22k3/3+0(k2 logk)

(18.11)

P, = 22K/3+0(k? logh)
Above, K was defined as the smallest k with
2log,[(n + P)tle] <r -1,

If n > Py we get from here, with L = log (n*t/¢) as defined in the
Theorem:

L = 2K2/2+0(KlogK)+O(l)

Self-Correcting Two-Dimensional Arrays 323

The constant in O(1) here depends on g. If n < Py the same estimate
is obtained. From this, and (18.11), we obtain (18.10).

Now we prove m = O(n + Py). It follows from (18.8) that n” =
O(n + P¢). Now it follows from (18.9) that m = O(n + Py)(Pg/Fy).
Finally, it follows from the definitions (18.1) that

1
7o) - o0

The definitions (18.1) show that the time redundancy is propor-
tional to g,. By the above equation, this is

20(KlogK)L2 — L2+0(1)

The third statement of the theorem concerns the complexity of
computation of the code. It was proved in Section 8.]

19. CONCLUSION AND OPEN PROBLEMS
19.1. Simplification

Simplification can be understood in conceptual and in quan-
titiative sense. In order to lend the two-dimensional medium
physical credibility, reducing the number of states (while retaining
nearest-neighbor interaction) is crucial. The features required at the

cell level include

e computational universality;
parallel transport with periodic copying;
application of a generalized Toom’s Rule to some local
variables (the phase variables);

e periodic majority vote among certain local variables.

These features can probably be achieved by a relatively simple
local rule. The elaboration of details would be very interesting.

19.2. Continuous Time

The hierarchical organization used for error correction can
also be used for synchronization. Each block of cells is supposed

324 PETER GACS

to be synchronized to a close tolerance and is periodically resyn-
chronized. Higher order blocks are synchronized to progressively
looser tolerances. Details must be worked out yet.

If worked out for the one-dimensional case, the result will be a
formal refutation of the Positive Rates Conjecture featured in [Li].

For the three-dimensional case, Charles H. Bennett has a physical
synchronization idea. If something of comparable simplicity does
not work, then the simplicity of the construction of [GR] will be lost
with the introduction of continuous time.

19.3. Space-Time Trade-off

This problem was discussed in Section 17. We do not consider the
logarithmic lower bound of [DO1] significant as a lower bound on
the redundancy of reliable computation. It shows only the necessity
of encoding. But in our view, for the purposes of reliable compu-
tation, information must be viewed as coming in encoded form.

It is remarkable (though probably an artifact) that both here and
in [GR], the product of the space and time redundancies came out
log’N. The bottlenecks in the present paper that caused log?N
instead of log N occur in the problem of consensus. In Section 11.3
more than r* repetitions were required for r possible failures. We
hope that this result can be improved to O(r) repetitions. However,
even more computation was needed in the procedure FindVotes that
found reliably the votes whose consensus is sought.

19.4. Self-Organization

Our reliable media work reliably only if the starting configur-
ation already contains the (input-independent) hierarchical organ-
ization. It would sound more natural, in one dimension, that if the
input is one bit then the starting configuration should consist just
of the repetition of this one bit. If error correction requires structure
then the medium should be able to build up this structure, out of
“nothing.”

In two dimensions, remembering one bit starting from a homo-
geneous starting configuration can be done by Toom’s Rule. But
there is still the problem of increasing depth in the presence of noise,
as outlined in Section 2, starting from a homogeneous configuration.
This is what we consider the natural problem of self-organization.

This goal is the most intriguing among the ones proposed. Let us
note first of all that Toom’s Rule must be largely abandoned even

Self-Correcting Two-Dimensional Arrays 325

in two dimensions since its usefulness for structure maintenance
depends on a globally existing structure. We must therefore return
to the ideas of [G]. Still, we run into new problems at several points.

e Without errors, no structure can arise, since all cells have the
same state and the same rule. Hence, randomness is no more
than just an “enemy”: whatever structures may arise will be
random (e.g., if there are blocks, their position will be random).

e Killing a small organized island surrounded by inconsisten-
cies was one of the main principles of the construction in [G].
Self-organization requires that we permit these islands to
grow, at least very slowly. A possible new rule replacing the
old one could be that islands die if they are prevented from
growth for longer time.

e More probabilistic analysis is required with any of these
ideas, to show that there will always be islands not too far
from the origin whose size is greater than some increasing
function of time.

Self-organization is, of course, a favorite topic of theoreticgl
biology. What distinguishes our approach is that all the structure in
[G], however life-like, seems to be forced upon us by the extremf:ly
simple requirement: the protection of information in a noisy
homogeneous medium.

ACKNOWLEDGMENT

Charles H. Bennett’s experiments with Toom’s media and his discussions
of the related physics were a source of inspiration. This is by far not a self-
correcting manuscript, therefore my great thanks are due to Weiguo Wang
and the referee for their careful reading resulting in the correction of many
errors. Supported in part by NSF Grant DCR 8603727. Part of the present
work was completed with the support of Bell Communications Research,
NIJ.

REFERENCES

[B] C. H. Bennett, “Logical depth and physical complexity.” In R. Herken, editor,
Universal Turing Machie: a Half-Century Survey, pages 227-257, Oxford
Univ. Press, Oxford, 1988.

[BI] R. E. Blahut, Theory and Practice of Error-Control Codes. Addison-Wesley,
Reading, MA, 1983.

326 PETER GACS

[BCG] E. R. Berlekamp, J. H. Conway, and R. K. Guy, Winning Ways for Your
Mathematical Plays. Academic Press, London, 1982.

[Bo] A Borodin and I. Munro, Computational Complexity of Algebraic and Numeric
Problems. American Elsevier, New York, 1975.

[BS] P. Berman and J. Simon, “Investigations of fault-tolerant networks of com-
puters,” Proc. 20th ACM Symp. Th. Computing (1988).

[DOI] R. L. Dobrushin and S. I. Ortyukov, “Lower bounds for the redundancy
of self-correcting arrangements of unreliable functional elements,” Problems
Inf. Transmiss. 13(1): 59-65 (1977).

[DO2] R. L. Dobrushin and S. I. Ortyukov, “Upper bound on the redundancy of
self-correcting arrangements of unreliable elements,” Problems Inf. Trans-
miss. 13(3): 201-208 (1977).

[G] P. Gacs, “Reliable computation with cellular automata,” J. Computer Syst.
Sci. 32(1): 15-78 (1986).

[GR] P. Gacs and J. Reif, “A simple three-dimensional real-time reliable cellular
array,” J. Computer Syst. Sci. Vol. 36, No. 2, April 1988, pages 125-147.

[Kur] G. L. Kurdyumov, “An example of a nonergodic homogeneous one-
dimensional random medium with positive transition probabilities,” Soviet
Math. Dokl. 19(1): 211-214 (1978).

[Kuz] A. V. Kuznietsov, “Information storage in a memory assembled from
unreliable components,” Problems Inf. Transmiss. 9(3): 254-264 (1973).

[La] S. Lang, Algebra. Addison-Wesley, Reading, MA, 1965.

[Le] L. A. Levin, “Randomness conservation inequalities; information and
independence in mathematical theories,” Inf. Control 61(1): 15-37 (1984).

[Li] T. M. Liggett, Interactive Particle Systems (monograph). Springer, New York,
1985.

[Ly] N. Lynch, “Easy impossibility proofs for distributed consensus problems,”
Distributed Computing 1(1): 26-39.

[M] N. Margolus, “Physics-like models of computation,” Physica 10D: 81-85
(1984).

[Ta] M. C. Taylor, “Reliable information storage in memories designed from
unreliable components,” Bell Syst. Tech. J. 47(10): 2299-2337 (1968).

[Tof] T. Toffoli and N. Margolus, Cellular Automata Machines—A New Environ-
ment for Modeling. MIT Press, Cambridge, 1986.

[Too] A. L. Toom, “Stable and attractive trajectories in multicomponent systems,”’
In Advances in Probability (Multicomponent Systems), (R. L. Dobrushin,
ed.), Vol. 6, pp. 549-575. Dekker, New York, 1980.

[Ts] B. S. Tsirel’son, ““Reliable information storage in a system of locally interact-
ing unreliable elements,” in Interacting Markov Processes in Biology, Lecture
Notes in Math., Vol. 653. Springer-Verlag, New York/Berlin, 1978.

[VN]J. von Neumann, “‘Probabilistic logics and the synthesis of reliable organisms
from unreliable components,” In Automata Studies (Shannon and McCarthy,
eds.). Princeton University Press, Princeton, 1956.

THE COMPLEXITY OF PERFECT
ZERO-KNOWLEDGE

Lance Fortnow

ABSTRACT

A perfect zero-knowledge interactive proof system convinces a verifier
that a string is in a language without revealing any additional knowl-
edge in an information-theoretic sense. We show that for any language
that has a perfect zero-knowledge proof system, its complement has
a short interactive protocol. This result implies that there are not any
perfect zero-knowledge protocols for NP-complete languages unless
the polynomial time hierarchy collapses. This chapter demonstrates
that knowledge complexity can be used to show that a language is
€asy to prove.

1. INTRODUCTION

Interactive protocols and zero-knowledge, as described by
Goldwasser, Micali, and Rackoff [GMR], have in recent years

Advances in Computing Research, Volume 5, pages 327-343.
Copyright © 1989 hy JAI Press Inc.

All rights of reproduction in any forin reserved.

ISBN: 0-89232-896-7

