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Randomness

• Somebody shows you a sequence of 100 0’s and 1’s, and claims
he obtained it by tossing a fair coin 100 times. If the sequence
looks like

0101010101 . . . 0101010101

then you will conclude that he is lying. But:
What will you base your accusation on?
This outcome is exactly as probable as any other sequence.

• This question is old, predating the formal foundation of
probability by more than 100 years. We arrived at a satisfactory
understanding only after the introduction, mainly by Andrei
Kolmogorov, of a quantitative measure of disorder and
information, description complexity.

• I start with a detour via the notion of information.



Information

• Information is many things for many people. Since Shannon, its
main technical meaning is given by the needs of communication
technology.
We want to measure the quantity, leave the content aside. (The
content will steal itself back, though.) By Shannon’s huge
insight, the form is immaterial, since it can be changed by
coding. A file storing a picture, or an audio file both consist of
0’s and 1’s—bits.

• Since a k-bit string can represent 2k different things, our first
definition: information in a variable X is

log2 |A|

where A is the range of values of the variable X . So,
information measures the amount of uncertainty in X .



Entropy

• How much information is in a string of English text of 1000
characters (leaving aside meaning and context)? If I see the
part “informa” in a text then I can complete it to “information”
myself, most of the time. I will be better off just putting there a
sign “. . . ” saying “complete it as usual”. This is the idea behind
the compression of material in computers.

• One way to do this is to assign probabilities
p(x1), p(x2), . . . , p(xn) to each possible value x i of the variable
X , and say that the amount of surprise in value x is

log2
1

p(x)
.

When all values are equally probable we get back the old
definition.



• The uncertainty in the variable X is then the average amount of
surprise:

p(x1) log
1

p(x1)
+ · · ·+ p(xn) log

1
p(xn)

.

This is called the entropy of the variable X and is denoted by
H(X ).
Shannon showed that, when large, entropy measures
reasonably well the average number of bits needed to encode X .

• DVDs are possible only since the amount of entropy in the
music and pictures is much less than what you would compute
if you just added up the number of pixels (say a million per
screenful), multiplied by (say) 30 per second.



Mutual information

The string “pet dog” can also be seen as two strings put together:

X = "pet", Y = "dog".

Suprise log 1
p(x y) in seeing a value X Y =“pet dog” is more than the

surprise in “pet” alone, but typically less than the sum of the
surprises in X and Y separately (expecting “dog” more than
“rock”). The following algebra is interesting:

p(x y) = p(x) · p(x y)/p(x),

log
1

p(x y)
= log

1
p(x)

+ log
1

p(x y)/p(x)
.



Taking the average:

H(X Y ) = H(X ) +H(Y |X ),

where H(Y |X ) is the average remaining surprise in Y after
knowing X .

I(X : Y ) = H(Y )−H(Y |X )

is the decrease of uncertainty in Y after X is known: the
information that X has about Y . Simple algebra shows

I(X : Y ) = I(Y : X ),

so this quantity is also called mutual information. The symmetry is
not intuitively obvious—despite the simple algebra. We will return
to it.



How to compress in practice

• If X , Y are consecutive frames of a movie, then knowing this,
we can use less encoding bits for Y than for X . Probably most
objects in the scene are the same, only some parts moved,
mostly in one direction and the same speed.

• Similarly, already in the 1930’s the telephone company could
send hundreds of conversation over a single wire, exploiting
that human speech can be greatly compressed.

• In both cases, deeper understanding is involved, about the way
the picture or the human speech was created. Telephone
researchers developed a sophisticated model of how human
voice is formed in the throat and mouth.

• Meaning comes back: understanding the intentions of a speaker
narrows the possibilities of completing a sentence that he
begun.



Complexity
Description complexity

• Kolmogorov’s first insight was that randomness and information
content amount to the same thing, and can be expressed via the
notion of incompressibility. The string 0101 . . . 01 (1000 times)
can be expressed simpler than writing 2000 symbols: we can
just say: “write 1000 times 01”!
This becomes a mathematical concept only after we formalize
how to interpret a sentence like “write 1000 times 01”.

• Computer science gave a natural candidate for this. Let us fix
an interpreter: a computing machine T with binary strings as
inputs.

CT (x) = min
T (p)=x

|p|.



Computers

• It is essential to this mathematical lecture that saying
“computer”, I have a particular, formal mathematical notion in
mind. Still, for now it is sufficient to have an somewhat
informal idea; on the level necessary for us now, all computers
are similar, and all of us are familiar with some.

• In one important aspect the “computer” used here differs from
your laptop: no limitations of storage capacity or computing
time. Imagine your laptop connected to an outside disk;
whenever that disk fills up during a computation, the machine
can ask to switch in another outside disk, and so on to disks
1, 2,3, . . .. It can also ask to switch back to the previous disk.

• “No time limit” means even that the computation may run
forever! This is not useful in itself, but we must allow all
possible programs, including some about which we don’t know
whether the computation they start will terminate.



Our computers are universal: For any two computers T, U , you can
give a finite program sT U to T , telling it that it should behave as U ,
“simulate” it with respect to its inputs and outputs.



• Do we get as many different notions of complexity as there are
computing machines T? Kolmogorov’s other great insight was
that the definition does not depend much on the machine T .
(Solomonoff, who invented the notion slightly earlier for
another purpose, prediction, also proved this).
Take another (universal) machine U , then

|CT (x)− CU(x)| ≤ cT U

for some constant cT U .
• Indeed, for example there is a string sT U instructing machine T

to simulate machine U .
sT U can be quite long, but constant; so asymptotically it does
not change much the complexity of long strings x .

• So we drop the subscript and consider C(x) an inherent
property of the string x , its description complexity. (Complexity
of other kinds of objects can be obtained by first encoding them
into strings.)



• C(x) seems a good measure of information content. Also, it
belongs to the individual string, does not depend on the size of
some range to which x belongs, or on any probability
distribution.

• It is quantitatively strongly related to the other two definitions
(size of range, probabilities), but I will not cover these relations
today.



Examples

• If |x |= n then C(x)
+
< n.

Here a(n)
+
< b(n) means that there is a constant c such that for

all n we have a(n)≤ b(n).
Indeed, our description program can just say “output x”.

• For x = (01)n/2, we have C(x)
+
< log2 n. Indeed, we can tell our

machine in a constant-size program r to write repetitions of 01
n/2 times. The program looks like

rβ(n),

where β(n) is the binary representation of n; its length is log2 n.
• So (01)n/2 can be compressed to a much shorter string rβ(n):

its description program.
Note that the interpreting machine T performs the
decompression, not the compression.



Most strings have near maximal complexity

• How many strings of length n can have complexity < n− k?
There are fewer than 2n−k programs of length < n− k, so the
number of strings whose shortest description has length < n− k
is at most

2n−k = 2n/2k.

This shows that for example the number of strings of length n
with complexity < n− 10 is at most 2n/210 < 2n/1000.
So at most every 1000th string can be compressed by 10 bits.

• This insight gives a strong motivation to identify randomness
with incompressibility.



Uncomputability

• Description complexity seems a good measure of randomness
and information. Too bad, it is not directly useful since it is not
computable. This fact is also interesting as it has the simplest
proof of uncomputability I know of.

• Here is an old paradox:
There are some numbers that can be defined with a few words:
say, “the first number that begins with 100 9’s”, etc. Clearly,
there are only finitely many numbers definable with a sentence
shorter than 100 characters. Therefore, there is a first number
that cannot be defined by a sentence shorter than 100.
But—I have just defined it!



• The paradox turns on the insight that the notion of “define” is
undefined.
Let “p defines x” mean for us now T (p) = x using our universal
interpreter machine T .

• Assume that the function C(x) is computable; we will arrive at
a contradiction.
So, assume that there is an algorithm that on input x , computes
the number C(x). Then there is also an algorithm Q that on
input k, outputs the first string f (k) such that C(x)> k.



• On our machine T , let q be the length of a program for the
above algorithm Q. For some number k, we can write now
some program r(k) for T that outputs f (k).

• How long is r(k)?
• q bits for the program of Q,
• log2 k bits for the number k,
• a constant number p of more bits to tell machine T what to do

with this information: this is

p+ q+ log2 k.

Since p, q are constant, if k is large then this is less than k.
• We arrived at a contradiction: we output f (k) with a program

shorter than k, but f (k) is the first string with C(x)> k.



Additivity

The complexity function C(x) behaves in a number of ways
similarly to the entropy function H(X ) of information theory.
The conditional complexity C(y | x) of y with respect to x is

min
T (p,x)=y

|p|.

This is conceptually very different from how we defined conditional
entropy H(Y |X ). Still, a nontrivial theorem by Kolmogorov and
Levin says

C(x) + C(y | x) += C(x , y)± log2 C(x , y).

Similar to the equation H(X ) +H(Y |X ) = H(X , Y ).



• Just as for information theory, we have now

I(x : y)≈ I(y : x)

where now ≈ hides a logarithmic correction term.
• This symmetry of information relation is counterintuitive: let

x = (p, q), where p, q are two prime numbers of 500 digits, and
y = p · q. It is easy to compute y from x , but is hopeless (at the
present state of science) to compute x from y: the known
algorithms take exponential time.

• So (in some cases, apparently)
y noes not help as much computing x as x helps computing y .



I finish with two old quotes:
• Je n’ai fait celle-ci plus longue que parce que je n’ai pas

eu le loisir de la faire plus courte.
(Pascal)

Pascal knew that compression can be time-consuming.
• Thus, at the game of “head or tail”, hundred consecu-

tive heads appear to us extraordinary; because dividing the
almost infinitely many combinations that may occur in hun-
dred tosses into regular ones, that is those exhibiting some
easily discoverable order, and into irregular sequences; the
latter are incomparably more numerous.

(Laplace)
In the coin-tossing paradox, Laplace noticed the connection of
randomness with irregularity, and intuited (not proved) that the
number of all “regular” strings is small. But he refers to “easily
noticeable” regularities, while Kolmogorov’s notion, focusing on
description length, is not. It was this latter notion leading to
also a proof.
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