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We construct a one-dimensional array of cellular automata on which arbitrarily large com- 
putations can be implemented reliably, even though each automaton at each step makes an 
error with some constant probability. In statistical physics, this construction leads to the 
refutation of the “positive probability conjecture,” which states that any one-dimensional 
infinite particle system with positive transition probabilities is ergodic. Our approach takes its 
origin from Kurdyumov’s ideas for this refutation. To compute reliability with unreliable com- 
ponents, von Neumann proposed Boolean circuits whose intricate interconnection pattern 
(arising from the error-correcting organization) he had to assume to be immune to errors. In 
a uniform cellular medium, the error-correcting organization exists only in “software,” 
therefore errors threaten to disable it. The real technical novelty of the paper is therefore the 
construction of a self-repairing organization. 0 1986 Academic Press, Inc. 

1. INTRODUCTION 

Can we avoid the accumulation of errors in arbitrarily large computations using 
unreliable components? The formal statement of this problem is based on the 
assumption that computing devices of arbitrary size must be built from a few 
elementary components. Each component makes errors with some frequency 
independent of the size of the device to be built. What are the architectures enabling 
us to deal with all combinations of errors likely to arise for devices of a given size? 

We will consider the case when a failure does not incapacitate the component 
permanently, only causes it, in the step when it occurs, to violate its rule of 
operation. In the following steps, the component obeys its rule of operation again, 
until the next error. The case of permanent component failure may be of greater 
practical importance, but it has not been investigated in the same generality. 
(However, see [ 101, for some elegant geometrical results in a similar model.) There 
are reasons to believe that many of the techniques developed for the case of the 
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transient failure will be applicable for the case of permanent failure. Another 
justification of this model is the interest it holds from the point of view of statistical 
physics. 

Reliable computation with unreliable components must use massive parallelism. 
Information temporarily stored anywhere during computation is subject to decay 
and therefore must be actively maintained. 

In 1953, von Neumann designed some reliable Boolean circuits. In his model, 
each component had some constant probability of failure. For a circuit consisting of 
n perfect components, he built a circuit out of O(n log n) unreliable components, 
computing the same function. (For an efficient realization of his idea, see [ 1 I.) In 
1968, Taylor, using Gallagher’s low-density parity-check codes, constructed a 
Boolean circuit out of O(K) unreliable components and memory elements, capable 
of holding K bits of information for a polynomial number of steps. This construc- 
tion was improved by Kuznietsov, using an idea of Pinsker, increasing the storage 
time to an exponential function of n. 

All the above constructions suffer from the same deficiency: the circuits use a 
rather intricate connection pattern which cannot be realized in three-dimensional 
space with wires of constant length. On the other hand, the natural assumption 
about a wire is that as its length grows, its probability of failure converges to 1. 

A cellular space (medium) is a lattice of automata in, say, three-dimensional 
space where every automaton takes its input from a few of its closest neighbors. 
First introduced by von Neumann and Ulam, such devices are now sometimes 
known as “systolic arrays” or iterative arrays. Typically, all automata are required 
to have the same transition function and are connected to the same relative 
neighbors, i.e., the device is translation-invariant. The spatial uniformity suggests 
the possibility of especially simple physical realization. 

Cellular media are desirable computing devices, and it is easy to construct a one- 
dimensional cellular space that is a universal computer. (Take a one-tape Turing 
machine.) There is no known nontrivial design for reliable cellular medium made 
out of unreliable components. Work has been done on fault-tolerant cellular 
automata, e.g., in [6, 111. However, these papers make the very strong assumption 
that two errors do not occur close to each other in space-time. 

One of the main questions asked in connection with any medium is whether it is 
ergodic. Without going into the formal definition, it is clear that an ergodic infinite 
medium can not be used for computation since sooner or later, it forgets almost all 
information about its initial configuration. Besides being nonergodic, a computing 
device should be stable, in the sense that if its probability distribution is perturbed a 
little, it will still work reliably, and will certainly stay nonergodic. 

Toom was the first one to construct stable nonergodic media (see [ 14, 151). The 
set of sites is the two-dimensional lattice Z*. Each cell has two states, 0 and 1. The 
medium works according to a deterministic transition function. In one of the exam- 
ples, to’determine its state in the next moment, each cell computes the majority of 
the current states of the three cells consisting of its Northern and Eastern neighbor 
and itself. 
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In 1984, Reif noticed that a three-dimensional real-time reliable computing 
medium can be constructed using one of Toom’s error-correcting rules in two- 
dimensional slices and the rule of an arbitrary one-dimensional medium across the 
slices. The reliability of the infinite version of this construction follows from [15]. 
In [3], we used the technique of “k-sparse sets of errors” first developed in the 
present work to give an efficient finite version of Toom’s theorem. Using this result, 
one can now do the following. Given K cells of a one-dimensional medium D work- 
ing for T steps, one can build a three-dimensional medium M on the set ( l,..., K) x 
ZR. Here m = log’ +“(KT) and Z, is the group CO,..., m - 1) of remainders modulo 
m (with Z, = Z, the set of integers). When started with the appropriate input (each 
site in a torus-shaped slice (i} x Zf,, receives the same input symbol), the medium 
M will simulate D reliably step-for-step, without any time delay for T steps. 

It has been conjectured that if all local transition probabilities are positive then a 
one-dimensional medium is ergodic. This is the so-called positive probability conjec- 
lure. If this conjecture held then there would be no stable nonergodic one-dimen- 
sional medium. 

The positive probability conjecture implies that there is no “simple” one-dimen- 
sional reliable memory. Here, simplicity means spatial uiformity and local error- 
correction, i.e., that the memory is a one-dimensional finite medium (with, say, 
wraparound at the ends). The designer is free to specify the transition rule and an 
error probability bound independent of the size of the device, but the actual work 
of each cell at each step will deviate from the rule with some probability within the 
bound. Suppose that we want to store one bit of information, i.e., there are two 
possible starting configurations, u0 and u,. For a memory of size K, let mK be the 
maximum number of steps after which it is still possible to find out which of u0 and 
u1 was the initial content, with a probability of mistake less than l/3. It follows 
from the positive probability conjecture that the value mK is bounded by some 
number depending only on the error-correcting rule and the error probability but 
not on K. Thus if the conjecture is true then no amount of redundancy can make a 
one-dimensional memory reliable. 

It is instructive to try simply error-correcting rules in a one-dimensional memory 
and see them fail. For definiteness, let us assume that we started with u0 and the 
error probability is p. It seems natural to choose the K-fold repetition of 0 for uO. 
The first idea for an error-correcting rule is majority voting among the three 
neighbors of a cell (including itself). However, this rule will not eliminate any island 
of l’s longer than one cell. As more and more of these islands are brought in by 
errors, the content of the memory will lose all similarity to u0 in about p - * steps. 
(Due to the technical complexity of the probability model, the failure of this voting 
rule is not really proved yet, though the methods of [S] are believed to eventually 
lead to its proof.) 

Thus “local voting” is ruled out. The rules considered in [2] carry information 
from one end of a long island to the other end and thus seem to be better than local 
voting. But since no measures are taken to protect this information against new 
errors, the rules eliminate a finite set of islands only if no new errors occur. 
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The above reasoning suggests that the simple task of protecting a bit of infor- 
mation requires the capability of carrying information to large distances reliably. It 
is hard to imagine how to do this without setting up some structure, “division of 
labor” among cells: assigning roles to cells in a way varying in space and time. 
Tsirel’son did this (see [17]) but he sacrificed homogeneity: components of three 
different kinds are present, and the component kind changes in both space and time 
according to a grand plan not subject to errors. 

Thus, if we are not willing to give up uniformity in space-time, the task of 
protecting one bit of information leads us to the task of setting up a non-local (e.g., 
hierarchical) organization and a rule that will continuously restore this 
organization from the damages caused by errors. 

Using the above insights, Kurdyumov made in [7] some valuable suggestions for 
the construction of a one-dimensional stable medium. The presentation was too 
tentative to be taken seriously by most researchers in the field. Using Kurdyumov’s 
ideas as a starting point, in the present paper we will show the construction of a 
one-dimensional stable medium that is also a reliable and (asymptotically) 
economical computing device. This result is a refutation of the positive probability 
conjecture. 

I hope that after the above discussion, the reader expects a complicated construc- 
tion and proof. Unfortunately, the complexity of the proof goes beyond these expec- 
tations. My main encouragement to the reader is that I think the effort to unders- 
tand the proof is worthwhile. The problem it solves is simple (preserving infor- 
mation in a noisy environment), and some of its principles seem to be ones of a 
biological or social organization. If it turns out that no simpler solution exists then 
this proof contributes to a deeper understanding of the significance of these prin- 
ciples. 

The present paper benefited from conversations with Leonid Levin and Georgii 
Kurdyumov, coauthors of [2], and Charles H. Bennett, whose work on 
“algorithmic depth” helps to formulate the question whether deep sequences can 
arise in a noisy nature. We give a table of reference of the notation that is used 
throughout the paper in the Appendix. 

2. MEDIA AND THEIR PERTURBATIONS 

We will generally write the time and space variables as “array indices” in square 
brackets. To denote intervals of integers, we combine a notation from the program- 
ming language Pascal with one from real analysis. Let a, b be two real numbers. 
Then 
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etc. For a function x[n] and an interval Z of its domain of definition, we denote the 
sequence (x[n]: FEZ) as x[Z]. Similarly, for a function x[t, i], we denote the 
sequence (x[t, i]: m<i<n) by x[t, [m*..n]]. 

We imagine our space-time as a plane with a left-right space axis and a 
downward time axis. For a point p = (pO, pl), the time coordinate is pO and the 
space coordinate is p I. For a space-time rectangle [k . . k + h) x [m . . . m + n), we 
call n its width, and h its height. The set {k} x [m . . . m + n) is called its input, and 
the set {k + h - 1) x [m . . . m + n) its output. 

In the definitions, we will adapt [ 151. A (one-dimensional homogenous deter- 
ministic) medium is a uniform chain of locally interacting automata, working in 
discrete time t = 0, l,.... We will consider both the finite case when the set of sites is 
the set 2, = CO... m) with wraparound (0 is the right neighbor of m - 1) and the 
infinite case, when the set of sites is the set Z of integers. We can use the notation 
Z, in both cases with m = GO in the second one. In case of finite m, all integer 
operations on the sites are to be understood mod m. We will look at the history of 
the medium for the time steps between times -m’ and m’ where m’ can be 00. Let 
A=(-m’...m’)xZ,,,. 

The medium is defined by the finite set S = S, of automata states and the trans- 
ition function D: S3 -+ S which we will also use to name the medium. Any function 
~[t, n] over A with values in S is called an evolution. We will say that x is a trujec- 
tory of D if the relation 

xCt+ l,nl=D(x[t,n-l],x[t,n],x[t,n+l]) (2.1) 

holds for all (t, n). If (2.1) does not hold we will say that an error occurred in x at 
(t, n). Given a fixed trajectory y and an evolution x, we will say that a deviation 
occurred an t, n if x[t, n] # y[t, n]. Our goal is to limit the probability of 
deviations despite the fact that errors occur with some frequency. 

Let 5 be a system of random variables c[ t, n] for (t, n) E A with values in S. We 
say that < is a p-perturbation of the trajectory y of the medium D if 

(a) We have 4 [t, n] = y[t, n] with probability 1 for all t f 0, n in Z,; 
(b) For all subsets E of A the probability that an error occurs at every 

element of E is not greater than pIEI. 

(Here IEl is the number of elements of E.) Instead of saying that errors occur 
independently with probability dp we will allow a little more, and will deal with 
any p-perturbation of a medium D. The goal is to find interesting media D and tra- 
jectories y with the property that the probability of deviations is small for all p-per- 
turbations of y. This notion is easy to formalize for infinite trajectories. Let us form 
the quantity 

maxdev(p) = sup Prob[<[t, n] # y[t, n]] 
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where the supremum is taken over all p-perturbations of y and all t, n. A trajectory 
is stable if we have 

lim maxdev(p) = 0. 
p-0 

The first theorem refutes the positive probability conjecture mentioned in the 
introduction. 

THEOREM 1. There is a medium M with two stable trajectories y,, y, over Z2 such 
that yo[t, n] # y, [t, n] for all t, n. 

The proof will be given in Section II using a lemma proved later. 

3. CODING AND SIMULATION 

1. It was noted in the introduction that the medium M was satisfying 
Theorem 1 will have to compare distant pieces of information. For all this, it needs 
some behavior that is structured in space-time. The structure must be protected 
from errors. If the medium copes .with such a difficult task then it is likely that it 
has more uses than just the storage of one bit of information. Maybe we can use it 
to perform an arbitrary computation reliably. 

Let us therefore consider what is needed for reliable computation. By the ability 
for computation we mean the ability to simulate an arbitrary deterministic medium. 
By reliability we mean the possibility of decoding the simulated computation from 
the evolution of the simulating medium despite errors. For this, of course, the 
simulation must be an error-correcting, redundant, code. Otherwise, it loses 
significant information already in the first or last step. We will generalize the usual 
notion of a code somewhat. Let S, and So be two state sets. A code y is given by a 
pair PO, P, of positive integers and the pair 

Y = (Y*(., .I> Y*(. 1). 

Here y*(u, v) is the encodingfunction. The first argument u is the string in Spl to be 
encoded. The second argument v is an arbitrary parameter that runs, say, over 
strings in S$. The values are in S 0’“. In the case P, = 1 the code is called single- 
letter. We require 

Y*(Y*(uY VI) = u. 

Without the parameter v, this would be the usual definition of a code. The 
generalization is needed in order to combine codes conveniently. We will omit the 
second argument in codes where it is not used. 

The quotient PO/P, is the space factor (rate) of the code. We can extend a codef 
to strings whose length is a multiple of P, by defining 

Y*(U, ... urn> VI . ..um)=Y*(uI. vI)..~Y*(%z, %A. 
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The decoding function is extended correspondingly. The extension does not change 
the space factor. 

2. Now we formulate the notion of simulation used in the present paper. 
Let us fix media D,, Dr, the constants PO, T,, P,, T1 . Let Y be a set of trajectories 
of D, with the property that the state of the middle part [P, 0.. 2P1) at the end of 
the working period [0 1.. T,) depends only on the state of the block [0 e-3 3P1) at 
the beginning of the working period. It does not depend on the border conditions, 
i.e. the state of the cells - 1 and 3P1 during the working period. We express this as 
follows. For any trajectory y, in Y and any other trajectory y of DI, the relation 

Y,CO, CO...3P,)l =yco, lIO.*.3P,)l 

implies 

Y,ET,> rap, ..*2P,)] =y[T,, [P,**.2P,)]. 
(3.0) 

Let y be a code of blocks with parameters P,, P,, from D, to D,,. This code is a 
simulation of the trajectories Y of D, by DO with working periods T,, T,, if the 
following holds. For i = 0, 1, let yi be any trajectory of Di with y, E Y, and 

Then we have 

(3.1) 

If P, = T, = 1 then we speak of a single-letter simulation, and (3.0) becomes 
meaningless. In this case, for any elements s 1, s2, s3 of S,, let y0 be any trajectory of 
DO with 

Then (3.1) requires 

YOCTO, [PO... 2P,)l= y*(Dl(s,, sz, sj)). 

A medium U is unioersal if for any other medium D it has a single-letter simulation 
that simulates all trajectories of D. 

To make the reliable medium “universal” it is enough to make sure it can 
“simulate reliably” (in a suitable sense) a medium U which is universal in the above 
sense. In Section 8, we will find a universal medium. For the purpose of the follow- 
ing theorems, let U be an arbitrary but fixed universal medium and M a fixed other 
medium. 

3. Let us be more specific about the form of the reliable simulation J/ of U 
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by M that we will be using. We introduce the notion of concatenation of codes. For 
i= 0, 1, let +i be single-letter codes. Then the code q5i 0 &, is delined as follows: 

The decoding is applied, of course, in reverse order. Example: if 4,(O) = 000 and 
q5.J 1) = 101 then q5,(q5,(1)) = 101000101. The code q5oy is called the concatenation 
of Q and y. The kth iteration of 4 is 4” = 4 0 . . * 0 4 (k times). 

4. From now on, let P and T be some integer parameters greater than 1, to 
be chosen later appropriately. We can restrict our attention to computations of U 
over a space Zp, over some time period of length T”. For some arbitrarily chosen 
error tolerance E > 0, let us define 

k = riOgtr + s - i0g ~11. (3.2) 

The code + depends on two codes q5 and y. Here y is a code mapping S, into SW, 
and q5 is a code of S,,,, into S&. The code 4 is a self-simulation of M with working 
period T. For a distinguished element single of S, we define 

u = @(single), Icl*(u) = 4k,(Y*(U, 0)). (3.3) 

The string u can be viewed as a constant “software” needed for the simulation. 

5. The 5-tuple (U, M, 4, y, single) will be defined in the following sections. 
We call it a scheme. To give a code, we also need the parameters r, s describing the 
size of the computation, and an error tolerance E. Given a scheme we call a trajec- 
tory y of M over Z, legal if we have r, k, such that with $ defined as in (3.3) we 
have 

m=pr+k, m’= Ts+k, YCO, W+*.m)l =$,(u)- (3.4) 

THEOREM 2. There is a scheme (U, M, 4, y, single) and a bound p such that for 
any r, s, E, with k, $, m, m’ given by (3.3) and (3.4), for all legal trajectories y of A4 
over [-m’.**m’)xZ,, all p-perturbations g of y, all h -C T”, the probability of the 
event 

(3.5) 

is at least 1 -E. 

The present paper is devoted to the proof of Theorem 2. The proof of Theorem 1 
will come as a byproduct. 

6. Is it not unnatural to assume that coding is error-free? No, because the 
process of encoding and decoding is used only to interpret the meaning of the com- 
putation for an outside observer. In an unreliable environment, information must 
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live in encoded form. Moreover, the larger amount of information we have and the 
more processing steps we plan to perform on it (e.g., the longer we want to keep it) 
the larger the space factor (redundancy) required in the code. If the output of one 
computation is not decoded (and the redundancy is large enough), it can be 
immediately used as the input of another one. It is assumed that the input and out- 
put strings include all memory space needed during the computation. 

It is clear from the construction of the code ti that computation is not hidden 
into the encoding. Indeed, rl/, is essentially the iteration of a fixed self-code 4 of M, 
combined with a fixed code y of U by M. Decoding is inverse to encoding, and the 
code is simple to compute. It would take only linear time to compute our code on a 
serial machine, and only logarithmic time on a suitable (not cellular) parallel 
machine. 

7. The stable scheme given in the theorem implements every computation 
of the ideal error-free medium U in the “physical” medium M is in such a way that 
the probability of deviations remains under control. The space requirement P’ of 
the original computation is increased to Pr+’ in the implementation, where k~ 
rlog(r + s)]. Hence the space factor of the implementation is Pk. Similarly, the time 
factor is Tk. Both the space and time factor and therefore of the form logs(P’Ts), 
for some constant /I. Here P’T” is the “size” of the original computation. It is not 
possible to keep even one bit of information in n cells of an unreliable medium 
longer than exponential time, since the n cells may form an ergodic Markov chain 
whose state converges this fast to a unique equilibrium state. The product of our 
time and space factors comes close to von Neumann’s factor log(P’T’), which is 
shown in [ 1 ] to be in some sense optimal. However, the present paper answers not 
only the question what are the optimal time and space factors of reliable com- 
putation, but also whether reliable computation, or even just memory, is possible at 
all in a one-dimensional medium. 

4. THE SPARSITY OF ERRORS 

Two constants, P and T, will play a central role in the definition of M. When M 
is on one of the legal trajectories, the cells will be organized into blocks of the self- 
simulation 4: intervals of length P. These blocks will be grouped into 2-blocks: 
intervals of length P2, etc. Similarly, the trajectory divides the time axis into work- 
ing periods of length T, and these periods are hierarchically grouped into k-periods 
of length Tk for all k. Let us denote by P’“[n] the k-block [nPk ... (n + 1) Pk). The 
time period Fk[ i] is defined similarly. We define 

Vk[h, i] = Fk[h] x pk[i]. 

The arguments [h], [i], [h, i] will be omitted if they are 0. 
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For any subset B= [to... tl) x [n,... ni) of Z2 and numbers a, b, we define 

(a,b)+B=[u+t,~.~u+t,)x[b+n,~.~b+n,) 

uB= [at,.. .a,) x [an,~~~un,). 

The first one fo these sets (the translation) will also be called a copy of B. A k-rec- 
tangle is a copy of Vk. 

The cells in the kth order block Pk[i] would, under error-free conditions, per- 
form a coordinated activity over the working period Y-“[h]. Of course, they will 
make errors, but they will be designed to work satisfactory as long as the set of 
errors in the rectangle Vk[k, i] and a few of its neighbors is k-sparse. The notion of 
k-sparsity is defined recursively. It, as many other definitions later, depends on a 
parameter w that can be chosen at the end. All conditions on w will be lower 
bounds, so it only has to be chosen large enough. 

First, we define the notion of a k-window as a set of the form (a, b) + w Vk. A set 
is O-sparse if it is empty. A set E is k-sparse, if for every k-window I there is a copy 
J of 3wVk-’ such that EnT\J is k- l-sparse. 

A l-sparse set is one whose elements are far enough from each other so only a 
small cluster of them belongs to the same l-window. With a two-sparse set, it may 
happen that more than one cluster occurs in some l-window but such exceptions 
are so rare that in every 2-window, they can be covered by one l-window blown up 
by a factor of three. The following lemma gives an upper bound on the probability 
to have a k-sparse set of errors over a certain space-time rectangle. This lemma is 
our only tool for estimating the error probability. Its proof does not contain any 
essentially new idea, therefore I recommend to skip it at the first reading. 

LEMMA 4.1. There is a constant p such that the following holds. Let 5 be a p-per- 
turbation of a trajectory. Let B be a union of N k-windows Bi. Let p be the 
probability that the set of errors is not k-sparse on B. Then we have 

2& ' + 0.5 P<NP . 

Proof: 1. The probability that we want to estimate is the sum of some 
probabilities of events of the form: “the set of errors is exactly I-r’ for various sets 
H. By the definition of p-perturbation, this probability is at most pIHI. Therefore we 
only increase our upper bound if we assume that errors occur independently and 
with probability p. For the rest of the proof of the present lemma, we make this 
assumption. 

2. Let E be the set of errors. Notice that a set is k-sparse if and only if its 
intersections with every k-window are k-sparse. We prove the lemma by induction. 
It holds obviously for k = 0 and a small enough p (depending on w). We assume 
that it holds for k and prove it for k + 1. 

3. Let pk denote the maximum possible probability that the set of errors is 
not k-sparse on a copy of 2wV,. We define four partitions q of B into copies of 
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2wvic+ I as follows. For a pair j=j,ii of binary digits, partition q consists of the 
intersections with B of all copies of 2wV,+ 1 whose left corner is a vector of the form 

((2i,+j,) wTkfl, (2i, +j,) wPk+l). 

Since each Bi is covered by at most 4 elements of &,,, the size of Uj q is at most 
16N. Suppose that B contains a k-window Z such that E is not k + l-sparse on I. 
Then Z is contained in an element K of Uj q, hence E is not k + l-sparse on K. 
Thus we have 

PG 16NP,+,. (4.1) 

4. We now estimate pk + 1. Let us subdivide Kin the manner described above, 
into four partitions gj consisting of copies of 2wVk. The number of elements in Ye, 
is at most (T+ 2)(P + 2). Let U be the event that there are disjoint elements JO, J, 
of 9 = Uj gj such that .Zi n E is not k-sparse. We prove that pk < Prob[ U]; 
especially, we prove that if U does not occur then the set of errors is k + l-sparse 
on K. 

Suppose that U does not occur. Then there is an element .Zi of %? with the 
property that if E is not k-sparse on an element JO of 9 then J,, intersects with .Z1. If 
JO intersects with, say, J, then it contains the center of J, . Therefore JO is contained 
in the copy I, of 3wvk which we obtain from J, by blowing it up by a factor 1.5 
from its center. We prove that E is k-sparse on flZ, and thus k + l-sparse on K. If 
this is not so then there is a k-window L of V, in K such that E is not k-sparse on 
L. This L is contained in an element JO of 9 which, in its turn, must be contained 
in I,. 

5. We proved p k+ 1 < Prob[ U]. To estimate Prob[ U] note that for each pair 
JO, J, of disjoint elements of %?, the probability that the set of errors in not k-sparse 
on either .Z, or .Z, is less than p E. This follows from the assumption made at the 
beginning of the proof that errors occur independently. The total number of 
possible pairs JO, .Z, is less than I91 */2. Therefore 

Pk + I G c4( T+ 2)(p + 2)pk)2/2 

=8(T+2)2(P+2)2p;. 

Using the inductive assumption on 2Vk, we have 

pk < 22p2k-‘+0.5. 

Hence 

p: < 24p0.5p2k + 0.5, 

(4.2) 

(4.3) 

Substituting (4.2) and (4.3) into (4.1) gives 

P~NP 2k + ‘.sf(k, p) 
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where 

f(k, p) = pR5211( T+ 2)2(P + 2)2. 

It is now obvious that for a p small enough we have f(k, p) < 1 for all k. 1 

5. CORRECTING THE INFORMATION ERRORS 

This and the next sections introduce the constructions needed for the correction 
of a l-sparse set of errors. The results obtained here are not immediately applicable 
to the proof of Theorems 1 and 2. Therefore the exposition in these sections is less 
formal. However, both the constructions and the reasoning serve as building blocks 
for the final construction and proof. 

1. Our task here is to give a simulation of the work of some trajectories of 
a universal medium U by some medium M, whose work will be changed by a l- 
sparse set of errors. A working period SC/r] of length T of a block P[i] of length 
P in the medium M, will simulate the working period Fo[h] of length To of a block 
PO[i] of length PO of the universal medium U. For definiteness, we fix the numbers 
P o,..., T as follows: 

P, = 2”, To=6Po=6.2”, 

P=5Po=5.2”, T= (2w2 + 1)(2w3 + 1) 3”. 
(5.1) 

with the parameter w introduced in Section 4. These definitions set the appropriate 
relations of magnitude and, in the case of T, they make it divisible by 
(2w2+ 1)(2w3 + 1) for a reason that becomes understandable in the next section. 
The trajectories z of U that we want to imitate will have the property that the out- 
come of a working period Yo[h] of a block Po[i] depends only on z at time hTo in 
the three blocks Po[i- 11, Po[i], Po[i+ 11. Without danger of confusion, we will 
call such trajectories of U legal. 

2. Let us describe, in a nutshell, how the simulation works. To fight errors, 
block P[i] holds the information about block go[i] in redundant form. This 
redundancy will be, in the simplest implemention, just repetition. The simulation 
involves the cooperation of blocks P[i - 11, P[i], and P[i + 11. First the original 
content of blocks Po[i + j] (j = -LO, 1) is recovered by majority voting from their 
redundant form in blocks P[i+j]. Then the work of U will be simulated step for 
step. Then the result will be stored in S[i] in redundant form. To cancel the 
possible effect or errors occuring during the computation, the whole process is 
repeated two more times, and the final result is obtained by majority voting from 
the result of the three subperiods. 

3. The program described above involves the coordinated movement of 
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large amounts of data through the block and precise timing. Now we give the 
details of this organization. 

To distinguish the different sorts of information present in a cell of M,, the cell 
states x[t, n] are determined by a collection of variables. They can also be viewed 
as different “tracks” of a tape. Formally speaking, a variable Z is a function Z(s) on 
the space S,,. This space is the Descartes product of the ranges of all variables. 
The function Z(s) is the projection to the range of variable Z. We will also use the 
pseudovariables 8 and v to indicate the current time and the position of the current 
cell. These variables are not available as arguments for the transition rule of the cell 
but make it easier to describe the rule. We will use the shorthand 

Z[t, n] = Z(x[t, n]). 

When it does not lead to confusion, we will simply Z-, Z, Z+ for Z[0, v - 11, 
Z[e, v] and Z[e, v + 11, respectively. More generally, we can write 

z’= Z[& v +j]. 

The variable Z- , Z+ are, of course, arguments of the transition rule M,. 

4. In the set of variables we can distinguish two disjoint subsets: those of 
information variables and control variables. These notions are useful for the 
understanding of the principles of the work of M, but will not be used formally. 
Most variables will not belong to either one of these groups: they derive their 
values from information or control variables, and no special effort will be made to 
protect them from errors. 

The endcells of the block 9 = [0 *.. P) are e-‘=O, e’=P-1. The set 9 is 
divided into live subintervals POIO],..., Y0[4] of length PO. We denote 

&=PO[i], x=x,uu~ux~. 

The two control variables are r and TI. They are used by the cell to know what kind 
of step to perform at a certain stage. The variable z[n], with values in 5, shows 
which step of the working period is now being performed by cell n, while n[n] 
shows the place of cell n in its block. The program will explicitly mention only the 
variables whose value is changed. However, for the variable the default operation is, 
of course, 

z[t + 1, n] := z[t, n] + 1 mod T. (5.2) 

5. We will have several variables “of type v’: 

X, Y, Input,, Outputi, Mailj 

for s = 0 ,..., 4, i = 1,2, 3, j = -1, 1. These take values from the set SU. The variable 
X is an information variable. It contains the value “represented” by the cell in the 
imitation. In general, it is changed only in the last step of the working period. 
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Ideally, all five words X[X,] for s = O,..., 4 are equal to the state of the same block 
9$[i] of the medium U. Three copies would be enough but the proofs are a little 
easier with live copies. 

During a working period of M, the working period of U will be performed three 
times. The result of the ith repetition will be written in the information variable 
Output,. The variables 

x, Output, (i= 1,2, 3) 

are all the information variables. 
The various information transfer operations are performed with the help of the 

“mailbox variables” Mail-, Mail, of type U. Variable Y (of type U) is used to 
actually imitate the computation of U. 

The above organization will be successful if the control variables are able to 
restore themselves quickly after a local disruption, since it is these variables which 
show for each cell what to do at the present time with the information entrusted to 
it. The problem of restoration of the control variables will be addressed in the next 
section. For the present section, we imagine that the values of r and x are immune 
to errors. 

6. We describe the function M in terms of procedures, which are then com- 
bined at the end. To describe our procedures we will use a notation somewhat 
similar to the one used in programming languages like Algol or Pascal. Not all 
steps will be described in formal detail. Summary descriptions will occur in the 
programs in italics type. Comments come in parentheses, in roman type. The con- 
struct 

repeat IZ times 
s 

for some program statement S is a shorthand for 

fori=l tondo 
s 

where i is a variable not occurring in S. In listing the conditions of an “if’ clause, 
we will use sometimes commas instead of “and” to indicate conjunction. 

7. The procedure Readin’ reads in the information found in the variable X 
in the current block 9 + v - 71 and the two neighbor blocks. Since in these blocks, 
all information is repeated five times, we write the five supposedly identical sub- 
blocks 

X[Xs,V-~-P] for s = O,..., 4 

of the left neighbor block into the corresponding variables Input, [X1 + v - rc] of 
the 4 part of the current block, and proceed similarly with the other two blocks. 



RELIABLE COMPUTATION 29 

Finally, a majority vote decides among the five pieces of information read in over 
each other. We use the apostrophe in the name Readin’ since the final denifition of 
Readin will be slightly different: 

procedure Readin’; 
begin 

for s E [0 . . . 4],j= -l,O, 1 do 
Znput,[~+,+v-z] :=X[Xs+v--z+jP]; 

Y := Maj(lnpz&.., Input4); 
end 

The operation Input, [4+ 2 + v - n] := X[X, + v - rc + jP] is a global information 
transfer operation. For block v - K = 8P, j = - 1, s = 3, it results in writing the con- 
tent of the X variables of the -X, part of 9[7] into the Input, variables of the X1 
part of p[S]. This happens through many individual steps, by the work of cells 
who, of course, do not know the number v - 71 of the beginning cell of the block. 
However, they know their relative place rr in their block, and know the number T of 
the program step being performed. For the transfer operation they use the 
mailboxes Mail-, Mail+. In most of the steps, a cell would set 

Maili := Mailj (5.3) 

for j= 51. In words: “copy the contents of the left mailbox of your left neighbor 
into your own left mailbox. Proceed similarly with the right mailbox.” However, at 
certain instants determined by the more detailed program of the above transfer 
operation (which we omit since it is obvious but boring), a cell will set Mail, :=X 
or Input s := Maili for the appropriate j and s. 

8. The next procedure, Core, performs the actual imitation. In it, we pre- 
tend that the three blocks Y[X,] for s = 1,2, 3 are just three consecutive blocks of 
length g0 of the medium U and iterate on them, To times, the transition rules of U. 
The result will be found in Y[X,]. This procedure seems to need the states of the 
cells surrounding the imitated interval of length 3P0 of U. However, let us remem- 
ber, from the remark made after (5.1), that we want to imitate only those trajec- 
tories of U in which the outcome does not depend on these boundary values. 
Therefore we agree that whenever Core needs a boundary value it uses some dis- 
tinguished element 0 of S,. 

9. The procedure Readout(i) sends the result in live identical copies into 
Output,[&+ v-n] for SE [0**.4]: 

procedure Readout(i); 
begin 

for SE: [IO...41 do 
Outputj[3q + v - 7c] := Y[Xz + v - n]; 

end 
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Here is the whole program. No confusion arises if the name of the program is the 
same as the name of the medium whose program it is. 

procedure M,(T); 
begin 

fori=l,2,3dobegin 
idle P steps; (To separate the three thirds from each other in time.) 
Readin’; 
Core; 
Readout(i); 
end; 

idle steps to make the length of M, equal to T 
X := Maj(Output( l), Output(2), Output(3)); 
end 

10. This ends the construction of medium M1. It gives rise to a code ,u of U 
by Mi . The definition of the encoding functions pi * and the decoding function p: 
is obvious. For a string x in S&, the string z=p:(x) in SC is defined as follows: 
For all n in 9$, let 

z[n] = Maj(X(x[n + P,]),..., X(x[n + 4P,])). 

In the other direction, the encoding x= pl*(z) is defined as follows. For SE 
[0 . * - 41, let 

X(x[Xs]) = z. 

For all n, let ~(x[n]) = 0, n(x[n]) = n. The values of all other variables of type U 
are set to the default value 0 for each n in x[n]. This defines the string x. 

11. The following theorem will not be used itself, but it motivates the con- 
struction above. The reasoning in the proof will be used. Notice the strong 
assumption (5.4). It will be eliminated in the next section. 

THEOREM 4. For an integer R, let z be a legal trajectory of U over Z x Z,,. Let 
y be a trajectory of M, over Z x Z,, such that the relation 

YChT, Z,,l = ~~z+dzChTo, Z,,l) 

holds for h = 0. (Then, of course, it holds for all h). Let x be a l-trajectory of MI with 
x = y at time 0. Suppose further that we have 

z(x[t, n]) = t mod T, 

n(x[t, n]) = n mod P, 
(5.4) 
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for all t, n. Then for all h >, 0 and all intervals I of length OSwP there is an interval J 
of length 3w such that x does not deviate from y on r\J at time hT. 

Proof. We will prove the theorem by induction on h. It is true for h = 0. Let us 
suppose that it holds for h, we prove it for h + 1. We will look at time instant 
(h + 1) T, and a space segment I of size OSwP. We have to find a space segment J,, 
of size 3w such that x = y on the set r\J, at this time. Let I, be the space segment 
that we get by enlarging Z symmetrically to size wP. (We can assume that w is 
divisible by 4.) We define the rectangle 

C,=[hT..*(h+l)T]xI,. 

Then there is a rectangle D = D’ x D” of size at most 3w x 3w such that there are no 
errors in C,\D. We will show that at time (h + 1) T, there are no deviations in 
4,“. Let n be a point of I\,“. We can assume, without loss of generality, that n is 
in the left half of I. Let I2 be the left half of II. Let Zz be the half of II. i= Ln/P J, 

C,=[hT...(h+l)T)x[(i-l)P...(i+l)P). 

Then n is at a distance of at least 0.25wP from the ends of Z2. For a large enough w, 
the interval [(i - 1) P. . . (i + 1) P) is contained in Z2. By the inductive assumption, 
there is an interval J of length 3w such that at time hT, there are no deviations in 
Iz\J. 

Notice that for any time t in (hT.. . (h + 1) T), there is no deviation in the X 
variable outside Ju D”. Indeed, if no error happens then the X variable does not 
change before the end of the working period. 

Let us look at the three identicals parts of the computation happening in the rec- 
tangle C2. In parts k = 1,2, 3, the result of the computation is sent to the variables 
Output,. Each part begins with P idling steps. The rectangle D can intersect with 
the non-idling steps of ony one of the three parts. Let us show that in the other two 
parts k, the variables Output, will hold the values they are supposed to hold in the 
trajectory y (we will say that there is no deviation in their values). 

After idling, each part begins with the Readin’ procedure which tries to filter out 
deviations by majority voting. If this operation is successful then there will be no 
deviations in the Y values computed by Readin’, and the rest of the computation of 
Output, is error-free. The procedure Readin’ will lilter out the deviations, since they 
do not affect more than two of the live copies of any of the X values stored in any 
of the blocks S[i- 11, S[i], 9[i+ 11. Indeed, the five copies are at a distance P, 
from each other. The set of deviations is confined to the intervals J and D” which 
have length at most 3w. 

We proved that in two of the three parts k of the computation in C,, the Outputk 
variables will contain no deviations. The final voting will therefore compute the 
correct new value for X from them everywhere where the cells do not make an error 
in the final vote, i.e., everywhere outside D”. 1 

571/32/l-3 
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6. CORRECTING A ~-SPARSE SET OF ERRORS 

In this section, we want to eliminate assumption (5.4) from Theorem 3. If the 
values of the variables r, rr can be damaged by the errors then these values must be 
restored, since the proper functioning of the cells depends on the correctness of 
these values. 

1. For the task of restoration, a new value Dead is allowed as the value of 
the variable X. If X= Dead then we will say that the state x is dead. On the other 
hand, the statement XE SU is equivalent to saying that x is live. If the state is dead 
the program will never look at the values of any variables different from X. 

Notice that some of the procedures delined in this section have apostrophes in 
their name. The reason is that we will have to change them later to get the versions 
suitable for the proof of Theorems 1 and 2. 

We introduce the function consis’(x,,, x1) that will be 1 if x0 and x1 are consistent 
as the states of two neighbor cells. It is expressed in terms of the variables X0 = 
X(x,), z. = $x0), etc. We have consis’(xo, x1) = 1 if the following holds: 

X,,X,ES,, zo=zl, rc,-x,+lmodP. 

Otherwise, consis’(xo, x,) = 0. It will be more convenient to work with the function 
Cans’(j) for the evolution x defined as consis’(xP, x) for j= -1 and consis’(x, x’) 
for j = 1. To avoid the long word “inconsistency,” let us call a pair n, n + 1 a break 
at time t in the evolution x if 

consis’(x[l, n], x[t, n + 11) = 0 

or equivalently, Cons’( - l)[n + 1, t] = 0. By the definition, a dead cell is incon- 
sistent with any live cell. Obviously, at any time t, the set Z, will be broken into 
connected groups of cells consistent with each other. 

2. Two additional procedures are needed. The procedure Purge’ kills all 
connected groups of consistent cells if they are too short. The procedure Heal’ 
resurrects a small group of dead cells. The control variables of the resurrected cells 
will be set in accordance with their live neighbors. Both of these procedures will be 
executed many times during the program; Purge’ more frequently than Heat. 

We begin the description of these procedures with the auxiliary procedure Con- 
form’ which makes a cell consistent with its left or right neighbor. A cell n will use 
Conform’(j) when it is dead. Therefore there is a little uncertainty about when to 
use it since usually, the cells use their program counter r to determine the time of 
various actions. Let us agree that the dead cell uses Conform’(j) if 

1. The program calls Conform’(j), as shown by the program counter variable 
z in the neighbor cell n + j, and 
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2. Either the other neighbor cell is dead or it has the same r value. 

procedure Confornz’(j, neut); 
begin 

if ( 
X= Dead, X~E SU, 
(z-j= zi or X-j= Dead). 

ihen begin 
T := z’+ 1; 
rc:=rcj-jmodP; 
All other variables get their default values: 
end 

end 

3. The goal of the procedure Purge’ is to erase an interval of w* undesirable 
cells. We make use of a variable Cn. In the first part, from any break, a message 
Cn = 0 propagates to the right. In the second part, cells will be killed repeatedly if 
they contain the message and have an inconsistent right neighbor. 

The details of the organization, here as well as in Heal’, though given below, are 
not particularly important, since the effect of these procedures will be considered 
only in error-free space-time areas. However, it is important to note that Purge’ 
does not affect a large homogenous group of cells, and does not resurrect dead cells. 

procedure Purge’; 
begin 

Cn := 1; 
repeat w* times 

if (Co&(-1)=0 or Cn- =0) 
then Cn := 0; 

repeat w* times 
if (Co&( 1) = 0, Cn = 0) 

then X := Dead; 
end 

The procedure HeaP tries to resurrect the cells in a “gap” of size w3: 

procedure Heal’; 
begin 

repeat w3 times 
for j = -1, 1 do begin 

Conform’(j); Temp := 1; 
end 

end 
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4. We mentioned that we want to “dovetail” certain procedures into other 
ones. Let us introduce the following notation. If Q and R are two procedures then 
we get the procedure 

QxR 

by inserting an execution of the whole procedure Q after every step of R. The whole 
program will have the structure 

M, = Purge’ x (fled x M,(3”)). 

The argument 3” after Mi refers to the definition of Mi, where the number of the 
final idling steps was chosen to make the length of the program T. Now the length 
of Mi has to be 3” in order to get length T after the dovetailing. 

5. This completes the definition of the medium MZ. The corresponding 
code p2 differs from pi only in that we must give some default values to the new 
variable Cn, too. Let us enter the setting of Theorem 3 again. There is a trajectory z 
of U over Z x Z,,, and a trajectory y of M2 over Z x Z,, with 

YChPY ZRPI = P2*wG &?,I) 

holding for h = 0 and thus for all h. There is an evolution x of M, that is equal to y 
at time 0 and contains only a l-sparse set of errors. Errors will always mean errors 
in x, and deoiations mean deviations of x from y. 

6. Now there are several possible values for the variables r, rc at each site 
and time. Cell II in time t thinks that the time origin of the computation has a 
remainder t-r modulo T, and the space-origin has a remainder n-n modulo P. 
Let us distinguish the cells according these beliefs. We call a pair (a, b) of numbers 
a E Y-, b E 8, a space-time origin. For an origin (a, b), we denote by L(u, 6) the set 
of points (t, n) with 

t - z(x[t, n]) = a mod T, 

n-rr(x[t,n])rbmod P. 

The sets L(a, b) will be called tribes. By definition, they are disjoint. Only the dead 
cells do not belong to any of the tribes. All points where there is no deviation 
belong to the canonical tribe L(0, 0). It is convenient to introduce a notation for a 
time-snapshot of a tribe: we write 

L(t;a, b)= {n: (t, n)~L(u, b)}. 

We will omit the parameters (a, b) whenever they are (0,O) and this does not lead 
to confusion. 
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LEMMA 6.1. Let t,, n,, n, be given. Suppose that 

(i) there are no errors in the rectangle 

(ii) for all t in Z’, both n, and n, are in L(t; 0, 0), 

(iii) for any (a, b) different from (0, 0), the set L(t,; a, b) n I” can be covered 
by an interval of length 0.5w2, 

(iv) n,-n,<w3. 

Then I” is in L(t, + w6; 0, 0). 

This lemma says that if a small interval of space is surrounded by the canonical 
tribe for a sufficient number of error-free steps, and initially contains only small 
parts of other tribes, then it will be taken over by the canonical tribe. 

ProoJ: 1. Let (a, b) be a spacertime origin different from (0,O). We prove first 
that the set 

L(t,+4w2+ l;a, b) 

is empty. 
Each of the tribes L(a, 6) has its own conception about when a working period 

begins. What is common is that the procedure Purge’ has length 2w2 and it is 
restarted after every step of the rest of the program. Therefore there is a time t i in 
to + [0 * * - 2w2 + 1 ] when cells in the set L(t i ; a, b) start applying Purge’. 

The set L(t; a, b) does not contain n, and n, for any t in I’. By condition (iii), for 
t = t,, it is contained in an interval of length 0.5~‘. It can grow only during non- 
Purge’ steps, hence will consist of intervals of the size at most 0.5~~ + 2 when Purge’ 
is restarted. Therefore in the time-interval [tl . . . tl + 2w*), the procedure Purge’, 
recognizing the breaks on both sides of these intervals, kills all these cells. 

After this, the only procedure that would give rise to a new cell in L(t; a, b) is 
Conform’. But it needs a neighbor in L( t - 1; a, b) for this, and no cell in (no. . . n ,) 
has such a neighbor after Purge’ killed all of them. 

2. Let t2 be the first step after t,, + 4w2 + 1 when the procedure Heal’ is restar- 
ted in the canonical tribe. If Heal’ was started just before t, we have to wait for it to 
finish. After dovetailing with Purge’, it takes (2w2 + 1) w3 steps for Heal’ to finish. 
The latter is restarted after every 2w2 + 1 steps of the rest of the program. (This is 
because Heal’ is restarted after every non-Purge’ step, and Purge’ of length 2w2 is 
inserted after every such step.) Therefore we have 

t2dto+1+4W2+(2W2+1)W3+1+2W*=(2W2+1)(W3+3)+2W2. (6.1) 
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The statement proved in 1 holds for all origins (a, b) different from (0,O). Therefore 
at time t2, the interval Z” contains only cells belonging to L( t2 ; 0,O) and dead cells. 
Let J, be the largest interval of elements of L(t; 0,O) containing the cell n,. Since 
the latter cell never dies during I’, the procedure Purge’ never kills any element of J, 
(it only kills the left cell of a break). Therefore J, never decreases. But Heal’ keeps 
adding cells to the left end of J, until it reaches n,, before time 

t, + 2w2 + 2(2w2 + 1 )(w’ + 3) < w6 

for large enough w. 1 

THEOREM 4. If in Theorem 3, we replace M, by M, and ,uu, by p1 then it will hold 
even without the condition (5.4). 

Proof: We can follow the proof of Theorem 3 step for step. Let us use the 
notation of that proof, with 

D’= [uO...u,), D”= [vO...u,), J= [wO... wl). 

We have to eliminate condition (5.4). We distinguish three cases: 

(A) u,,> hT+ w6. 

(B) There is a distance greater than 2w2 between J and D”. 

(C) None of (A) or (B). 

In the second case, the cells in I,\(Ju D”) never cease to belong to the canonical 
tribe since the distance between J and D” is too large for the procedure Purge to 
cross. Therefore in the first and second cases, the conditions of (6.1) are satisfied 
both for to = hT, no = u. and for to = ui, no = wo. We find that the set 

C,\([hT-hT+w6)x J)u [u,...u, +w6)xD”) 

belongs to the canonical tribe. 
The third case is when u,d hT+ w6, and the set Ju D” can be covered by an 

interval J1 = [vb ... vi) of size 6w + 2~‘. Therefore Lemma 6.1 can be applied with 
to = u1 6 hT+ w6 + 3w and no = vb. We obtain that the set 

C,\[hT-.hT+2w6+3w)xJ1 

belongs to the canonical tribe. In all cases therefore, the places outside the 
canonical tribe are confined to a small rectangle at the beginning of the working 
period and possibly another small rectangle elsewhere. The small rectangle at the 
beginning of the working period disturbs only the idling steps before the first 
Readin’. Therefore the reasoning of the end of the proof of Theorem 3 can be 
applied to these somewhat larger rectangles just as it was applied there to {hT) x J 
and D. 1 



RELIABLE COMPUTATION 37 

7. RESTORING PARTIAL BLOCKS 

The program given in Section 6 does not correct a large group of errors. Let us 
discuss the necessary changes and additions: 

(1) The procedure HeaP as it stands now, lets all groups of consistent cells 
longer than w* grow out of any control. Therefore we have to change Hear in a 
way that confines it to its original purpose: the closing of gaps shorter than w3. A 
new variable 

Temp 

will be used. The cells resurrected by Heal’ will be marked by Temp = 1. After the 
resurrecting steps, w3 more steps will be added in which a cell with Temp = 1 will be 
killed if it is next to a break. The final definition of Heal will only be given in Sec- 
tion 9. 

(2) The procedure Shrink is somewhat similar to Purge’ in that it kills cells 
and is a w2-step procedure that will be applied many consecutive times. It is inten- 
ded to kill a partial bfock left after the occurence of a large group of errors. It is 
applied enough times to kill a partial block of any size, but it works slowly (kills 
only one cell) in order to control the propagation of the effects of errors. 

(3) The procedure Grow is somewhat similar to Heal in that it resurrects cells 
and is repeated several consecutive times. But it is not limited to closing small gaps: 
it gives a chance to a healthy block to impose its own structure on a neighbor block 
of dead cells. This happens by extending an “occupying arm.” 

The occupying arm will be partially withdrawn (in the “retreating” part of Grow) 
for the following reason. It could happen that a small group of errors takes away 
the end of a good block and gives it to the occupying arm of a bad block. Now the 
good block could be killed by its Shrink procedure. The retreat gives a chance to 
the good block to repair itself using its Heal procedure. 

We need to be able to distinguish the cells of the occupying arm from ordinary 
cells. The reason is that the occupying arm will be sometimes withdrawn across 
block boundaries, while the cells at the end of the home block should not be killed. 
Therefore during applications of Grow, we extend the range of the variable 71 to 

[-l.lP...2.lP). 

Outside these periods, we will always have rc E 9. 

(4) Now the procedure Purge’ will have to watch the continuity of the 
occupying arm, too. This requires the redefinition of the function Cons’(j). We 
define consis(x,, xi) > 1 if in addition to all conditions of consis’(xO, xi) = 1, the 
following holds: If one of no, x1 is outside 9 then x1 = no+ 1 or no>0.5P, 
7r1 < 0.5P. The last possibility must be permitted since if the left occupying arm of a 
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block meets the right occupying arm of a block consistent with it we want these two 
arms to be able to join. More formally: consis(x,, x1) = 1 or 2 if the conditions 
(Cl), (C2) hold. 

x0, x, ES”, ZO=Zl, rcl=no+l modP. (Cl) 

then (nl =x0 + 1 or (no > 0.5P, 71, <0.5P)). (C2) 

Otherwise, consis(x,, x1) =O. We have consi.s(x,, x,) = 2 if rr, = rro + 1. We define 
again Cons(j) = con&(x ~, x) for j = - 1 and consis(x, x + ) for j = 1. 

(5) The procedure Purge uses the breaks where consis(xo, x1) < 2. 

procedure Purge; 
begin 

cn := 1; 
repeat w* times 

if (Cons(-1)<2 or Cc =0) 
then Cn := 0; 

repeat w* times 
if Cn=O and (Cons(l)<2) 

then X := Dead; 
end 

(6) The procedure Conform’ must also be slightly changed. Its application 
must have the additional condition that rtj - j is in [ - 1.1 P * . .2.1 P). In the 
definition of 7c, at times when r is in [0 ... so) we will not reduce mod P. The final 
definition of Conform will be given only in Section 9. 

(7) We will have to place another curb on Heal. The application of Conform 
will have the following condition: either nj-Jo .?J’ or j(&-j-- ej) > 0. This con- 
dition prevents Heal from extending in the “attack” direction of the procedure 
Grow, for the same reason that we introduced the “retreat” part of Grow. 

(8) Let us combine these constructions. We call, informally, the “current 
group of cells” the maximum interval of consistent cells to which our cell belongs. 
First, the repetitions of the procedure Grow try to extend the current group by 
slightly more than P on both sides. Then, the repetitions of the procedure Shrink 
eliminate any partial block. Then follows procedure M1. Finally, we dovetail the 
program with Heal and Purge just as we did to get M,. We do not write yet out the 
formal details because this program still does not do what we expect from it. The 
set of states and the code ,u* are the same for this new medium as they were for M,. 

The new medium does not correct healthy blocks that are either misplaced or 
have the wrong information content. This requires redundancy spread over a longer 
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range than one block. The crucial new idea (going back to Kurdyumov) is to use 
the universality of U and let the blocks PJi] of U perform the simulation of an 
error-correcting medium, e.g., A&. We must make several modifications to our 
program to make this idea work. The construction will only correct a 2-sparse set 
of errors. But its iteration will lead us to the solution of the original problem. 

8. A UNIVERSAL MEDIUM 

For the following sections, we need a somewhat more specific definition of the 
simulations by the universal medium U that we want to consider. 

The literature contains examples of universal media with a very small number of 
states. I propose the following medium, which is not minimal but is easy to 
program and simulate. Let z = (a, 6, c) be a “pairing” operation over the natural 
numbers, with a = (z),, b = (z), , c = (z)~ denoting the inverses. For a string x = 
XI . . . x, we will write 

(x)0= <x1)0... (x,)0. 

For natural numbers p, x, y, z < 6, let 4&,(p, x, y, z) be the output of some universal 
Turing machine 3! after b steps of computation, with program p and arguments 
x, y, z. We define 

U,(x, YT z) = %((Y >o, 4 Y? z). 

Thus a cell of the medium Ub computing its new state treats the first part of its 
present state as a program, and applies it to the states of its three neighbor cells 
(including itself). 

The medium U, is obviously universal for a sufficiently large b (in fact, a fairly 
small one). Here is the outline of a simulation of an arbitrary medium D by Ub. 
Each cell of D is represented by a block of consecutive U,-cells delimited by 
markers. A block divides into a segment of length O(loglDl ) to store the current 
state of the D-cell, a working area of the same length, and a segment of length 
O( IDI 310glDl) for the transition table of D. During the simulation period, first the 
states x, y, z represented by the three neighbor blocks are read into the working 
area, then D(x, y, z) is looked up in the transition table and stored as the new value 
represented by the group. It is clear that for a suitable b independent of D, we can 
write a program for (j&b to control all these operations. Let us thus choose a con- 
stant b for which U, is universal and write U= Ub. 

Medium U does not have to carry out the simulation in the way outlined in the 
previous paragraph. In fact, the simulation described in the next section works dif- 
ferently: it uses the capability of the universal machine $ to execute any program 
for a Turing machine in the usual way. 
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Let us standardize the simulations we will consider. We can agree that the set of 
states of any simulated medium D is the set (0, l,..., ID( - 1 } of integers. We denote 
by /3(n) the binary representation of the nonnegative integer n. Let P, be a positive 
integer such that log,1 DI < P,. For any string q of numbers <b whose length is less 
than P, - 2, we define the simulation 

Sim(q, P,) = 6 

as follows. The blocklength is P,. For any state s of D, the word x = 6,(s) is given 
as follows: 

(x),=oq20~~~0, (x), =op(s)20.‘.0, (x)*=O...O 

where 0. . . 0 always denotes as many O’s as necessary to pad the string to length P,. 
The inverse 6* is defined as follows: if there is an s with 6,(s)=x then we define 
6*(x) = s, otherwise 6*(x) = 0. The string q can be considered the “program” of the 
simulation. It is now easy to prove that for any medium D there is a string q and 
natural number P, such that Sim(q, P,) simulates D with blocklength P, and work 
period 6P,. 

9. SELF-SIMULATION 

This section completes the definition of the error-correcting medium M. We 
indicated at the end of Section 7 that in order to introduce error-correction on the 
block level, we will use the blocks 9$[i] of the universal medium U to simulate 
some other medium. For the time being, it is best to think of this medium as the 
medium M2. If PO = 2” is large enough then the blocks PO[i] of U can be used for a 
simulation of the cells of the error-correcting medium MZ. 

This construction is mildly circular since the parameter w was used in the 
definition of MZ. However, we need only a sufficiently large blocksize and period 
for the simulation of the cells of MZ. These cells contain variables whose maximal 
range is T. Since T-c 4”, such variables are easily describable by a word of size 2w, 
and hence the description of a cell of M, fits comfortably into a word of size 2” of 
U. We will have to handle more substantial circularity later, therefore let us not 
specify yet exactly what medium we are going to simulate by U. The blocks of U 
perform some simulation Sim(q, 2”). With an appropriate choice q2 of q, the 
medium M, is simulated, but we keep our options open. The medium we are about 
to define is denoted by M,,,. Our starting point for M,,, is the program defined by 
the end of Section 7. 

For q = q2 the simulation 

6 = Sim(q, 2”) 
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is a simulation of M2 by U. (Remember (3.1).) Therefore 

is a simulation of M2 by U. (Remember (3.1).) Therefore 

is a simulation of U by M,,, composed of a code of U by M2 by M,,,. With this 
nested contruction, we hope that there is error-correction not only on the cell level 
but also on the block level. 

The hope is not yet justified. The restoration of the information content by the 
simulation is possible only after Shrink and Grow restored the structure in the 
damaged blocks so that they can perform the simulation. But even this is not 
enough. We have to make sure that whenever the control variables are correct the 
simulation will be performed, independently of the values of the other variables. As 
it stands now, the program of the medium M,,, does not depend on q. If V as 
imitated by M,,, happens to perform, with its blocks PO[i], the simulation 
Sim(q, P,,), then we are lucky. But the medium M,,, does nothing to enforce this 
behavior. Now we make the necessary changes to the program for this enforcement. 
These changes make the program dependent on q. After them, the medium M,,., 
does not simply imitate U. It imitates U in the latter’s activity Sim(q, 2”). For com- 
pleteness, in the next paragaphs we collect all information concerning the definition 
of M,., : 

(Ml) The default updating steps for r and n are given by (5.2) together with 
7c := rc mod P whenever r is not in [0 . . sO). 

(M2) The condition Cons(j) = 1 is defined according to (Cl) and (C2) of 
Section 7. 

(M3) In the operation Readin, there must be a way for a block to recognize if 
the block from which it reads is defective. This requires some changes with respect 
to Section 5. Let us introduce a new value for all variables of type U, namely the 
value Dead. A cell whose Mail, variable has value Dead is not necessarily dead: it 
only carries a message about some defective neighbor. On the other hand, by 
definition, if X= Dead then the state x is dead. We modify the step (5.3) as follows: 

if Cons(j) = 1 
then Mail, := Mail,’ 
else Maili := Dead, 

(9.1) 

We make another, less important change in connection with Readin’: It turns out 
that one does not need all five input variables, only Input, for i= 1,2, 3. The 
leftmost and the rightmost fifth of the block will rather be used as buffer zones. 



42 PETER GkS 

procedure Readin; 
begin 

fors=l,2,3,j= -l,O,l do 
znput,[q+, + v - n] := X[X, + v - 7c +jP]; 

Y := Maj(Znput,, Input,, Input,); 
end 

(M4) The medium simulated by Sim(q, 2”) will have the same state space as 
A4 . 
delite 

Especially, it will have some dead states. We distinguish one of these and 
it by dead. If q = q2 then this is indeed one (an arbitrary one) of the states in 

S,, with X= Dead. 

Now in Mq+, before applying the rules of U to the Y variables in the procedure 
Core, the medium A!,,, performs some preprocessing: If the string Y[X, + v - rc] 
(s= 1,2, 3) does not have the form 6,(r) for some state r in the medium simulated 
by Sim(q, w) then it is replaced by the code of the dead state: 

procedure Prep; 
begin 

for i:= 1,2,3 do 
if Y[.X;:+ v--71] is not a codeword of6 

then Y[Xs + v - 111 := 6, (dead); 
end 

The dual of the preprocessing is the postprocessing after Core which says: if the 
simulation computed the code of a dead cell then the whole block should die. This 
is formalized by: 

procedure Postp; 
begin 

if Y[X, + v - x] = 6, (dead) 
then for n E -X, + v - TC do 

Y[n] := Dead; 
end 

(M5) The heart of the program is the computational procedure which we get 
by adding Perp and Postp to M,. It uses the procedures Readout and Core defined 
in Section 5. 

procedure Comp; 
begin 

for i = 1, 2, 3 do begin 
idle P steps; 
Readin; 
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Prep; 
Core; 
Postp; 
Readout(i); 
end; 

X := Maj (Output,, Output,, Output,); 
end 

(M6) The procedure Purge was defined in (5) of Section 7. 
(M7) We define the string neut of length P to be the five-fold repetition of the 

code of the dead state, i.e., 

neut[%J = 6, (dead) for SE [0...4]. 

The final version of Conform will set the value of X by X := neut[n]. The reason for 
this choice is that when the procedure Grow imposes the structure of a block on a 
large group of dead cells then the new block has to simulate a block 9$[i] of the 
medium U which represents a dead cell of M,. Thus the occupation by Grow only 
gives the opportunity for converting the block of dead cells into a live block if the 
simulated medium M, wants so. Otherwise, at the end of Core, the string 
Y[,X, + v - rc] contains 6, (dead). The postprocessing step converts this into the 
string Dead*. . Dead. The latter will be copied by Readout(k) into the Output, 
variables of all cells. If this happens for at least two out of the three values of k then 
the voting of the last step computes X= Dead and thus kills each cell of the block. 

procedure Conform(j); 
begin 

if ( 
X= Dead, X’ES”, 
(t Pi = ~j or X-j = Dead), 
rrj- jE [ - l.lP...2.1P) 
then begin 

z := z’+ 1; 
if z E [O...s,) 

then n:=d-j 
else z := I$ - j mod P; 

X := neut [x mod P]; 
All other variables get their default values; 
end 

end 

The conditions of calling Conform(j) are the same as those of Conform’: the cell 
uses the variable r of its neighbor cells to determine when to apply Conform. 

(M8) The procedure Heal is now defined according to the remarks (1) and (7) 
of Section 7, with the new procedure Conform, as follows: 
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procedure Heal; 
hegin 

Temp := 0; 
repeat w3 times 

forj= -1, 1 do 
if (7-c-jELY orj(nj-j-ej)>O) 

then begin 
Conform(j); Temp := 1; 
end; 

repeat w3 times 
for j= -1, 1 do 

if (71 # eJ, Temp = 1, Cons(j) = 0) 
then X := Dead; 

end 

(M9) We have to add some modifications to the procedure Shrink. We began 
describing it in (2) of Section 7. 

Suppose that an error kills an endcell of an interval of consistent cells, and this 
endcell cannot be recovered by Heal because of another tribe nearby. Then Shrink 
will kill the block. If this block simulates a cell of medium M1 then from the point 
of view of this simulation, the cell represented by our block died from a 
“microscopical” error, i.e., an error of such a small scale that we do not even want 
to consider. But we have to be prepared that cells will sometimes die of 
microscopical errors. It turns out that this can only happen to the endcell of an 
interval of consistent cells (remember the other tribe nearby), and only twice during 
a working period: before and after the one “normal-size” error permitted in the 
current work rectangle. Indeed, the definition of procedure Grow will make it sure 
that different tribes do not grow too close to each other by themselves. 

Microscopical errors are inconvenient because they interfere with our desire to 
have, at the beginning of the procedure Comp, either almost a full block of live cells 
or an almost empty block. We deal with them by defining three versions of the 
procedure Shrink, i.e., it will depend on a parameter i = 0, 1, 2. The call Shrink(i) 
will be applied ri times. Here, r,, will be chosen to be so large that the z,, 
applications of Shrink(O) span 80% of the length T of the whole program. This 
choice will guarantee that “live” blocks are filled most of the time with live cells. 

If a microscopical error kills an endcell during the last few applications of 
Shrink(O) then it could result in a partially killed block. To avoid this, we add 

r,=2P 

applications of the procedure Shrink( 1). During these steps, only those cells will be 
killed that are farther than 3w3 from the block-ends and have an inconsistent 
neighbor. 

If a second microscopical error kills an endcell during the last few applications of 
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Sri&( 1) and brings the end of the interval of live cells farther then 6w3 from the 
block-end then the r2 = 2P applications of Shrink(2) can bring the killing of the 
block to completion: 

procedure Shrink(i); (i = 0, 1, 2) 
begin 

forj= -1, 1 do 
if (j(ei- n) > 3iw3, Cons(j) = 0) 

then X := Dead; 
idle w2 - 1 steps 
end 

(MlO) The procedure Grow will be defined, according to the remark (3) of 
Section 7, with the new procedure Conform, as follows: 

procedure Grow; 
begin 

(Attack) 
repeat 2w4 times 

forj= -1, 1 do 
if rcj- j#P 

then Conform(j); 
(Retreat) 
repeat w4 times 

forj= -1, 1 do 
if (~4 9, j( x - e’) > 0, Cons(j) = 0) 

then X := Dead; 
end 

(M 11) The procedures Grow and Shrink will be combined with Comp in the 
procedure Main. Let us remember the definition of rO, r,, r2 in (M9). 

procedure Main; 
begin 

repeat 1.4P/w4 times 
Grow; 

for i=O, 1, 2 do 
repeat ri times 

Shrink(i); 
idle steps to make the length of Main equal to 3”; 
Comp; 
end 

(M 12) The whole program is 

M,, = Purge x (Heal x Main). 
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The medium M,,,will indeed correct a 2-sparse set of errors, though this is 
rather tedious to prove. A simple way to carry the idea further to 3-sparse sets of 
errors and beyond is to use a trick (Kurdyumov’s idea) in the definition of M,,,. 
There is a choice qO of q such that Sim(q,, 2”) is a simulation of the medium MYO+ 
itself. This seems first circular but nevertheless possible. 

Before showing how to do this, let us reflect on the resulting construction. 
Together with the medium 

we also defined a code 

that is a simulation of U by M. 

is a self-simulation of M. It can give rise to an infinite hierarchy of simulations of M 
by itself. Let us try to convince ourselves that this structure has a chance to be self- 
repairing. 

The crucial property of this organization is that in any gap of size Pk caused by 
errors, the structure of the hierarchical simulation will be spontaneously restored, 
provided the set of errors is k-sparse for about Tk steps. Indeed, any partial blocks 
are eliminated by the procedure Shrink. Due to the forced simulation, live (con- 
sistent) blocks simulate the behavior of cells of M (small errors are corrected by 
Heal and the voting). Thus they also apply Shrink and Purge in simulation. If a 
high-level cell dies then the effect of Postp is that it dies on all levels. In this way, 
after less than 2Tk steps, the gap does not contain “almost” any live cells that do 
not belong to a level k organization consistent with the one around the gap. Now 
the procedures Grow and Heal can refill the gap. The Grow procedure at a high 
level uses the Grow procedure of lower levels indirectly to overtake a region of dead 
cells. Indeed, a block inour program will always try to overtake a neighbor block of 
dead cells. If the simulation permits (e.g., because Grow is going on in the simulated 
cell) then it will keep its conquest. Buildup and destruction will thus ripple up and 
down recursively. 

(M13) After we fixed the content of the U-computation to be a simulation of 
M, the reader may wonder where is our freedom to define several different trajec- 
tories. Indeed, what is the medium M computing besides simulating itself? The 
answer is that we indeed gave up the old way of simulating an arbitrary U-com- 
putation, but it is easy to create a new way. We introduce one more variable, Mist, 
of type U, to perform a miscellaneous computation. On Mist, an operation of the 
universal medium U will be performed, thus: 

Mist := U(Misc- , Mist, Mist + ). 
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In regions where there is even one error the Mix values are meaningless. Their 
usefulness is confined to the highest level where errors are improbable. 

(M14) There is an even more ridiculous problem which nevertheless needs 
solution. At the highest level of simulation in our finite space, a group of P’ cells of 
M will simulate one cell of M. This one cell sees itself both on the left and the right, 
and thus would think it is inconsistent with its neighbor (since rr is the same in the 
neighbor). Therefore it would kill itself, resulting in a premature death of the whole 
structure. To avoid this, let us introduce one more value for the variable X, the 
symbol Single. The states where X= Single are inconsistent with any other state, 
and obey the following updating rule: 

if X = Single 
then if X- = X+ = Single 

then X : = Single 
else X := Dead 

(M15) Let us show now that q, w can really be chosen so as to make 
Sim(q, 2”) simulate M,,,. The trick we will be using is the technique used in the 
proof of the so-called recursion theorem (fixpont theorem) of recursion theory. We 
will be looking for a string q which has the form q = pp, i.e., is the concatenation of 
the string p with itself. 

The crucial observation is the following: There is a string q1 such that for all p, w 
with 

(9.2) 

the simulation 

is a simulation of M,,,,. (The digit 2 serves only for separation.) What is this string 
qr ? It is essentially the description of the program given above in (Ml )-(M14), in 
the language of the universal Turing machine U, mentioned in Section 8. The 
program uses pp and w as parameters. Therefore p and /I(w) have to be added to q1 
so that it can refer to them. The condition (9.2) just makes sure that the string 
q1 /I( w) 2p fits into a half of a block gO[i] of U, therefore the second half can be 
used to store the state of the simulated cell of M,,Y and the computations connected 
with the simulation. It was shown at the beginning of this section that an area of 
size 2”-’ is sufficient for this. 

For w large enough the condition (9.2) is satisfied. Let us define 

571/32/l-4 
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Then by the simulation Sim(pp, 2”) = 6, the medium U simulates one operation of 
a cell of M, i.e., we have the desired string q0 = pp. 

The simulation CJ~ = p 0 6 is the one we need in the scheme of Theorem 2. The code 
y is given as follows: Given an element x of SM and an element s of SU, we define 
y(u, x) by changing Mist(x) to s and leaving all other variables in x unchanged. To 
complete the definition of the scheme we have to define the distinguished state 
single of S,. Let this be the state with X= Single where all other variables have 
their default values. 

The following statement is an immediate consequence of our definitions. 

LEMMA 9.1. All legal trajectories of medium M connected with the scheme of 
Theorem 2 are live. 

10. TRIBES 

The crucial part of the proof of Theorem 2 is the formalization of the reasoning 
presented in Section 9 about how the self-simulating medium M restores its struc- 
ture. For this, we will need first a definition of the notion of higher-order tribes, pat- 
terned after Section 6. This notion will have to allow for a sparse set of deviations. 

We want to prove that if over a segment I of space, the set of errors is k-sparse 
for some Tk steps then the interior of Z becomes in some sense structured. We can- 
not assert that all space-time points in the interior will belong to the same k-tribe, 
only that it can be broken up into disjoint k-tribes swimming in a sea of dead cells. 
For k = 0 in Section 6, this breakup happened simply by definition. But for k > 0, a 
k-tribe has an elaborate structure. Therefore the statement that cells organize them- 
selves into disjoint k-tribes is nontrivial. Besides this partitioning, we also want to 
prove that the k-tribes that arise will perform the simulation dk. 

We will consider a pair (x, B), where x[t, n] is an evolution over a space-time 
set B, and the set of errors is k-sparse on B: 

1. A k-tribe will be determined by the position, “modulo Vk’ l” (see Sect. 3), 
of the space-time origin (a, b). The pairs (a, b), (a’, b’) define the same k-origin if 
a = a’ mod Tk and b = b’ mod Pk. The pair (0,O) is the canonical k-origin for each k. 
The definition of a k-tribe will depend on a k + 1 origin. Therefore even of 
canonical k-tribes there are many (exactly TP) since there are many k + l-origins 
corresponding to the same k-origin. 

For a k-origin (a, b), the rectangle (a, 6) + Vk[h, i] is called the work rectangle of 
the k-cell (h, i; a, b), i.e., the k cell (h, i) with origin (a, 6). All notions which are 
relative to an origin (a, b) are called canonical if (a, b) = (0,O). The argument (a, b) 
will often be omitted if it is (0,O) and this does not lead to confusion. Then we may 
simply speak of a canonical k-cell or a cell. Notice that cells are determined by a k- 
origin while tribes by a k + l-origin. Therefore a cell is completely determined by its 
work rectangle. 
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We will use the notation rk to denote the union of the work rectangles of a set of 
k-cells. More formally, we define 

rkJ= u Vk[h, i]. 
(h,i)EJ 

Similarly, we write 

I-gI= (J S”[h], TfI=b+ u sk[i]. 
hsH iel 

For k > 0, we say that the k-cell (h, i; a, b) is protected if the rectangle 

(a, b)+ rk((h, i)+ [-0.2w...O] x [-0.2w...O.2~)) 

is contained in B. The protected k-cells are the ones whose work rectangle is “com- 
fortably” (with a margin of width 0.2wPk in space and 0.2wTk in time) inside the 
space-time area B. It is about these cells that we can make conclusions. A k-cell 
(h, i; a, b) is semi-protected if all k - l-cells with origin (a, b) whose work rectangle 
is contained in (a, b) + Vk[h, i] are protected (as k - l-cells, which means only a 
margin of width, e.g., 0.2wPk-’ in space). It follows from these definitions that if a 
(e.g., canonical) k-cell (k, i) is protected then all canonical k-cells of the form 
(h+h’, i+i’) with I/z’\, (i’( <0.2w-1 are semiprotected. 

2. Each k-cell (h, i; a, 6) represents a value xk[h, i; a, b]. As an element of SMM, 
this value is the collection of variable values X(xk[h, i; a, b]), z(xk[h, i; a, b]),.... 

A k-tribe Lk(u, 6) with k + l-origin (a, b) will be defined with the help of the set 
&(h; a, b) of he k-cells at period h as follows: 

Lk(u, b) = (a, 6) + rk{ (h, i): in L,(h; a, b)}. 

The sets &(h; a, b) will be defined recursively and simultaneously with the function 
xk. We present the definition for (a, b) = (0,O). The generalization is obvious: only 
the argument (a, b) must be inserted everywhere. 

3. For strings x[ l] .. . x[n]andy[l]...y[n]wewillsaythatx=ymodEif 
we have x[i] = y[i] for all i$ E. We will use the notation 

k?W[i] = iP+ [3jw3... P- 3jw3) 

forj= 0, 1, 2. Alternatively, we write P’[i] for .P(l)[i] and P”[i] for PCzJ[i]. The 
argument i = 0 or j = 0 will often be omitted. 

Let x0 = x. For k > 0, suppose that xk- ‘, L, _, are defined already. We want to 
decide about the canonical k-cell (h, i) whether it is live, and if it is live what is 
xk[h, i], using only information about the status of the k - l-cells at the input of 
Vk[h, i]. In other words, we will look at the k- l-cells of the form 

(AT, iP+n) 
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for n in 9. The reason that we look only at these P cells is that they reflect most 
immediately the decision made in the procedure Camp. 

We say that the canonical k-cell (h, i) is formatted if there is an element c of S, 
and an interval E of length 2w2 such that we have for all s = 1, 2, 3, 

P”[i] = L,- ,[hT]\E, 

X(x”-‘[I$, iP+Xs])-6(~)mod E. 
(10.1) 

We define x“[h, i] tc be cr in this case, and dead otherwise. As can be seen from this 
definition, a k-cell will still be considered live if some of the k - l-cells among the 
ones that determine its state are dead or wrong. But these must be confined either 
to two border-intervals of length 6w3 or to an interval E of length 2w2. 

4. We say that the canonical k-cell (h, i) is proper dead if the set .9[i] n 
Lk- 1 [hT] can be covered by an interval of length 0.5~‘. Let (a, b) be a k-origin dif- 
ferent from (0,O). We say that the work rectangles of the k-cells (h, i; 0,O) and 
(h’, i’; a, b) disturb each other if the rectangle 

Fk[h] x [iPk-8~3Pk--9+ 1) Pk+8w3Pk-7 

intersects with (a, b) + V’[k’, i’]. The k-cells (h’, i’; a, b) and (h, i; 0, 0) disturb each 
other if they are not proper dead and their work rectangles disturb each other. 

We have in L,(h), if (h, i) is protected, formatted, and we have 

z(xk[h, i]) c h mod T, 

n(xk[h, i]) E i mod P. 

A canonical k-cell (h, i) is live if there are a, b such that 

i E L,(h; aTk, bPk). 

This is equivalent to the assertion that (h, i) is protected, formatted, and xk[h, i] is 
not dead. A canonical cell (h, i) is proper Zive if it is live, undisturbed (by any k-cell 
of any other tribe), and we have 

ip+ [I . ..P-l)cLkpL(hT)uE 

for some interval E of length 2w2. 
5. Let 

mk(h, i) = M(xk[h, i- 11, zk[h, i], xk[h, i+ 1)). 

We say that the pair (x, B) is organized if the conditions (Ol )-(04) hold. Suppose 
that (h, i; a, b), (h + 1, i; a, b) are protected k-cells: 
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(Regularity) 
(01) (i) Each protected k-cell is either proper dead or live. 

(ii) If (h, i; a, b) is proper dead or undisturbed live then (h + 1, i; a, b) is 
proper (live or dead). 

(02) The k-tribes L“(a, b) corresponding to different k + l-origins (a, b) are 
disjoint. 
(Computation) 

(03) (i) The value ,@[h + 1, i; a, 61 is either m,(h, i; a,<!~) or is dead. 
(ii) If (h, i; a, 6) is proper live then we have the former case. 

(Advance) 
(04) If k>O, and the cells i-2,..., i + 2 with origin (a, b) are proper and 

undisturbed at h then 

xk[h + 1, i; a, b] = m,(h, i; a, b), xk[h+ 1, i+ 1; a, b] =m,(h, i+ 1; a, 6). 

The last condition is used to show that a k-tribe is able to “advance into the no- 
mans-land.” Even if the cell i is dead, i.e., does not belong to the set L,(h; a, b) of 
live cells of origin (a, b), it will be resurrected by the cell i- 1 if the program of the 
latter says so (this is expressed by Q), and there are no other tribes nearby to 
block this advance (this is expressed by requiring the cells i- l,..., i+ 2 to be 
undisturbed). 

For the next lemma, remember the definition of k-windows from Section 3. 

LEMMA 10.1 A pair (x, B) is k-organized if and only iffor all possible k-windows 
I the pair (x, Bn I) is k-organized. 

Proof. If w is large enough then for each of the properties (Ol)-(04), any 
origin and any i, there is a k-window Z such that the property holds for (x, B) if and 
only if it holds for (x, B n I). fl 

Over a k-organized domain, we can make many assertions about the function xk. 
For each h, the live k-cells (h, i) form intervals according to their tribe. New inter- 
vals do not arise out of nothing, except possibly at the left and right ends of B. The 
old intervals can grow, shrink, or break up. If i - 1, i, i + 1 are live then x“[h + 1, i] 
depends only on xk[h, i+ j] for j = -1, 0, 1, and is equal to m,(h, i). This follows 
from (02) and (03) and is worth noting in a lemma. 

LEMMA 10.2. Suppose that (x, B) is k-organized. If the triple i- 1, i, i + 1 belongs 
to L,(h) then we have xk[h + 1, i] = m,(h, i). 

Proof It follows from the disjointness of the k-tribes that i is undisturbed, hence 
proper live. Therefore we can use (03) to conclude the assertion of the lemma. 1 

If (h, i - 1) is not live then the value xk[h, i - l] is dead by definition. Therefore 
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k-organizedness implies that in computing xk[h + 1, i], the value Dead will be used 
for this cell, i.e., cell i recognizes that is left neighbor is unformatted. (This will not 
be so hard since by (Oi), any unformatted cell will be proper dead.) 

If the middle cell i is not live but its neighbors are, then if the neighbors are in the 
appropriate phase of their working period they will “overtake” i, thus we will have 
i E L,(h + 1). A proper live cell i can die at period h only if m,(h, i) is dead. The 
condition (04) asserts that an interval can increase at an endpoint if it is in the 
appropriate phase of the working period, and other tribes are not too close to block 
the growth. 

LEMMA 10.3 (main lemma). Zf the set of errors is k-sparse over B then the pair 
(x, B) is k-organized. 

The lemma is obviously true for k = 0. Section 11 uses the main lemma to prove 
Theorems 1 and 2. Sections 12-16 are devoted to the inductive proof of the main 
lemma. Properties (01)(i) and (03)(i) will be proved in Section 14. Property (02) 
will be proved in Section 15. Finally, properties (01 )(ii), (03)(ii), and (04) will be 
proved in Section 16. 

11. PROOF OF THEOREMS 1 AND 2 

Proof of Theorem 2. We use the medium M, and the codes 4, y defined in Sec- 
tion 9. Let y be a legal trajectory with a given r, s, k = log(r + s - log E), m = P’+ k. 
Let r be a p-perturbation of y. Let p be the probability that the set of errors in 5 is 
not k-sparse on the whole space-time A = (- Ts+k... TS+k) x Z,. By Lemma 3.1, 
we have 

p 6 TSP’$-’ + 0.5. 

Indeed, the space-time A can be covered with T”P’ k-windows, Substituting the 
definition of k, we get 

p < po.5( ~p’Po.5’” + I ~ logs))* 

For p small enough, this expression is less than E, for any r, s. Therefore the set of 
errors is k-sparse with probability 1 -E. 

Let us thus suppose that the set of errors in our sample realization x of 5 is k- 
sparse. Define B = A. The pair (x, B) satisfies the conditions of the main lemma. We 
have to prove that (3.5) holds. The main lemma implies that the pair (x, B) is k- 
organized and all k-cells are live at period h = 0. If this is true for all h < T” then we 
are done. Indeed, in this case the evolution 

y*(xkCCO... Tl, Z,l) 

is a trajectory z of the universal medium U. Therefore (3.5) holds. 
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The fact that all k-cells are live for all periods h < T” can be proved by induction 
over h. It is true for h = 0. Let us suppose that it is true for all h, then we prove it 
for h + 1. By (03), the evolution 

xk[[04], Z,] 

is a legal trajectory of M. By (03) we have .?[h + 1, i] = m,(h, i), therefore 
xk[ [0 ... h + 11, Z,,] is an extension of the same legal trajectory. All legal trajec- 
tories are live by Lemma 11.1. 1 

The proof of Theorem 1 requires a slight redefinition of the medium M. The 
reason is that the states of medium M contain the variable Mist whose values are 
never restored from errors. This is not permissible (though rather irrelevant) in 
stable trajectories. Let us therefore alter the definition of medium A4 by simply 
deleting the variable Mist in the definition of M,, (and finding the program q 
again that yields the self-simulation). We call the new medium M’. For simplicity, 
we use the same letters ~1, 6, CJ~ to denote the simulations relating to M’. The proofs 
of Lemmas 9.1, 10.1-10.3 remain unchanged for M’. 

There seems to be some difficulty in finding the initial state of a stable trajectory 
y over Z. But there is a unique choice. 

LEMMA 11.1 There is a unique trajectory y of M’ over Z2 with the property that 
for all h, i, k there is a state s E M’ with 

y[hTk, .P’[i]] = d”,(s). 

ProoJ For a cell i and an arbitrary k, let ik be such that i~@[i~], The 
sequence i = i,, i, ,... will always become all - 1 or all 0 after a while. Let k, be the 
first k such that ik = -1 or 0. 

Let us remember the definition of the simulation 6 = Sim(q, P,). It can be seen 
from the formulas that the first and last letters of the word 6,(s) did not depend on 
s at all. For any word U, the first and last letters of p,(u) depend only on the first 
and last letters of U. Therefore the first and last letters a and b of d*(s) = P,(~,(s)) 
do not depend on s. 

Let k=kj. If i,= -1 then 

otherwise it is &[a]. This defines the trajectory y uniquely. 1 

We will prove that y is a stable trajectory of M’. With this, we will be done since 
it is easy to find a stable trajectory y’ everywhere different from y by y’[t, i] = 
y[t + 1, i]. We have y[t + 1, i] # y[t, i] everywhere since the medium M’ increases 
the value of the variable z by 1 mod T in every step. 
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The proof of Theorem 1 needs a lemma that will come as a side result in the 
proof of the main lemma. We introduce the intervals 

W~[h,i]=(hT~,iPk)+[-0.4wTk...2TC)x[-0.4wPk...0.4wPk), 

Wf[h, i] = (hTk,iPk)+ [O.STk...2Tk)x [O-2Pk). 

LEMMA 11.2. Suppose that the set of errors is k - I-sparse over the rectangle 
Wt[h, i]. Suppose that the k-cells in the interval i + [ - 2 . . .3] are in L,[h] and 
both mk[h, i] and m,[h, i+ l] are live. Then Wf[h, i] is contained in Lk-‘. 

The proof will be given in Section 14. This lemma says that if our input deviates 
in “something” like a k-sparse set form a string of the form d”,(u), and the set of 
errors over our local space-time domain (a few copies of Vk) is not only k-sparse 
but also k - l-sparse, then the largest deviations in the input will soon be corrected. 

Proof of Theorem 1. It is left to prove that the trajectory y is stable. Let 5 be a 
p-perturbation of y. Under the assumptions of the theorem, let us look at a 
space-time point (t, n). Let R,, R, ,... be a sequence of rectangles where R0 = 
{(t, n)>, while R, for k > 1 has the form W$[h, i] with 

R k-l c W’;[h, i]. 

Such a sequence obviously exists: 

1. Let U be the event that for all k > 0, the set of errors in 5 is k - l-sparse 
over Rk. By Lemma 3.1, for any k > 0, the set of errors will not be k - l-sparse over 
Rk only with probability p2k-2+0.5. The sum of these terms for all k > 0 is O(h). 
Therefore U holds with probability I- O(A). 

2. Let x be a realization of t for which U holds. It remains to show that 
x[t, n] = y[t, n]. Let r be the first k such that Rk intersects the start line (0) x Z. If 
r = 0, there is nothing to prove. We will show that Rk is contained in Lk for all 
k<r. Especially, (t,n)EL’, which implies x[t,n]=y[t,n]. 

For R, = Wo[h, i], the conditions of Lemma 11.2 are satisfied by definition, hence 
also R,-Ic W;[h,i] is contained in L’-‘. Similarly, for all ke [le**r- 11, if 
RkCLthenRkp,cLk-’ by Lemma 11.2. Therefore by induction, we have R, c Lk 
for all k < r. 1 

12. HEALING 

By induction, we assume that the main lemma holds for k - 1. We will always 
assume that the parameter w is as large as needed. Throughout the remainder of the 
paper, we are given a pair (x, B) satisfying the conditions of the main lemma. Our 
aim is to prove the properties (01~(04). It follows from Lemma 10.1 that we can 
assume that B is contained in a k-window. Since the set of errors is k-sparse over B 
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and B is a k-window there is a rectangle Jo with the property that the set of errors 
is k - l-sparse in B\J,,. We will call Jo the error rectangle. 

An important tool of the proof of the main lemma is an analog of Lemma 6.1 
describing the healing process. 

LEMMA 12.1. Let t,, n,, n, be given. Suppose that 

(i) the rectangle [t,, - 1 . . . to + w6] x [no .*. n,] consists of protected k - l- 
cells; 

(ii) for all t in [to ... t, + w6], both no and n, are in L,_ ,(t; 0,O); 
(iii) for any (a, b) different from (0, 0), the set of cells n in 

[n,pk-‘..*nlpk-’ ) such that (to Tk-‘, n) belongs to Lk- ‘(u, b) can be covered by 
an interval of length 0.5w2Pkp I; 

(iv) n,-nn,<w3. 

Then there is a time u 6 w6 such that [no. .. n,] is contained in L,- I(to + u; 0,O). 

This lemma says that if a small interval of space is surrounded by the canonical 
k - l-tribe for a sufficient number of error-free steps, and it initially contains only 
small parts of other k - l-tribes, then it will be taken over by the canonical tribe. 
We cannot necessarily choose u = w6 because the final step of the procedure Comp 
can kill a cell, even if there are no inconsistencies nearby. Therefore some cells in 
the gap [no . . . n I ] healed by the time t, + u may be killed again by the time to + w6. 

Proof The proof is analogous to the proof of Lemma 6.1. The main lemma 
implies that the pair (x, B) is k - l-organized: 

1. Let (a, b) be a k - l-origin different from (0,O). We prove first that for any 
t>(t,+5w2) TkP1, there are no points n in [n,Pk-‘...(n,+l)Pk-‘) with the 
property that (t, n) E Lk- ‘(a, b). Let 

t;=L(to-a)/Tk-‘1, 

nb=L(n,--b)/Pk-lJ, 

n; =n’,+n, -n,. 

Then the point (to Tk- ‘, noPk ~ ‘) is contained in the working rectangle 
(a, b) + Vk-‘[tb, nb] of origin (a, b). The condition (ii) says that strips of width 
Pk ~ ’ on the left and right sides of the rectangle 

are contained in the canonical k - l-tribe. It follows from the main lemma that the 
different k - l-tribes do not intersect. Therefore the set Lk-‘(t; a, b) does not con- 
tain nb and n; for any t in [ tb + 1. . . tb + w”]. 
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Let t; be the first time of application of Purge in the program after tb. Then t; d 
tb + 2w* + 1. According to (03) of the main lemma, the cells of L, _ ,(h; a, b) per- 
form the work of the medium M, treating k - l-cells of origin (a, b) outside 
Lk- ,(/I; a, 6) as dead cells. The only possible deviation from this norm is that 
improper live cells may die. Such cells can only be at the ends of the intervals of live 
cells. 

By condition (iii), the set Lkp ,(t; a, b) can be covered by an interval of length 
0.5~’ at period t = tb. That the cells of this set will be killed during the time steps 
tE [t;... t; + 2w*] is proved exactly as in part 1 of the proof of Lemma 6.1. 

2. Let t, be the first step after t, + 5w2 when the procedure Heal is restarted. 
We have now an estimate similar to (6.1) again. The statement proved in 1 holds 
for all origins (a, b) different from (0,O). Also, we have 

for all k - l-origins (a, b). Therefore the set 

{f27-} x&p’..+I, + 1) Pk-1) 

has an empty intersection with each of the noncanonical sets Lk- ‘(a, b). Now the 
proof can again be finished just as in 2 of the proof of Lemma 6.1. This part of the 
proof relies also on (04): the fact is used that a dead k - l-cell is resurrected if the 
program of its live neighbor says so and if there are no k - l-cells of other tribes 
nearby. This completes the proof of the lemma. 1 

The previous lemma motivates some definitions for taking into account the effect 
of the error rectangle J,. Let q. and q1 be the smallest and largest of all those n for 
which the strip 

zxr;-‘(n+ [-0.2w...O.2w)) 

has a nonempty intersection with Jo. Then q1 - q,, < 4w. Similarly, let p0 and p1 be 
the smallest and largest of all t for which the strip 

l-i-‘(t+ [-0.2w...O] xz 

intersects with J,,. Then p1 - p0 d 4w. We define 

J=J’xJ”=[p, . ..P.l x c40...411. 

The k - l-cells that are protected in B and do not belong to J are protected in the 
set B\J,,, over which the set of errors is k - l-sparse. Any time interval disjoint 
from J’ is called error-free. The set E,(t) is defined to be 

[q. - w . . q,+w] for ~E(P~+[O...~W’)) 
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and empty otherwise. It can be easily seen from part 1 of the proof of Lemma 12.1 
that if the error rectangle J occurs in a large domain of dead k - l-cells then the set 
of live cells possibly caused by J is confined to E,,(t). 

Let p2 be the first multiple of T after p. if p. is in [s, . . * T), and let it be p,, 
otherwise. The set E,(t) is defined to be 

C4o-w...41+wl for tE(po+ [0...5w2))u(p2+ [O.*.w’)), 

and empty otherwise. If the error happens during the computation period [s, ... T) 
then the information effect of the error may hold over to the end T of the current 
working period and manifest itself again. This is reflected by the second part of the 
union in the above formula. The set E(t) is defined to be 

[qo - o.2w3.. . q1 + 0.2w3] for tE(po+[0.*.w6))u(p2+[0...w6)), 

and empty otherwise. It can be seen that if J occurs in a large domain of live k - l- 
cells then the set of dead cells possibly caused J is confined to E(t). Indeed, besides 
the two non-Purge steps that can kill two cells on both sides, the most that can 
happen is that the procedure Purge kills w2 cells on any side of the damage. (This 
can only happen if the damage is close to a block-end and t is in [0 . . . sO) mod T.) 
Therefore the killing does not extend further than 0.2~~ steps. After this, the gap 
will be closed as shown in Lemma 12.1, in w6 steps. The gap can reoccur after q2, as 
reflected by the second part of the union. 

13. THE INTEGRITY OF BLOCKS 

In what follows we will often use the constants 

do=(2w2+ 1)(2w3+ l), d, = do w2. 

The number do is the multiplier by which the length of the program increases after 
dovetailing with Heal and Purge. The number d, is length of an application of 
Shrink(i) after dovetailing with Heal and Purge. 

Let Gi(t) denote the set of cells n in Lk- ,(t) with the property that 

7c(xk-l)[t, n] =n-iP. 

The set G’(t) is an extension of the block of k - l-cells forming the k-cell i, by 
possibly adding “occupying arms” while t is in the time period [0 ... sO) of the 
applications of Grow. Let us write G(t) for G’(t). 

The next lemma says that if the set of k - l-cells in a block is almost an interval 
then it remains so at least until the last step of the working period. The “almost” is 
expressed with the help of the sets E,(t), E(t) defined at the end of Section 12. For 
any set H(t) depending on t we will use the notation 

H(t, +)= H(t)uE(t), Htt, - I= Htt)\E,tt). 
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We say that the set A is an interval modulo a set B if either A\B or A u B is an 
interval. 

LEMMA 13.1. Suppose that the canonical k-cell (h, i) is semiprotected. Let t,, be an 
element ofhT+ [so.*. T+d,). 

(i) Zf G’( to) is an interval mod E(t,) then G’(t) is an interval mod E(t)for all t 
in [to... T+ d,). 

(ii) Zfn is in G’(to)\E,,(to) then the interval n + [ - 3w3.. . 3w3) has a nonempfy 
intersection with G’(t, - ) for all t in hT+ [s, . . . to). 

ProoJ (i) Without loss of generality, we can set h = i = 0. Only the error can 
break the continuity of G(t). The steps affected by the error begin at time p,, and 
end at time pl, as defined at the end of the last section. The interval J” is 
immediately affected. The first start of Purge after p1 comes at some time 
t’<p,+2w2+1. 

There were at most p1 - p0 + 1 steps in which new cells could by created. 
Therefore the set G(t’) consists of intervals only the leftmost and rightmost of which 
can be longer than 

q2-qo+2(p,-prJ+2< 12w+2. 

Therefore all these intervals other than possibly the leftmost and rightmost one will 
be killed by Purge. If the leftmost and the rightmost intervals survive during the 
next application of Heal then the distance of their inner ends is still at most 4w + 2. 
Therefore Heal will join them just as described in the proof of Lemma 12.1. 

(ii) In the time interval [s, ..* T+ d,), only the procedure Heal and the error 
can add new cells to G(t). The procedure Heal can add w3 cells to each side. These 
cells will be killed again unless they reach the block-end or an error occurs. The 
error can add 4w more cells. With another application of Heal we obtain the bound 
2w3 + 4w on the distance to which the set G( t, - ) can extend on each side. 1 

We expect the procedure Shrink to guarantee that during Comp, the set G(t) is 
either almost empty (corresponding to a proper dead cell) or almost covers the 
working area X of the computation. 

For j = 0, 1,2, let sj denote the beginning of the first application of Shrink(j). 
Note that s0 was introduced already in Section 7. Let s0 denote the beginning of 
Comp. 

For some h, i, the rest of the section deals with the work of the k - l-cells of the 
block 9[i] in their periods t for t in F[h]. We will suppose that these k - l-cells 
are protected during this time. Without loss of generality, we can assume i = 0. 

We will call a gap in 9 at time t any contiguous interval of B\G(t). The part of 
space-time outside the error rectangle J, is k - 1 -sparse, hence we can apply the 
inductive assumption there. It follows from (03) and the main lemma that in this 
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region, a cell n of G(t) dies only if either its program says so (i.e., mk- 1 [ t, n] is 
dead) or it is an improper live cell at the edge of a gap. 

No program step can create a gap. Indeed, the cause of killing a cell in any step 
but the last one of the working period, is always some inconsistency. But the cells of 
G(t) are consistent with each other. Therefore a gap arises in an error-free step only 
if one of the endcells is an improper live cell and dies (see the discussion after the 
definition of k-organizedness in Sect. 10). 

No error-free step before T can make a gap narrower without closing it. The only 
steps narrowing a gap are those of Heal. But in an error-free application of Heal, all 
newly created cells will be repealed if they did not close a gap. Hence outside the 
time interval J’ the gaps can not contract if they do not disappear. Therefore we 
will say that a gap persists during a time interval if it does so in the steps of the time 
interval not belonging to Heal. An application of Shrink(j) extends a gap if the gap 
intersects Yci), Let us call such steps extending for the gap. 

The next lemma says that if a gap persists too long then it kills the block. The set 
E,(t) was defined at the end of Section 12. 

LEMMA 13.2. Suppose that the canonical k-cell (0,O) is semiprotected, Suppose 
that for some t’ < s,., during times t < t’, a gap in G(t) has size 1 or persists through 1 
consecutive extending steps. 

(i) If1 > 2.5~~ and it contains an endcell then the gap will never be closed com- 
pletely before time T + sO. 

(ii) If 12 7.5~~ and t’ < s,. - 1.1 Pd, then G(t) is contained in EO( t) for all t in 
[t’+l.lPd,...T+s,). 

Proof. (i) Suppose that the gap contains the endcell 0. The effect of the error 
rectangle, whether it occurs during the 1 steps or afterward, can decrease a gap by 
at most 4w + w3 without closing it. (Changing the middle of a gap just when Heal 
was trying to close the right end.) The time of the error could cover at most one 
extending step. Therefore if a gap persisted through the 1 consecutive extending 
steps then at the end, even after a possible error, its size is at least 1- w3 - 4w. 
Therefore it cannot be closed by Heal and has a nonempty intersection with 9”. 

(ii) Before time T, the gap will always be at least I- 1.2~~ cells wide. 
Therefore all shrinking steps are extending steps for it. Among the l.ld, P extending 
steps after t’ there are enough error-free ones to widen the gap over the whole 9. 
After this, all cells of G(t) n 9 until t = T+ s0 will be due to the error rectangle. 
They will be eliminated by Purge at the earliest possibility, and therefore will be 
enclosed into E,,(t). 1 

Let us define 

ci = 8w3di for i= 0, 1. 

The following lemma is an immediate consequence of Lemmas 13.1 and 13.2. 
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LEMMA 13.3. Suppose that the canonical k-cell (0,O) is semiprotected. Then one 
of the following cases holds: 

(A) We have G(t)cE,,(t)for all t in [s, ... T+s,). 

(B) The set G(t) is an interval mod E(t)for all t in [s,, + c, *.* T). 

LEMMA 13.4. Suppose that the canonical k-cell (0,O) is semiprotected. Zf case (A) 
of Lemma 13.3 does not hold then G(t, + ) contains 9” for all t in [so + c1 ..* T). It 
contains 9 for all but possibly c, steps t in [s, + c1 . . . sl). 

Proof We suppose that case (A) of Lemma 13.3 does not hold. Therefore G(t) 
is an interval mod E(t) for all t in [s, + c, . . . 7’). From now on, we will look at the 
leftmost element l(t) of the set G( t, - ). Reasoning about the right end is analogous. 

Let t, be the first time step t before the error interval J’ with the property that for 
some i we have t <s;, l(t) > 3iw3. Let t, be the first time-step after J’ with the same 
property. We can assume without loss of generality that both t, and t, exist: 

1. If l(s,+,)< 3iw3 for some i then there is no tj after s~+~. Indeed, the 
procedure Shrink(i+ 1) does not extend the gaps in [0 ... 3(i+ 1)~~). If there is no 
tj before s1 then l(s, ) = 0 and the condition is fulfilled. Suppose therefore tl < s1 . 

2. Suppose that tj is in [0 . . s, - 4.5w3d,] for some j. By Lemma 13.2 if the 
left endgap persisted until tj+ 2.5w3d, then it would never be healed. By the time s, 
it would be extended to a size of at least 3w3, even if the error decreases it 
maximally. After that, Shrink( 1) would extend it over the whole block. Since this 
does not happen, we have I( tJ) = 0 for some t; < tj + 2.5w3d, and l(t) < 2.5~~ for all t 
in [tie.* $1. 

3. If the assumption 2 holds for j= 1, 2 then it follows from 1 that the 
statement of the lemma is proved. Suppose therefore that the assumption 2 does not 
hold for j= 1. Then we have l(t) < SW’ for all t in [s, + c1 *.*.s,]. 

We will show that there is a t; in [s, . . . s1 + 2.5w3d,] such that l(t;) d 3w3, and 
Z(t)<6w3 for all tin [s,*..t;]. 

If I(s,) < 3w, then we can choose t; = si. If l(s,) > 3w3 then by Lemma 13.2, if the 
condition l(t) > 3w3 persists until s1 + 2.5w3d, then it will never be repaired and it 
kills the block. Therefore we will have Z(t;) < 3w3 for some t’, < s1 + 2.5w3d, and 
l(t) < 6w3 for all t in [si ... t’,]. 

4. If t, < ti then condition 1 is fulfilled for i = 1. If t, > t; then the extension of 
the left endgap is error-free after t,, and will not kill the block only if we have 
l(t) < 6w3 for all t in [t2-..s2]. 

5. If the assumption 2 holds for j= 1 but does not hold for j = 2 then the 
argument in 4 can be repeated again, now with the t; defined in 2. 1 

We can summarize the results of Lemmas 13.1-13.4 as follows: 

LEMMA 13.5. Suppose that the canonical k-cell (h, i) is semiprotected. Then one of 
the following cases holds: 
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(A) We have Gi(t)cE,,(t) for all t in hT+ [s,-w6...T+so). Especially, 
(h, i) is proper dead. 

(B) For all t in hT+ [s, + c1 *** T) the set G’(t) is an interval mod E(t). The 
set G’(t, +) contains s’[i] for all but c1 values oft in hT+ [s,+c, . ..s.]. It con- 

tains g”[i]for all t in hT+ [s,,+cl... T). 

The next lemma strengthens the conclusion of Lemma 13.5 in the case when two 
adjacent inner blocks are live. It says that in this case, the area joining them is also 
live. 

LEMMA 13.6. Suppose that the canonical k-cells n, n + 1 are semiprotected in 
period h, and we have case (B) of Lemma 13.5 with both i = n and n + 1. Then for all 
tin hT+ [s,+c,.. . T), the set G”(t) u Gn+‘(t) is an interval mod E(t), and we have 

G”(t)uG”+‘(t)uE(t)I[nP+6w3...(n+2)P-6w3). 

Proof. The proof of Lemma 13.5 can be literally repeated for the interval 
[nP...(n+2) P) as a whole. 1 

The next lemma says that if a block was filled by the procedure Grow then it 
represents a dead k-cell. 

LEMMA 13.7. Suppose that the canonical k-cell i is semiprotected in the periods g 
and g + 1. Then Lemma 13.5 applies with both h = g and h = g + 1. Suppose that case 
(A)holdswithh=gandcase(B)holdswithh=g+l.Thenforalltin(g+l)T+ 
[sz.. . T) and for all n in p”\[qO ... ql] we have X(xk-‘[t, n])=neut[n], where 
neut [n] was defined in Section 9. 

Proof. Without loss of generality, we can assume g = i = 0. Since case (A) holds 
for h = 0, all k - l-cells but possibly the ones in E,,( T- 1) are dead at time T - 1. 
Even the ones in E,( T- 1) will die in 2w2 + 1 steps in case they are live. The 
operations resurrecting the cell use Conform, and hence write neut[n] into the X of 
cell n. Until time 2T, no program step changes the X variable of live cells. Since 
case (B) holds for h = 1, each k - l-cell in 9” except those immediately affected by 
the error is a resurrected one during T+ [s2 ... T]. i 

14. COMPUTATION 

The next lemma prepares Lemma 14.2. 

LEMMA 14.1. Suppose the canonical k-cells in the set 

[h-l...h+l]x[i-l...i+l] 

are semiprotected. Then either case (A) or case (B) below holds: 
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(A) G’( t, - ) is empty for all t in (h + 1) T + [0 * 1. so). Especially, the k-cell 
(i, h + 1) is proper dead. 

(B) G’(t, +) contains Y’[i]for all t in hT+ [s,+c,... T+s,). Moreover, we 
have 

X(xk- l [(h+l)T,iP+&]=u 

with the same string u in S? for s = 1, 2, 3. 

Proof: Without loss of generality, we can assume h = i= 0. We can apply 
Lemma 13.5 with h =0 to any of the blocks P[j] forj= -1, 0, 1. Let n be the set 
of numbers j such that case (B) of this lemma holds for j. If j is not in n then the k- 
cell (0, j) is proper dead. Therefore if 0 4 n then (A) holds and we are done. Assume 
0 E /i. It follows from Lemma 13.6 that for any t in [s, + c1 . . . T) the set 

G’(t)= u G’(t) 
jsA 

is an interval mod E(t), and for any j in A, it contains g”[j]\E(t): 

1. First we suppose that the error rectangle J does not intersect the rectangle 

[s, - w6.. . T] x 9. 

Then for all t in [s, - w6... T), the set G’(t) is an interval that contains 9”. This 
interval can only decrease, by at most one cell on each end, if an improper endcell 
dies. The three identical computational parts of the program in its application to 
the values xkP1 of the k - l-cells in X c G’(t) during steps t in [s, . . * T] are 
undisturbed by any error. Thus in the ith part, live exact copies of some string Ui 
are written to 

Outputi(xk- ’ [t, X, n G’(t)] ) 

for s = O,..., 4. If any element of ui is the value Dead then all of its elements are 
Dead, since an errorless computation produces such outputs (see Postp). 

(We cannot claim any relation among the three sequences ui, u2, ug. Indeed, the 
information is not necessarily in redundant form in the neighbor blocks from which 
it is read in. Therefore the change caused by an error in these blocks cannot always 
be filtered out by the voting in the procedure Readin.) The final step of the program 
is a cell-for-cell vote among the three strings 

Outputi(xk-‘[T- 1, 9 n G’(i)]) 

for i= 1, 2, 3. The result of this vote may be a string which does not “code” 
anything, but its five fifths will be equal, and it is either all dead or all live. In the 
former case, the k-cell 0 is proper dead, in the latter case, it has the form required in 
(B) of the present lemma. 
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2. Now we suppose a little more: that the error rectangle does not intersect 
the rectangle 

R=[s,-w6--T]x[-P-2P). 

Then all conclusions of case 1 remain in force. But additionally, the strings ui will 
be equal to the same string 6,(s) for some s E S,,,, for all three values of i. Indeed, 
now the input of the ith computation will be the same for each i. Thus, in this case 
the k-cell (LO) will be formatted. 

3. Let us suppose now that the error rectangle intersects R. Then the reason- 
ing of case 1 can be applied to the work of each of the k-cells - 1, 0, 1 at the period 
- 1. Hence each such k-cell j is either consists of dead k - l-cells at time T or has 
the property that 

X(x’-‘[T,jP+Xs])=ui (14.1) 

for some string uj independent of s = 1,2, 3. 
If the second case holds then j has the form (14.1) over Y[j] at time s, - w6 too, 

since no error changed it yet. In the first case, it may happen that not all k - l-cells 
are dead in 9[j] at time s,. But this can only happen if the interval P[j] was over- 
taken during CO.=. sO) by the procedure Grow of some neighbor blocks. Moreover, 
it was overtaken completely, since it was not killed during the time [so ... sI) of the 
application of Shrink( 1). Therefore by Lemma 13.7 we have 

X(xk- ‘[s, - w6, jP + Xs]) = G,(Dead) 

for s= 1,2, 3. 

4. Having the desired input to the computational part of the program, it is 
not difficult to see that it gives the desired output. Indeed, the error rectangle will 
be separated in time from at least two of the three. identical parts of the com- 
putation. The error may change or kill at most 4w cells of the input interval 
G’(s, - w6). If these cells are near the edge of the input interval then they may kill 
some cells permanently but the affected cells will not belong to any of the jP + A!’ 
for j E A. If the affected cells include some in a jP + X with j E /1 then these cells are 
deeply inside G’(t). Then Lemma 12.1 implies that they will be resurrected in at 
most w6 steps. Of course, the X(xk- ‘) values in the error-affected interval may be 
lost. The Ourput,(x”-‘) in the part of the computation affected by the error is 
probably worthless. 

In the two error-free parts i of the program, the input comes from three neighbor 
blocks. The neighbors with case (A) of Lemma 13.5 consist of dead k - l-cells in 
this time, hence the sign Dead will be transmitted from them. The triply redundant 
information in the other ones may have been changed by the error in a short inter- 
val, but this effect will be filtered out by the input voting. Therefore everywhere but 

571/32/l-5 
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in the cells immediately affected by the error (i.e., belonging to E,,(t) for some t), 
the Output values computed will be equal to the string u repeated five times where 

u=~*W(x-I, x0, x1)) 

where xi is dead if j 4 A, and is 6*(vj) otherwise. Also, if M(x _ 1, x0, x1) is dead 
then, due to Postp, all elements of u are Dead. 1 

The next lemma implies properties (01)(i), (03)(i). Let L;(h) denote the set of k- 
cells for which all conditions of belonging to L,(h) are satisfied with the exception 
that, instead of being protected, they are possibly only semiprotected. 

LEMMA 14.2. Suppose that the canonical k-cells in the set 

[h-2...h+l] x [i-2...i+3] 

are semiprotected. Then either case (A) or case (B) below holds: 

(A) The k-cell (h + 1, i) is proper dead. Moreover, G’( t, - ) is empty for all t in 
(h+ 1) T+ [O.**so). 

(B) We have iELb(h+ l), xk[h + 1, i] =m,[h, i]. Moreover, G’(t, +) con- 
tains ??“[i] for all t in hT+ [so+ c, ... T+s,). 

If we have the case (B) for (h + 1, i + 1) too then for the same values of t, the set 
Lk-‘(t, +) contains [-P+6w3...2P-6~‘~). 

Proof: Without loss of generality, we can assume h = i= 0. We can apply 
Lemma 14.2 to the pairs (h, i) = ( - 1, - 1 ), ( - 1, 0), and ( - 1, 1). In this way, we 
obtain conditions for the computation of the string xk ‘[(h + 1) T, 9’1 that allow 
the same reasoning as the one applied to the computation of the string 
xkP ‘[(h + 1) T, P] in part 4 of the proof of Lemma 14.1. Therefore the conclusion 
is the same. 1 

Proof of Lemma 11.2. It follows from the conditions of the lemma and 
Lemma 14.2 that L, _ 1(0, + ) contains the interval 

iP+ [-2P+6w3...4P-6~~). 

Since the set of errors is k - l-sparse over W$[h, i], the evolution is k- l- 
organized. The possible gap in E( hT) will be quickly filled using Lemma 12.1. After 
this, Purge and Shrink will have no more cause to kill any live k - l-cells in the 
blocks P[j] for j in [i - 1. * * i + 21. These perform the computation as described in 
part 4 of the proof of Lemma 14.1. Since the values m,[h, i] and mk[h, i+ I] are 
live both blocks S[i] and Y[i + 1 ] remain in Lkp 1 [t] at t = (h + 1) T. They 
remain live at least until (h + 2) T. 1 
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15. THE DISJOINTNES OF ~-TRIBES 

The next two lemmas extend the validity of the conclusion of Lemma 13.1. 

LEMMA 15.1. Supposethatthek-cellsintheset [h-2...h+l]x[i-3...i+3] 
are semiprotected. Then G’(t) is an interval mod E(t) for all t in hT+ 
[s,+c,...T+s,). 

Proof As always, we can suppose h = i = 0. It follows from the application of 
Lemma 13.5 to (h, i) = (0,O) that G(t) is an interval mod E(t) for all t in [cl . * * T). 
If the case (A) of Lemma 13.5 holds then G(t) is contained in E,(t) for all t in 
T+ CO... s,,), and the k-cell (0,O) is proper dead. Suppose therefore that case (B) of 
Lemma 13.5 holds. Then we can apply Lemma 14.2 with (h, i) = (0,O). If case (A) of 
this lemma holds then G(t) c E,(t) for all t in T + [0 . . * so). Suppose therefore that 
case (B) of lemma 14.2 holds. Then G(t) is an interval mod E(t) for t = T. Indeed, 
this is true for t = T- 1. It follows from Lemma 14.2 that the last step of the 
program will produce a formatted result, and will not kill any cell outside E(t). An 
improper endcell may die, changing an end of G( T - 1) by at most one cell but 
leaving it an interval. 

It remains to prove that G(t) is an interval mod E(t) for t in T + (0 . . . s,J. This is 
the time of applications of the procedure Grow. The analysis given in the proof of 
Lemma 13.1 applies here without change. Indeed, error-free steps of Grow do not 
create gaps. They do not extend gaps faster than the steps in Shrink either, therefore 
the gaps that are created by errors during Grow will be closed just as the ones dur- 
ing Shrink. 1 

Let s, denote the first retreating step in the last application of Grow in the 
program. 

LEMMA 15.2. Suppose that the k-cells in [h - 2 . . . h + 1 ] x [i - 4 . . . i + 41 are 
semiprotected and the k-cell (h + 1, i) is not proper dead. Then 

(i) the set Lk _ I( t, + ) contains 9[i] for all but c0 values oft in [s, + c,, . . . s,); 
(ii) it contains S”[i] for all t in [s,+c,*..T+s,). 

Proof: (i) Without loss of generality, we can assume h = i= 0. The set 
Lk- i(t) n 9 is the union of the sets G,(t) n 9 for j in [ -2,2], since the occupying 
arms of the two left and two right neighbor blocks can reach into 9. It follows from 
Lemma 15.1 with h =0 that G(0) is an interval mod E(0). The sets G’(0) n9 for 
j # 0 are empty by definition. 

Lemma 15.1 implies that in the time interval [0 . . . so), each of the sets G’(t) is an 
interval mod E(t). Moreover, it is clear that those with j < 0 cover left segments of 
B and those with j > 0 cover right segments of 9. Since these sets are also disjoint 
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by definition, the set 9 n G’( t, - ) can be nonempty for only one of the numbers 
j= -1, -2 and only one of the numbers 1,2. For j = +l, let us denote by 

G,(t) 

the one (if any) among the sets Gj(t) and GV(t) for which the above set is non- 
empty. 

The set G-,(t)uG(t)u G,(t) is the union of three intervals mod E(t). The 
retreating part of Grow will extend the gaps between these intervals in every step 
that does not belong to Heal or Purge. Therefore the reasoning of Lemma 13.2 
shows that the ones among these gaps with both edges in S at time s, + c0 have a 
size that will kill the k-cell (LO) in the time interval [so ... sl) of applications of 
Shrink(O). Since by our assumption the k-cell (1,O) is not proper dead, there are no 
such gaps. Therefore the set 

is an interval mod E(t) at time t = s, + q,. Since the endgaps will not kill the block 
B either, the set Lkp I(t, + ) contains S for all but c0 values of t in [s, + q-, . . . so). 

(ii) Now that we know that no cells are killed outside E,(t) at t = T, the 
reasoning of the proof of Lemma 13.4 can be applied without change to the whole 
interval [s, * * * T + so). 1 

LEMMA 15.3. Under the notation of the previous lemma, suppose that the k-cells 
in [h-2...h+l] x [i-4.*. i + 41 are semiprotected, the k-cell (h, i) is dead and 
for some t’ in 

[s, + 0.7w4d0.. . T + do) 

the k - l-cell n is in 

Lk- ,(t’) n~)Cil\&(t). 

Then L,- I(t, - ) has a nonempty intersection with the interval n + [ -3w3 ... 3w3) 
for all t in [s, + cO. ’ . t’). The set Lk _ ,( t, + ) contains the interval 

[n - 0.3~~. . . n + 0.3~~) 

for all t in [s, + co.. . s, + 0.3w4d0). 

Proof: As always, we can assume h = i = 0 without loss of generality. The part of 
the statement concerning in [s, ... T+d,,) follows from (ii) of Lemma 13.1. The 
proof of this lemma used only the fact that the program in the given time interval 
creates new cells only by Heal. Concerning Lk- i(t) instead of G(t), these properties 
hold for the whole time interval [s, ... T+ d,,). Therefore the first statement of the 
present lemma holds. It follows that there is a k - l-cell n’ in 

n+ [-3w3*.. 3w3) n L& ,(so - 1, - ). 
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Since the k-cell (0,O) is dead, we have case (A) of Lemma 14.2, and hence G(t) c 
E,(t) for all t in [0 . . . so). Therefore for s0 - 1 we have 

Lk-l(f, -)=G-,(t, -)uG,(t, -). 

Without loss of generality, suppose that n’ is in G _ I (sO - 1). Suppose that the gap 
between G ~ 1(t) and G,(t) disappears before t = s, + cO. Then by (ii) of the previous 
lemma, the sets Gj(t, + ) contain 9” [j]. Therefore [ -P + 6w3.. .2P - 6w3) is con- 
tained in L, ~ i(t, + ) for all t in [s, + q,. . . so), and we are done. 

Suppose now that a gap between G-,(t) and G,(t) persists for t in [O”.s, + q,). 
Then it will never be closed. The remaining at least 0.7~~ -c,, steps of Grow pull 
back the right end of GP,(t, -) by at least 0.7~~ -q,- 2w3. It follows from the 
previous lemma that G ~ i( t, + ) contains 9°C - 11 for all t in [s, . . . s,,). Since 
G- ,(sO - 1, - ) contains n’, the whole interval 

[-P+6w3... n’ + o.7w4 - cg - 2w3) 

is contained in G-,(t, +) for t=s,+c,. This interval can decrease by at most 
0.3~~ + 3w3 during the 0.3w4d, steps considered in the second statement of the lem- 
ma. I 

The following lemma says that the procedure Grow never brings k-tribes of dif- 
ferent k - l-origins in disturbing closeness to each other. 

LEMMA 15.4. Suppose that the canonical k-cells in the set [h - 3.. . h + 21 x 
[i-j... i + 51 are semiprotected, i is in L;(h + 1) and the canonical k-cell (h + 1, i) is 
disturbed. Then i is in L;(h) and the canonical k-cell (h, i) is disturbed. 

Proof. It follows from the assumption of the lemma that for some k-origin dif- 
ferent from (0, 0), the work rectangles of the k-cells (h + 1, i; 0,O) and 
(h’ + 1, i’; a, b) disturb each other, as defined in Section 10, and the k-cell 
(h’ + 1, i’; a, b) is not proper dead. It follows from Lemma 14.2 that i’ is in 
LkpI(h’+l;a,b). 

We can suppose without loss of generality that h = i = 0. Then defining 

a’ = a + h’Tk, 6’ = b + i’Pk, 

we have (a, 6) + Vk[h’, i’] = (a’, b’) + Vk[O, 01. We can suppose without loss of 
generality that 

a’ E JCk > 6’ E [0 . *. Pk+8w3Pkp1). (15.1) 

By induction, we know that the sets Lk-‘( - ) and Lk- ‘( --; a, b) are disjoint. 
Applying Lemmas 15.1-15.2 with h = i = 0 we find that the set L,_ I(t, + ) con- 

tains 9” for all t in T + [s, + cO. . . T + so). This means 

(r’l-‘(&-I(?, -)ny)l >Pk- 13W3pk-’ (15.2) 
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for all t in r$- 1 [(s, + c,,) . . * T + s,,). Similarly, 

Jb’+r:-l(Lkpl(t’, -;a,b)n8)~>Pk-13W3Pk-1 (15.3) 

for all t in a’+ft-‘[h’T+ (sr+ c,,)... T + so). Notice that the interval of the values 
of t for which (15.2) holds has a nonempty intersection with the interval of values 
for which (15.3) holds. Namely, it follows from (15.1) that they both contain the 
subinterval 

a’+r~-‘[(S,+Cg)..‘Sg). (15.4) 

Therefore it follows from the disjointness of Lk- ‘( - ) and Lk- ‘( --; a, 6) that the 
intersection of the inervals 9’ and b’ +Bk is shorter then 13w3Pk- ‘. In other 
words, 

b’E[Pk-13w3Pk-1...Pk+8w3Pk-1). (15.5) 

We generalize now some earlier notations. E.g., G’(t; a, b) denotes the equivalent 
of G’(t) for origin (a, b). Of course, all earlier lemmas apply when we take an origin 
different from the canonical one: 

1. Suppose that 0 is not in Lb(O; a, 6). Let t’ = h’T+s,. It follows then from 
Lemma 15.3 that Lk- i(t’, + ; a, b) Contains 

i’P+ [ -0.3~~s.. P+0.3w4) 

for all t in [t’+ co..* t’ +0.3w4d,). Therefore for t in 

a'+ l-t-'(s,+ [co.-0.3w4d,)) 

the number of elements n in 

b’frf-‘[-0.3w4...P+0.3w4) 

such that (n, t) is in Lk- ‘( - ; a, 6) is greater then 

Pk + 0.6~~ - w3Pk - ‘. 

But together with (15.2) this contradicts the disjointness of k- l-tribes Lk-‘( - ) 
and Lk-‘( --; a, b). 

2. Let us suppose now that i’ E Ll(h’; a, b) but i # L;(h). After exchanging left 
for right, the relation between k-cells (h, i) and (h’, i’; a, b) is the same as the 
relation was, in part 1 of the proof, between the k-cells (h’, i’; a, 6) and (h + 1, i). 
Therefore part 1 of the proof applies. 1 

The property (02) is proved in the following lemma. 

LEMMA 15.5. Any two difSerent k-tribes are disjoint. Moreover, if the k + l-origin 
(a, b) is dyferent from (0, 0) then Lk is disjoint from Llk(a, b). 
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Proof Suppose that the second statement does not hold. If (a, b) is equivalent 
to (0,O) as a k-origin then the k-origins (0,O) and (a, b) differ only in the values 
z(xk[h, i]) and n(x“[h, i]) which are defined for any live cell (h, i). This makes 
Lk(O, 0) and L’k(a, b) disjoint by definition. Suppose therefore that the k-origin 
(a, b) is different from (0,O). 

We can assume without loss of generality that Lk and L’k(a, 6) intersect in such a 
way that 0 E L,(2), i E L’Jh’ + 2; a, b) and the rectangle (a, b) + Vk[h’ + 2, i’] inter- 
sects with Vk[2, 01. We will arrive at a contradiction from this assumption. Let us 
define a’ and b’ as in the proof of Lemma 15.3. Then we can assume, due to the 
symmetry of left and right and the symmetrical roles of Lk and L’k(u, b) that a’ E F-, 
b’ E 9, (a’, b’) # (0,O). The roles do not seem symmetrical since one of them is Lk 
and the other one is Lfk. But what is important is only that any one of the cells 
(0,O) and (h’, i’; a, b) be protected, in order to imply all the conditions of earlier 
lemmas on semiprotectedness. 

It follows from Lemma 15.4 that 0, 1 are in L;(O) and i’, i’+ 1 are in L;(K). Now 
in absolute time, the working period a’ + Fk of the k-cell (h’, i’; a, 6) is contained in 
the union [0 *. . 2Tk) of the working periods 0 and 1 of the canonical k-cell 0. These 
cells are not proper dead in these working periods. In absolute space, they occupy 
the intervals Bk and b’ + Pk which have a nonempty intersection. Let us show that 
this is impossible since the prolonged contract would kill one of the k-cells. 

By the definition of the constant r0 in Section 9, the interval [so... sl) of 
application of Shrink(O) in cell (h’, i’; u, b) is longer than 0.87’. The interval 

is contained in the union of the intervals S”[O] and S”[l], therefore it has an 
intersection Z, longer than 0.4Tk with one of them, say Yk(0). The intersection I, of 
I,, with the interval l-k- l [s,, *.. sl) of applications of Shrink(O) in the canonical cell 
(0,O) is longer than 0.2Tk. Now it follows from case (B) of Lemma 13.5 that for all 
but c1 elements t of the time interval I,, we have 

{t} x@cLk-I(-) 

and 

This is a contradiction since the left sides of these equations have a nonempty inter- 
section and the right sides are disjoint. 1 

16. PROPER CELLS 

The first lemma of this section shows that if the canonical k-cell (0,O) is protec- 
ted and undisturbed then the canonical k - l-cells “belonging” to it can be distur- 
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bed only by the k - l-cells of other tribes which are in one of their attacking 
periods. This is useful to know since attacks are always followed by retreats. 

LEMMA 16.1. Suppose that the canonical k-cell (0,O) is protected and proper. 
Suppose that for some t, in S[l], n, in G(to)\&(to), n, in [n,...n,+8w3), the 
work rectangle of the canonical k - l-cell (t,, n,) is intersected by the work rectangle 
of the k- l-cell n’ in 

Lk - , (t’; a, b)\E,( t’; a, b). 

Let h’=Lt’/TJ- 1. Then either t, is in T+ [d0**.s,+0.7w4d0) or t’ is in 
(h’+ 1) T+ [d,v,+0.7w4d,). 

ProoJ 1. Let i’ = Ln’/PJ It follows from the conditions of the lemma that the 
work rectangle of the k-cell (h’, i’; a, b) disturbs the work rectangle of the k-cell 
(0,O). Therefore both of these k-cells cannot be live, since if (0,O) is live then it is 
proper live. This is the only place where we use that the k-cell (0,O) is dead or 
proper live. Therefore from now on, ‘the roles of the k-cells (0,O) and (h’, i’; a, b) are 
symmetric. We can suppose without loss of generality that (h’, i’; a, b) is dead. Let 
hb be h’+ 1 if the k-cell (h’+ 1, i’; a, b) is also dead, and h’ otherwise. 

2. Suppose first that the k-cell (0,O) is also dead. Let h,, be 1 if the k-cell 
(1,0) is dead and 0 otherwise. Now the role of the points h, Tk and a + hb Tk is sym- 
metric. We can suppose without loss of generality that 

h,Tk<a+hbTk. (16.1) 

It follows from the consecutive application of Lemmas 13.l(ii), 15.2(ii), and 15.3 
that for all t in 

H= [h,T+s,+c,... to), 

the interval I= n, + [ - 12~~. *. 12~~) has a nonempty intersection with 
Lk _ ,( t, - ). It follows from Lemma 15.3 that for all t in 

H’=h;T+s,+ [c,...0.3w4d,), 

the interval I’ = n’ + [ -0.2~~. . . 0.2~~) is contained in Lkel(t, +; a, b). By (16.1), 
the interval a+ft-‘H’ is essentially (to within a difference T’-’ at its right end) 
contained in Zi- ‘H. By its definition, the interval b + Z’f- ‘Z’ contains Zf-‘Z. 
Therefore the rectangles rkpl(H x I) and (a, b) + Zk-‘(H’ x Z’) have an intersection 
with a time projection of length greater then 

0.2w4d 0 Tk - ’ > 0.2w9Tk - ‘. 

The second rectangle is filled by Lk- ‘( + ; a, 6). For each time t in its time-projec- 
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tion, the first rectangle has a nonempty intersection with {t} x Z, r‘l Lk- ‘( - ). 
Since for all but w6Tk- ’ values of t we have 

this contradicts the disjointness of k - l-tribes. 
3. Suppose now that the k-cell (0,O) is live. Then again, it follows from Lem- 

mas 13.l(ii) and 15.2(ii) that for all t in 

H,= [-T+s,+c,~..t,], 

the interval I has a nonempty intersection with L, _ I(t, - ). We have 
a + (h’ + 1) Tk > 0 by the definition of h’. Therefore 

a+hbTk>a+h’Tk3 -Tk, 

a+hbT,+(s,+c,) Tk-‘> -Tk+(s,+cO) Tkpl. 

It follows that a + ri-‘H’ is essentially (to within a difference p- 1 at its right 
end) contained in r;- ‘H,, hence the argument of the end of 2 applies. 1 

LEMMA 16.2. Suppose that the (canonical) k-cell (0,O) is protected, and either 
proper dead or undisturbed, and that the k-cell (1,O) is live. Let t,, be an element of 
T+ [so... s,) with B c G( to, + ). Suppose that some k - l-cell in 

[0.5P.. . P + 7w3 - 1 )\E( to) 

is disturbed in period to. Then there is a t 1 in [0 *. . 2.4w4d0) such that for all t in 

to+ t, + [0...0.1w4d,,) 

the k - l-cells in 
[O.SP... P+ 5w3)\E(t) 

are undisturbed. 

Proof: 

1. It follows from the conditions of the lemma that for some n, in 

G(t,, -)n [P- w3... P) 

and n, inn,+ CO..* 8w3), some origin (a, b) different from (0, 0), some tb and some 
nb in Lk _ i (tb), the work rectangle of (to, n i ) is intersected by the work rectangle of 
the k - l-cell (tb, nb; a, b). Let us define again h’ = Ltb/TJ - 1: 

2. The cell nb is not in E,(tb; a, b). Otherwise it follows immediately from the 
definition of E, and E in Section 12 that n, is in E(t), contrary to the assumption 
that n, is in G(t,, - ). 
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3. We proved that nb is in Gj’(tb; a, b)\E,(tb; a, b) for some j’. Since to 
is not in T+ Cd,.*. s, +0.7w4d0), it follows from the previous lemma that tb is 
in h’T+ [do”’ s,-t- 0.7w4d,). Therefore tb points to the part of the program 
containing the repetitions of the procedure Grow. It follows from Lemmas 14.2 and 
15.1 that the k-cell (h’+ 1, j’; a, b) is live, and the set G’(tb, u, b) is an interval 
mod E(t&; a, b) containing at least P- 13w3 elements. Since G(t,, + ) contains .P 
and the k- l-tribes Lkp ‘( -) and Lk-‘( -; a, 6) are disjoint, all points of the set 

b+Z--‘G”(tb, -;a,b) 

are to the right of Bk. 
4. For the left end of the block b + .Yk[j’] we have 

b+j’Pk>Pk+8Pkp1. 

Indeed, otherwise the work rectangle of the k-cell (h’ + 1, j’; (I, b) disturbs the work 
rectangle of the canonical k-cell (l,O). The latter is assumed to be live by the con- 
ditions of the lemma. It follows from Lemma 15.4 that if both of these cells are live 
then the k-cells (0,O) and (h’, j’; a: 6) are also live. This would contradict the 
assumption that the k-cell (0,O) is proper. 

5. Let f2 be 0 if the retreating part of the Grow started less than 0.7w4d, steps 
before tb, otherwise let it be such that t& + t, is the first place in the program after tb 
where the retreating part of Grow starts, Then t2 < 2.3w4d0. We define t, = 
1, + 0.2w4d,. 

During steps of tb + [ r2 . . . tl), the retreating part of the procedure Grow acts on 
the k- l-cells with origin (a, b). It kills 0.2~~ cells of Gj’(tb; a, b) to the left of 
S[j’] if there are so many. Remember that Heal was not permitted to ressurect in 
the attack direction of Grow. Therefore only the error rectangle can resurrect, at 
most 2w3 of them (together with Heal working in the retreat direction). Hence the 
left end of GY(tb + tl, - ; a, b) is either in P[j’], or to the right of 

nb + 0.2~~ - 2w3 2 n’ + 8w3. 

In other words, none of the canonical k - l-cells in [0.5P .. P+ 8w3 - 1) will be 
disturbed by Lk-‘( -, a, b) at time t,+ t,. This situation does not change in the 
next 0.1w4d, steps, since the steps in tb + t, + [0 .. * 0.1w4d,) still belong to the 
retreating part of Grow. Taking into acount the effect of the error, still none of the 
k- 1 cells [0.5P... P+ 5w3) will be disturbed by Lk-‘( -;a, 6) for any t in 

H= t,+ t, + [0..~0.1w4d,,). 

6. Now we have to prove that for t in H, none of the k - l-cells in 

Z(t)= [0.5P... P+5w3)\E(t) 
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is disturbed by the set Lk- ‘(a, b). Suppose that for some t in the range considered, 
a k - l-cell n in [OSP.. . P+ 5w3) is disturbed by a k- l-cell (t’, n’) with 
n’ E Lk- ,(t’; a, b). It follows from the statement proved in the previous paragraph 
that n’ is in E,(t’; a, b). Let us recall the definition of E,(t’; a, b) in Section 12. As 
mentioned in 1, above, if n’ is in E,( t’; a, b) then n is in E(t). However, the values of 
t’ considered here are in 

h’T+ [d,, ‘. . s, + 0.7w4do). 

For these values of t’ we have E,(t’; a, b) = E,(t’; a, b) by definition. 

7. No k- l-tribes with origins different from (0,O) and (a, b) can disturb the 
cells of Z(t) during the time interval H. If there was a k - l-cell (t’, , n; ; a,, b, ) with 
n; not in E,(t’,; ui, b,) doing this then the argument of 2 above would imply a large 
intersection of the k - l-tribes Lk- ‘(a, b) and Lk- ‘(al, b,), though these cannot 
intersect outside the error rectangle. 1 

Proof of (Ol)(ii). Suppose that the k-cells (0,O) and (1,0) are protected. 
Property (Ol)(ii) says that if the k-cell (0,O) is proper then so is (LO). We know 
already from Lemma 14.2 that if (LO) is dead then it is proper dead. Let us assume 
therefore that (1,0) is live. We have to prove that 

(a) The k-cell (LO) is undisturbed; 
(b) [ 1 . . . P - 1) t Gk- 1(T) u E for some interval E of length 2w2. 

We first prove (a). Suppose that (a) does not hold. Then the k-cell (LO) is live 
and disturbed. Lemma 15.4 implies that then (0,O) is also live and disturbed, con- 
trary to the assumption. 

Now we prove (b). Since the k-cell (LO) is live, it follows from Lemma 13.4 that 
G(t) contains 9 for some t in s0 + [c I *.. 2c,]. From then on, the only way for a cell 
of 9 to die is by the error or the death of an improper endcell. If this happens after 
s, then the only cells not immediately killed by the error that may die can be w2 
cells at the end cut off by the the error and killed by Purge. Therefore all killed cells 
may be covered by an interval of length 2w2. Let us suppose therefore that a cell 
dies before s,. 

Any gap inside .c? will be closed by Heal, using Lemma 12.1. The only obstacle to 
Heal at the ends of 69 may be if at some time t, during this attempted recovery, say, 
on the right end, some of the canonical k - l-cells near the end are disturbed, 
preventing the application of (04). But we can apply Lemma 16.2 in this case. Let 
us use the notation of this lemma. 

During the t1 steps of their program after t,, some canonical k - l-cells in 9 may 
die. They may die if the error or Purge kills them, but the total number of cells 
killed this way is less than 2~‘. Otherwise, only the procedure Shrink kills, at a rate 
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of one cell in w2d,, steps. Altogether therefore, the number of cells killed during this 
time is less than 3w2+2.5w2. Hence, the leftmost cell killed is to the right of 
P- 6~‘. By the lemma, during the time t, + [O ... 0.1w4d,) the k - l-cells in a large 
neighborhood of the right end are undisturbed. The time is long enough and the 
gap is small enough for Heal to resurrect all cells on the right end. 1 

Proofof(O3)(ii). If the k-cell (0,O) is proper live then there is an interval E of 
length 2w2 such that [ l... P- 1) is contained in G(s,)\E. Since Shrink does not 
work during [s;.. T+ so), the only cells killed during this time will be a possible 
improper endcell, cells killed by the error and Purge. The numbers of these cells 
altogether will not exceed 3~‘. Therefore the argument of the previous proof is 
applicable again. 1 

Proof of (04). 1. The case that is still unproven is when (taking a = b = 0) the 
k-cell (h, i) is dead and m,Jh, i) is live. We have to prove that (h + 1, i) is live. The 
statement for (h + 1, i+ 1) is symmetrical. The statement that m,(h, i) is live says 
that according to the hth step of the program, the dead cell i must apply Conform. 
Without loss of generality, we can assume that the k-cell (h, i- 1) is live, and the 
cell (h, i) applies Conform( - 1). It is enough to show therefore that G( T, + ) con- 
tains 8. Indeed, according to the proof of Lemma 14.2, the only way that (h + 1, i) 
can become a dead k-cell is now if Shrink kills the block before the computation 
begins. That this does not happen is proven just as in the proof of (Ol)(ii) above. 

2. We assumed that the k-cell (h, i- 1) is proper live, i.e., there is an interval 
E of length 2w2 such that G(hT) u E contains (i - 1) P + [ 1 . . . P - 1). It follows 
that there is a t in hT+ [0 ... w6) such that G(t) contains Y[i - 11. Now we have 
to see that by the applications of the procedure Grow, the block Y[i - 1 ] of k - l- 
cells overtakes the block 9[ i] during hT + [0 . . . so). The only obstacle to this can 
be that some k - l-cells in [ iP . . . (i + 1.5) P) are disturbed. 

3. Suppose that for some t, in hT + [d, . * . sO) and n,, in 

[iP... (i+ 1.5) P)\E(t,), 

the canonical k - l-cell (to, no) is disturbed, by some k - l-cell (t’, n’; a, 6). Then n’ 
cannot belong to E,(t’; a, b) since, as mentioned in the beginning proof of 
Lemma 16.2, this would imply no E E( to). Let us define h’ = L t’/T_I. Let j’ be such 
that n’ is in Gy(t’; a, b). Then the k-cell (h’, j’; a, b) is dead. Indeed, otherwise it 
would disturb one of the canonical k-cells in [i - 2. *. i + 21, which is excluded by 
the conditions. 

4. It follows that t’ is not in h’T+ [d, ... T+ s,,), since according to case (A) 
of Lemma 14.2, the set Gj’(t’; a, b)\E,,(t’; a, 6) is empty during this time (remember 
that the sets E,(t’; a, b) and E,(t’; a, b) are different only during intervals of 
the form h”T+ [O..*d,,) for some h”). Now Lemma 15.3 is applicable. It says 
that the interval n’ + [ - 3w3.. . 3w3) has a nonempty intersection with 
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Lk- i(h”T- 1, -; a, 6). This statement, together with Lemma 14.2, implies the 
existence of a live k-cell (h’ - 1, j”; a, b) and a k - l-cell n” in 

n’+ [-3w3... 3w3) n Gr(h’T- 1, - ; a, 6). 

But then the k-cell (h’ - 1, j”; a, 6) still disturbs one of the canonical k-cells in 
[i--2... i + 21 in period h, a contradiction. 1 

17. CONCLUSIONS 

Simplification. The construction and proof of this paper are surprisingly com- 
plicated for the simple form of Theorem 1. It seems therefore important to look for 
conceptual simplification. The problem of quantitative simplification is no less 
pressing. The medium described here has millions of states. In order to lend the 
medium physical credibility, one must reduce the number of states (while retaining 
nearest-neighbor interaction). A great amount of reduction is possible within the 
present framework: e.g., most variables could be shared by a few neighbor cells, the 
“dovetailing” can be done much more economically, and many actions can be per- 
formed in parallel. This was avoided only for reasons of carity. Further attempts at 
reduction bring up principal problems since “forced self-simulation,” a crucial 
feature of the medium, is expensive. 

Positioe memory capacity. Here, we need K log’(KL) cells to store K bits of 
information for L steps. The time delay is log’(KL) per step. A memory used for a 
fixed number L of steps is a special communication channel of the type considered 
in information theory, and one can ask whether it has a positive capacity C in the 
sense that only KC/logs cells are needed to store K bits for L steps (at least if K is 
not smaller than log L), if s is the number of cell-states. This problem has positive 
solution but several details need to be elaborated. Besides the positive capacity, the 
time delay will also be decreased to log’ +‘( TK) with E arbitary small. 

Here are some of the changes to be made for positive capacity. A block of level k 
has now k22k- ’ subblocks of level k - 1. (The new proof of Toom’s result also uses 
these block sizes.) In the inductive definition of k-sparsity we allow 2k-1 excep- 
tional subrectangles instead of just one. The simple idea of self-simulation must be 
abandoned for a more direct definition of the work of a k + l-block in terms of the 
k-blocks comprising it. The spatial repetition must be replaced with an algebraic 
code of rate 1 - l/k*. Thus some P,/k* checkbits are added to every k-block of size 
Pk. The control, mailbox, and other service variables are shared by several cells to 
cut their contribution to the redundancy. The temporal repetition is about 2k-fold 
on level k. 

Continuous time. Most interactive particle systems considered by probabilists 
and physicists work in continuous time as a Markov process. Since such systems 
are physically more realistic the question arises whether reliable computation is 
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achievable in them. As Bennett remarked in 1983, continuous time brings in the 
additional problem of synchronization. Still, this problem seems to be solvable. The 
hierarchical organization used for error-correction can also be used for syn- 
chronization. Each block of cells is supposed to be synchronized to a certain 
tolerance and is periodically resynchronized. Higher order blocks are synchronized 
to progressively looser tolerances. The details have to be worked out. 

Self-organization. The one-dimensional cellular space described in the previous 
section works reliably only if the starting configuration contains already the (input- 
independent) hierarchical organization. It would sound more natural that if the 
input is one bit then the starting configuration should consist just of the repetition 
of this one bit. If error-correction requires structure then the medium should be 
able to build up this structure, out of “nothing.” In probabilistic terms, this would 
correspond to the existence of several invariant measures that are also translution- 
invariant. 

This goal is the most intriguing among the ones proposed. We run into several 
new problems. First, without errors, no structure can arise, since all cells have the 
same state and the same rule. Hence whatever structures may arise will be random 
(e.g., if there are blocks, their position will be random). Second, killing a small 
organized island surrounded by inconsistencies was one of the main principles of 
the present contruction. Self-organization requires that we permit these island to 
grow. A possible new rule replacing the old one could be that islands die if they are 
prevented from growth for longer time. Assigning different speeds to different kinds 
of growth) making “self-organizing” growth the slowest) is another trick that might 
work. 

APPENDIX: NOTATION 

This is a list of the notation used throughout the paper and the section is given where the notation is 
introduced: 

[a ‘. b), Section 2. 
IEI, Section 2. 
H(f, + ), H(t, -), Section 13. 
Z+, Z-, Section 5. 
4 0 y, Section 3. 
f$*, #*, Section 3. 
A, Section 2. 
B, Section 10. 
ci, Section 13. 
Cn, Section 6. 
Comp, Section 9. 
Conform’(j), Section 6. 
Conform(j), Section 9. 
consis’(x,, x,), Section 6. 
consis(x,, x,), Section 7. 
Cons’(j), Section 6. 

Cons(j), Section 7. 
Core, Section 5. 
d, for i=O, 1, Section 13. 
6, Section 9. 
Dead, Section 6. 
dead, Section 9. 
E(r), E,(t), E,(t), Section 12. 
e’ for j = 0, 1, Section 5. 
4, Section 3. 
y, Section 3. 
G’(r), Section 13. 
Grow, Section 9. 
F, r$, ri, Section 10. 
Heal’, Section 6. 
Heal, Section 9. 
Input,, for i = 1, 2, 3, Section 5. 
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J = J’ x J”, Section 12. 
Xx, Section 5. 
Lk(t; a, b), Lk(t; a, b), Section 10. 
L;(t; a, b), Section 15. 
m, m’, Section 2. 
m,(h, i), Section 10. 
M, Section 2. 
M,, Section 5. 
M,, Section 6. 
M,,,,Section 9. 
Mail, for i = * 1, Section 5. 
Main, Section 9. 
Maj, Section 5. 
Mix, Section 9. 
neut, Section 9. 
v, Section 5. 
Oufpuf, for i = 1, 2, 3, Section 5. 
P, Section 3. 
P,, Section 5. 
p[i], @[iI, Section 4. 
q![i], y’[i], Section 5. 
@“[iI, Y[i], Y”[i], 8’, 8” for ,j=O, 1,2, 

Section 10. 
pO, pI, p2, Section 12. 
R, Section 5. 
Postp, Prep, Section 9. 
Purge’, Section 5. 
Purge, Section I. 
$, Section 3. 
qa, q,, Section 12. 

r, Section 3. 
ri for i = 1, 2, 3, Section 9. 
p, Section 2. 
Readin’, Section 5. 
Readin, Section 9. 
s, Section 3. 
Shrink(i) for i = 0, 1, 2, Section 9. 
Sim(q, P,), Section 8. 
single, Section 3. 
Single, Section 9. 
s, for i= 0, 1, 2, Section 7 and 13. 
s,, Section 13. 
s,, Section 15. 
So, Section 2. 
T, Section 3. 
S[h], r’[h], Section 4. 
r,, &[h], .Fi[h]. Section 5. 
5, Section 5. 
Temp, Section 7. 
r/, Section 3. 
V[h, i], Vk[h, i], Section 4. 
W, Section 4. 
Wf[II, i] for ,j=O, 1, Section 11. 
X, Section 2. 
X, Section 5. 
.?[h, i; a, b], Section 10. 
Y, Section 5. 
y, Section 2. 
Z, Z,, Section 2. 
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