A game between **Questioner** and **Responder**. Responder thinks of a number in \(\{1, \ldots, N\} \). Questioner asks yes/no questions, \(Q \) of them. In her answers, Responder may lie, \(rQ \) times, where the fraction \(r \) is given in advance.

Variants:

1. What kind of questions?
2. What other restrictions?
In our game, only **comparison questions** are allowed: is $x < y$?

Other possibilities:
- **general questions** of the sort $x \in S$ for sets S.
- questions asking one bit of a binary representation of x (**bit questions**).

Questions are allowed to be **adaptive**.

Other possibilities:
- Questions must be submitted in advance (**batch questions**);
- Responder cannot lie in more than a fraction r of **any starting segment**.
Batch questions: same as an error-correcting code. Indeed, for a number \(x \), let
\[
C(x) = (c_1, c_2, \ldots, c_Q)
\]
where \(c_i \) is the correct answer to the \(i \)-th question. Then the set
\[
\{ C(x) : x = 1, \ldots, N \}
\]
is a code correcting \(rQ \) errors, with rate \(Q^{-1} \log N \).

Adaptive questions: code with feedback.
First studied by Berlekamp. Exact solution is known for up to 3 lies (you do not want to see the algorithm!).
Theorem For bit and comparison questions, there is a function $f(r)$ such that Responder wins unless $N < f(r)$.

Proof for the comparison questions. Since Responder sees all questions in advance, she knows which question of the form $x < k$ has been asked not more than Q/N times.

- yes to questions $x < j$ for $j > k$.
- no to questions $x < j$ for $j < k$.
- yes to half of the questions $x < k$. This is allowed if $rQ > 0.5(Q/N)$, that is $N > 0.5/r$.

Then Paul cannot decide between $k - 1$ and k. □
After t questions and answers, let $f_t(x)$ be the number of lies made by Responder, if x was the number she thought of. All relevant information for the analysis is found in the numbers

$$V_t(i) = |S_t(i)| = |\{x : f_t(x) = i\}|.$$

If k lies are allowed then the game ends when

$$\sum_{i \leq k} V_t(i) \leq 1.$$
Theorem (Winkler, Spencer) In the adaptive game, if $N > 2$ and $r > 1/3$ then Questioner loses.

Proof. Winning strategy for Responder: it is sufficient to consider $N = 3$. Watch the three numbers $f_t(1), f_t(2), f_t(3)$. As long as all three are $< rQ$ choose the answer that increases at most one of them. Once there are only two numbers left, choose the answer that increases the smaller one. This way, it will take $\geq 3rQ - 1$ steps to drive two of the numbers beyond rQ. □
Adaptive, comparison questions

It does not seem easy to win no matter how small is r and how large is Q.

A failed idea: repeat each question many times. This does not help since Responder can save up all lies to the end. Still:

Theorem With comparison questions, Questioner wins for all $r < 1/3$, asking

$$\left\lceil \frac{8 \log N}{(1 - 3r)^2} \right\rceil$$

questions.

Proof of $O(\log N)$ for the case $r < 1/4$. (The case $r < 1/3$ requires more sweat.)

Ideas: instead of trying to decide early the truth, count contradictions.

Try binary search but let Responder pay with contradiction every time when you have to abandon a cut-in-half.
Adaptive strategy, comparison questions, $N = 64$. Every line in the trashbox has ≤ 4 questions containing a contradiction, so at least 1 lie.

For $1/4 \leq r < 1/3$, a similar strategy, but each nested interval (a pair of questions) must be repeated a certain number of times.
Consider general questions. Let b be an upper bond on bounds r needed for Questioner to win.

1. If the game is non-adaptive, $b = 1/4$.
2. If the game is adaptive, $b = 1/3$, the same as even with the special, comparison questions.
3. If r bounds the fraction of lies in all beginning segments, then $b = 1/2$.

In all cases, for $r < b$ the number of questions needed is $O(\log n)$.

The proof analyses error-correcting codes.
Let M be a $Q \times N$ 0-1 matrix showing all the questions in its rows. For Questioners to win, the Hamming distance between its columns must be more than $2\lfloor rQ \rfloor$. Let us ignore integer parts from now.
Lower bound The sum of all distances must at least
\[\frac{N(N-1)}{2} \cdot 2rQ \approx rQN^2. \]
Each row, containing \(k \) 1’s, contributes at most \(k(N - k) \leq N^2/4 \) to this sum, hence the total of \(Q \) rows is at most \(\frac{1}{4} QN^2 \).

Upper bound Let \(2^{QH(\rho)} \) be the volume of a Hamming ball of radius \(\rho Q \). Let us choose 0-1 vectors of length \(Q \) one-by-one, such that the distance of the next one is always at least \(2rQ \) from the previous ones. If we found \(n \) and cannot continue then the balls of radius \(2rQ \) around these vectors cover the space, so \(n \cdot 2^{QH(2r)} \geq 2^Q \). But then
\[n \geq 2^{Q(1-H(2r))}. \]
Since \(H(2r) < 1 \) if \(r < 1/4 \), we will be done with \(O(\log N) \) questions in this case.