Theoretical Computer Science 22 (1983) 71-93 : 71
North-Holland Publishing Company

'ON THE RELATION BETWEEN DESCRIPTIONAL
COMPLEXITY AND ALGORITHMIC PROBABILITY*

Péter GACS
Computer Science Department, University of Rochester, Rochester, NY 14627, U.S.A.

Communicated by A, Meyer
Received February 1981
Revised August 1981

Abstract. Several results in Algorithmic Information Theory establish upper bounds on the
difference between descriptional complexity and the logarithm of ‘a priori probability’. It was
conjectured that these two quantities coincide to within an additive constant, Here, we disprove
this conjecture and show that the known overall upper bound on the difference is exact. The
proof uses a two-person memory-allocation game between players called User and Server. User
sends incremental requests of memory space for certain structured items, Server allocates this
space in a write-once memory. For each item, some of the allocated space is required to be in
one piece, in order to give a short address. We 2lso present some related results.

1. Introduction and the main result

In inductive inference, descriptional complexity can be used to formalize ‘Occam’s
Razor’ - the principle recommending the use of the simplest hypothesis among
those consistent with the data. The principle known as ‘Bayes’ Rule’ assumes a
certain ‘a priori’ probability distribution over the set of possible outcomes and uses
the conditional probability for inference. Algorithmic Information Theory (abbrevi-
ated henceforth as AIT) originated from the recognition that descriptional com-
plexity, if defined appropriately, [17, 8], can be estimated by counting arguments
and corresponds well to the intuitive notion of entropy for individual objects. (For
the exact elaboration of the analogy to entropy, see [4, 3].)

Descriptional complexity was successfully used for the definition of randomness
[14,9, 11]. A priori probability, as defined in [17,-10], gives satisfactory inferences
over a wide range of situations. It is a simple but central result that descriptional
complexity is asymptotically equal to the negative logarithm of a priori probability
[17, 10-12]. AIT owes much of its convincing power to the fact that it established
this exact relation between two induction principles (Occam’s Razor and Bayes’
Rule) which did not seem particularly related. The main result of this paper is
concerned with the exactness of this relation.

* Part of this work appeared as a Stanford Technical Report while the author visited Stanford
University in 1979. An abbreviated version appeared in the proceedings of the 1981 FOCS conference.

0304-3975/83/0000-0000/$03.00 © 1983 North-Holland

72 P. Gdcs

Notation

Let N denote the set of natural numbers, Q the set of rational numbers, put
Z>={0, 1}. For any set A, let A™ = "_o A’ be the set of strings of length <n
with elements from A. Put A*=|_J,., A". Let A € A* denote the empty string and
A%=A*U A" the set of finite or infinite strings with elements from A. We will
use =N", B=2Z5 for the sets of infiite strings of natural numbers and bits
respectively. For x, y e N*, x =y denotes that x is a prefix of y. Let {(x) denote
the length of the sequence x e N* and put x" =x; - - - x,,.

For a string x e N*, put xZ ={w ec%: x Sw} For a set AcSN*, put AX=
(Uxea x%. The operations pB, AR are defined analogously. For a binary sequence
p €%, let[p]e[0, 1] denote the real number associated with it in the binary number
system. For A< Z%, put [A]={{w]: € AB). For peZ's, put [p]=[{p}]. For
E,FSN*putE'={xecE:Vy EEycx=>y=xland E<F&VxeE dyeFycx.
The relation E < F implies E¥ < F¥ but the converse is not true.

Let(-):N*— N be some standard one-to-one encoding with partial inverses pr;
defined by pr;((x)) = x; for I (x) = i. For I(x}=2,weuse(x)asa two-argument pairing
function (x;, x,). | :

The relations f<g, f=<g denote f< g +0(1), f—g=0(1). All logarithms and
exponentials in this paper are to the base 2. Let #A4 denote the number of elements
of the set A.

‘Algorithmic entropy’ or ‘self-information’ seems a more appropriate term than
‘descriptional complexity’ partly because there are many different notions of ‘com-
plexity’. But since different quantities can claim to measure the true algorithmic
entropy, we abide by the term (descriptional) ‘complexity’. Even for descriptional
complexity, several different definitions are intuitively almost equally justified (and
generally asymptotically equal); but some bring more sharpness into the basic
formulas and simplicity into the proofs than others. Most of our definitions and
basic facts are taken from [10, 11]. We first tell how to interpret a description,

Definition 1.1. A function A:Z3 X N*—»N*UN" monotonic in both arguments
W.I. to < is a monotonic operator (interpreter) if {(p, x, y): y eN*,ycA(p,x)}is
recursively enumerable,

Put A(p)=A(p, A). The first element (A(p))1 of the string A(p) is a natural
number, which will be denoted by A'(p). The monotonicity condition for 4*(p)
reduces to the following: A'(p)=n, p =q9=A'(q) = n. This seems weaker than the
‘self-delimiting’ requirement in [12, 3] but leads to the same complexity. We will
write A,(p, x) for the part of A(P, x) occurring in ¢ steps of enumeration.

Definition 1.2. (see [11, 12]). For x, yeN™,
K4y |x)=min{l(p): y = A(p, x)}

S

Relation between descriptional complexity and algorithmic probability 73

is the (monotonic) conditional complexity of y with respect to x and the
interpreter A.

Itis known that there is an optimal interpreter U with respect to which complexity
is minimal to within an additive constant. Thus, for any interpreter A, there is a
constant c4 such that for all x, y, Ky (y|x)<Ka(y|x)+ca. Let us fix an optimal
interpreter U, write K(y|x)=Ky(y|x). The number K(x)=K (x|A) is simply
called the complexity of x. The first complexity taking into account the partial order
of the finite sequences was proposed in [13] (it is different from K).

Typical orders of magnitude: for natural numbers n (sequences of length 1),
K (n)=<2log n, moreover, K (n) <log n +K (|log n]). This last estimate is sharp for
most numbers k <n (see e.g. [3]).

For a monotonic operator A and x e N*, put Da(x)={p€Z5:x <A(p)}. The
work of a “Turing machine’ with a read-only tape moving in, working tapes, and
a write-only tape moving out where all tapes are capable of holding arbitrary
natural numbers in their cells, can be represented by a monotonic operator with
the special property that the set {(p, x): p € (D a(x))'} is recursively enumerable. The
complexity K' based on such machines might conceivably be a little larger than K.
However, all known upper bounds apply as well to K.

The notion of a random sequence was introduced in [14]. In [11], monotonic
complexity is used to characterize randomness. (These results are refined in [5].)
But randomness is more immediately characterizable using a priori probability. Let
T =11, T2, ... be an infinite sequence of identically distributed random variables
with Pr[sry = 0]=Pt[m; = 1] =3.

Definition 1.3. The a priori probability of the string x is

M(x)=Pr[x c U(m)].

The number M (x) is the probability that our optimal machine produces x from
a random input. The following representation brings out the relation to complexity.

Mx)y=Y {27 pe (D),

(L.1)
27 K& = max{2 71 pe(Dx)}

The a priori probability is not a probability measure of & because on some strings
p € 9B, the sequence U (p) does not have infinite length. A nonnegative real function
v over N* is a semimeasure if v(A)<1 and for all x e N*¥,

Y vxn)<sv(x).

n=0

A semimeasure v is a measure if equality holds here, a probability measure if also
v(A)=1. Put u(xZ)=pu(x). Then w can be uniquely extended to the o-algebra

74 P. Gdcs

generated by sets of the form xZ (the Borel sets). In this way we arrive at a measure
as defined in standard measure theory (see e.g. [7]). The Lebesgue-measure A over
Z% is defined by A (p)=2""", When v is restricted to natural numbers (sequences
of length 1) then the semimeasure property simplifies to ¥, »(n) < 1.

Put z/(")(x)=2{v(y):x cyeN"}, #(x)=liMu.e »™(x). The function 7 is a
measure which is maximal among all measures u <v. The statement that a set §
has a priori probability 0 means M(S) = 0. The statement that a property holds for
a priori almost all » means that the set of all w for which it does not hold has a
priori probability 0. For any semimeasure v and set S < N'* put v(8) =3 ,ce v(x).
Then for any measure u we have u (S) = . (S%). The following properties, express-
ing some restricted monotonicity and additivity properties for semimeasures, are
useful:

So=Si = v =u(s, v(U s,,><z b (S,). (1.2)
The semimeasure M (x) is not computable but has some weaker computability
property. A real function f is called semicomputable (from below) if thére exists a
recursive function g:N*xX N+ Q nondecreasing in its second argument such that
flx)=lim,. g(x, t) (g generates f). The a priori probability M is semicomputable
because M (x) = lim,., M;(x) where M, (x)} = P1[x = U,(7)]. (Notice that M, itself is
a semimeasure.) A function f is computable if f and —f are semicomputable.
Semicomputable [semilmeasures will also be called r.e. (recursively enumerable).
It is known that r.e. probability measures are also computable.

All r.e. semimeasures can be effectively enumerated in a sequence ¢, (e e N).
Indeed, let T: N> Q be a universal partial recursive function. It is known that
there exists a recursive function g(e) with the following properties:

(1) For each fixed e, the function T(g(e), x, t) generates a r.e. semimeasure e

(2) If T'(e, x, t) generates a r.e. semi-measure then T(gle),x,t)="T(e, x, t).

It is known that M (x) majorizes all r.e. semimeasures to within a multiplicative
constant: '

M (e)pe (x) <M(x)O(1). (1.3)

For the generation of computable semimeasures, we nead a pair of sequences:
approximations from below and above. We denote by n. the computable semi-
measure (if it exists) that is generated by the pair T'(pry(e), x, t), T (pra(e), x, t).

Put H(x)=—log M (x). It follows from (1.1) that H(x)<K (x). Below, we use
Martin-L6f’s notion of randomness.

Fact 1.1. (see[11)]).
(a) For any computable semimeasure m,,
K (x)=<-logn.(x)+K (e). (1.4)

(b) A sequence w € ¥ is random with respect to a computable measure n, iff there
exists a constant c,, such that for all n, ~log n.(w") <H (") +c,.

i
1
!
i

D R 2 5 O L

Relation between descriptional complexity and algorithmic probability 75

Hence for sequences w random with respect to some computable measure
(certainly a wide class) it is known that K (w")—H(w") is bounded by some additive
constant depending on w. Levin raised the conjecture in [11] that H (x =<K (x) for
all x € N*. In the main result of this paper, we refute this conjecture.

A set E < N¥ is called prefixfree if its elements are not prefixes of each other.
(Example: the set N" of sequences of length n.) It is known (see [12]) that for any
r.e. prefixfree set E a constant cg exists such that we have |H (x)—K (x)|<cg for
all x € E. It is enough to prove this for E =N, i.e. that

H{n)<K(n) (1.5)
for natural numbers # ; the rest follows by encoding. Hence
Hx)<K@x)<H(x)+K((x)) | (1.6)

since only K (I(x)) additional bits are needed to define the prefixfree set N ') The
estimate

Hx)<Kx)<H(x)+K(LH(x))) (1.7)

— which is somewhat better for binary sequences —is proved analogously. These
results show that only the tree-structure of N * can cause a significant difference
between H (x) and K (x). (Of course, the problem is equivalent for Z%.) We will
prove

Theorem 1.1. For any function g: N —N semicomputable from above for which
K(x)—H(x)=<gx)) (1.8)
we have K(n)=<g(n).

Notice that for functions g(n) semicomputable from above, K <g is equivalent
to ¥, 275" < oo, Indeed, it follows from H (x) <K (x) that v, 27 ¥M<y Mn)<
M(A)=<1. Hence K <g implies Yo 2-8(M) « o0, On the other hand, if X, 278" <00
then for some constants ¢ and e, ¢278™ =y, (n). Hence by (1.5) and (1.3), we have
Kn)<H(n)<g(n).

The strings x giving the lower bound may contain very large numbers. Therefore
for binary strings, the lower bound obtainable from the proof of Theorem 1.1 1s
only the inverse of some version of Ackermann’s fuhction.

Theorem 1.1 shows that in the worst case, the difference between K and H can
be large. On the other hand, Theorem 2.3 shows that for a priori almost every w,
K(w™)—H(w") has an upper bound which is smaller than any unbounded recursive
function.

76 P. Gdcs
2. Information in largeness

2.1. Complexity of large numbers

The power of a notation for numbers can be measured by the size of the largest
number describable by strings of given length. Let

a(n)=min K (i) =min{{(p): n < U'(p)}

be the length of the shortest description of a number larger than n. Then
lim, e a(n) =00 since #{n: K(n)<k}<2* The function a(n) grows slower than
any recursive function, since there is no nonconstant recursive lower bound on
K (n) (‘Berry’s paradox’). Its inverse is a version of the ‘busy beaver’ function (see
[15D.

The following informal remarks are intended to show that these functions play
an illuminating role in AIT. The formal exposition is continued in the next subsec-
tion. For any set E < N, let the natural number E(n) be the standard encoding of
the first 2" elements of the sequence which is the characteristic function of E. It is
proved in [1] that if E is r.e. then K(E(n)|n)=<n and for a suitable r.e. set F, we
have K (F(n)|n)=n.

The information stored in F'(n) is algorithmically equivalent to a description of
large numbers. Indeed: let {x(1),x(2), ...} be a recursive enumeration of the set
F, put Fi ={x(1),..,x(¢)} and p(n)=min{t: F,(n)=F(n)}. Then, given n, knowing
F(n) is the same as knowing any number larger than p (n). It is easy to see that

a(p(n)|n)=n,

ie. p(n), the size of the numbers “described” in F(n), has ‘approximately’ the
same order of growth as the inverse of a(n). (We get the definition of a(n|x) by
conditionalizing the definition of o (n).)

The number F(n), whose binary encoding has length 2", is not the shortest
description of the large numbers it encodes since it contains only 7 bits of informa-
tion. Minimal definitions of large numbers are algorithmically equivalent to prefixes
of the binary expansion) of the number Y..n M (n). Indeed, it is shown in [3]
that K (2")=<n therefore Fact 1.1(b) implies that (2 is random in the Martin-Lof
sense. Let o (n) be the time needed to approximate [2] within 27", Given n, knowing
2" is the same as knowing a number larger than o (n), and

a(o(n)|n)<n<a(o(h)).

The string 2" can thus be considered a compressed form of F (n).

The redundancy in F(n) is not useless. The number F(n) contains, in easily
accessible form, all significant information about the results of computations perfor-
mable in time & ~'(n). It is not surprising therefore that the computational com-
plexity of any significant compression of F(n) is nonrecursively large (see [1]). For
a popular exposition of this topic, see [2,6]. |

Relation between descriptional complexity and algorithmic probability 77

2.2. Probability of large numbers

We will consider another natural ‘busy beaver’ function associated with the a
priori probabiltiy. For any semimeasure v, put

s(n;v)=—log () v(i)),

i=n

s(n)=s(n; M). Then 27" =Pr{n < U ()] is the probability of obtaining a number
larger than n using a random input to U. We have 279 =[02]. Put C(n)=
Uk=n D (k). We have

27 W= (Cm)=T{27"P: pe(Cn))}
27" = max{2 7P p e (C(n))).

A comparison with (1.1) shows that the relation of a(n) to s(n) is analogous to
the relation of K (x) to H (x). In analogy to (1.7), it is shown in [18] that

sh)sar)<sr)+K(lsr)]). ‘ (2.1)
We will show that the error term K (|s(n)]) is necessary in (2.1).

Theorem 2.1. Let g: N+>N be a monotonic function semicomputable from above
such that ‘

a(n)<s(n)+g(ls(n)]). (2.2)
Then K(n)<g(n).
Note. Since we required monotonicity, log n +K (|logn|)=<g(n) is also proved as

log n+ K (|logn|) is =< to the least monotonic upper bound on K (rn). (This follows
from Theoerem 4.2(a) of [3].)

The proof of Theorem 2.1 is given in Section 3.

2.3. Properties of a priori almost all sequences

How fast can a sequence increase if it is generated by a probabilistic Turing
machine? The next two results of L.A. Levin and N.V. Petri have not been published
before in this form.

Theorem 2.2. For a priori almost all w there is a constant C such that o (w,)<
2a(n)+K(an)+C.

Having a bound on the growth of random sequences, we also have an esimate
of the closeness of M, to M since the minimal times ¢ giving M;=M are also
‘random’. Combining this remark with (1.4), we get an estimate of X — H.

78 P. Gdcs

Theorem 2.3. For a priori almost all w, there is a constant C such that

Kw")~-H(")<2a(n)+K(akr))+C

In the rest of this section, I prove Theorems 2.2 and 2.3.

Lemma 2.1. For any semimeasure v and measure m<v put S,=
xeN*:2"u(x)<w(x)}. Then m(Sm)<2"" If v(A) — u(A)<e then v(S,) <2e.

Proof. Put §(x)=v(x)—w(x). § is a semimeasure with & (A)<e. The condition
x € S, translates into u (x) <2™ ™y (x), while x € S, also translates into v(x)<268(x).
Summing over S}, gives 1 (S,)<2""»(S,.) and v(S2) <28(S7). Using S,, <{A} and
(1.2) concludes the proof. [

Lemma 2.2. Let v be a semimeasure. For a sequence S(m)eN* of sets and reN,
put S =\ S(M)Z and

Sim,r)={xeN"3nan)=K (), x"eS(m)}
Then v(S (m, r))=O(1)M (r)2™™ implies #(S) = 0.

Proof. Put Si(m)=_J,S(m,r). Notice that S(m)& =S:(m)¥. Using (1.2),
we have U(S(m))<v(Si(m))<Y, v(S(m, r) =0(1)27" Y M(r)=01)2™". O

Proof of Theorems 2.2 and 2.3. For some m, r eN, put k =K (r). Let £2},, be the
sequence of the first k + m digits in the binary expansion of M(N"). Put
t=t(m,r)=min{u: [Qp,] <M, (N},
Eom,r)={xeN":3ycx 2M{” (y) <MD (y)}.

for x e N, the function M'”(x) behaves like a measure. By the definition of ¢, the

function M”(A)-M{"(A1)<27%"™ Therefore Lemma 2.1 can be applied and we
get

M(Eo(m, r)) =M (Eo(m, r)) <27 k~m+1, (2.3)

The complexity of #(m,r) can be estimated as follows. We have K(f)=<
K(r)+ K ({(22km)). To give 02},,, we need a binary string of length k +m along with

a description of the number k + m. This takes Kk+m)<K(k)+K(m)<Kk)+m
bits. Hence ‘

K(#t)<2k +K(k)+2m. (2.4)

The inequalities (2.3) and (2.4) are the key relations for the derivations of both
theorems. Let us start with Theorem 2.2. Put

bk)=2k+K (k)

s =s(m, r)=mak{xn: xe€N* n<r, M,(x)>0}.

Relation between descriptional complexity and algorithmic probability 79

Since s is defined using ¢, K (s) <K (). Hence it follows from (2.4) that there is a
C, such that K (s)<b(k)+2m + C;. Put

Eim,r)={xeN":3nah)=k, a(x,)>bk)+2m+Ci}.

If a(x,)>b(k)+2m + Cy, then, by (2.4), we have o (x,)> K (s), hence x, >s. Hence
0=2M"(x)<M®T(x). So we proved Ei(m,r)< Eo(m,r), hence M(Eim,r))<
27T = O(1)M (r)27™. Put

Eim)={x e N*: a(xx)>b(al(x))+2m+Cy, },

Ei=NEmZ ={weZ:Ym Ana(w,)>b(a(n))+m}.
Lemma 2.2 is applicable to the sets E1(m) and the conclusion, M(E,)=0, is the
assertion of Theorem 2.2.
Now we prove Theorem 2.3. It follows from (2.4) that the shortest description
p of t has length <b(k)+2m. The semimeasure M, =My is computable,
moreover, by an application of the S},-theorem of recursion theory, it can be written
as 15 for some recursive function f. Therefore, by (1.4), using K (f(p)) <K (p)

we get K(x)<—logM,(x)+K(p)=<-—log M, (x)+b(k)+2m. Hence for some con-
stant Cj,

K@x)<—logM,(x)+b(k)+2m +C> (2.5)

holds for all x e N, Let F;(m, r) be the set of those x e N " for which there is an
n with a(n) =k and K (x")>—log M (x")+b(k)+2m +C,+1. If x € F1(m, r) then
for some ycx, using M\” <M, inequality (2.5) and M<M", we have
-—logMﬁ')(y)>—loth(y)>—logl\?[(y)-l—12—logM(')(y)+1. Hence Fi(m,r)<
Eo(m, r) and M (Fy(m, r))=O1)M (r)2" ™. Put

Fy(m)=1{x e N*: K(x)>=log M (x)+b(a((x)))+2m + Ca}.
As in Lemma 2.2, we have M (Fi(m)) = O(1)2™". Put

Fo(m)={x e N*: 2"M (x) <M (x)}.
By Lemma 2.1, M (Fo(m))<2"". Put

Fy(m)={x e N*: K{x)>H (x)+b(a((x)))+3m + Ca}.
Then Fy(m) < Fo(m) U Fi(m). Hence M (Fa(m)) = O(1)2™™. Put

AF2=ﬂF2(m)g€={w: Vm 3n K (w,) > H (w,) +b(a(I(x)))+m}.

We proved M(F,)=0. [

80 P. Gdcs
3. Weights on large numbers

This section is devoted to the proof of Theorem 2.1. We introduce an infinite
2-person game. In this section, we consider only semimeasures over N, therefore
a semimeasure is simply a nonnegative function a(x) over N with Y=o alx)<1.

Game 1

This game has no memory-allocation interpretation but for greater uniformity,
Wwe use a terminology similar to the one used in Sections 4 and 5. The game is
determined by the nonnegative functions a,(x) and bi(x) defined on N XN and
nondecreasing in £ Let ao(x) = bo(x) =0 for all x. For fixed t, both functions a, and
b, are semimeasures and have rational values different from 0 only for finitely many
x. The number b,(x) is a power of 3. At step ¢+ 1, the players User and Server
know a, and 4,. User chooses a:+1 and Server replies with bi+1. Put a =lim,.,« a,
and b =lim,, b, Server wins if for all n, maxy., b(k) is large enough relative to
Yre=nalk). Precisely, the result of the game depends on a function g:N N, Put

a(n; b)=+log r’?>axb(k).

Then Server wins if for all H,
a(n;b)Ss(n;a)+g([s(n;a)J). (3.1)

Theorem 3.1. Let g: N—>Npe a function semicomputable from above.
(a) Server has a recursive strategy such that if

Z 2—2(11);% (32)

n=0

then he wins.
(b) if g is monotonic and

Y 27 =0 (3.3)

n=0

then User has a recursive strategy making (3.1) fail, moreover, which for some i,
n gives

S(n;a)+g(i)<i<a(n;b). (3.4)

Remark. The inequality (3.4) implies that (3.1) fails, because then ls(n;a)] <i.
By the monotonicity of g, hence s(ny;a)+g(lsb;a))<a (n; b).

Let us apply this theorem to the proof of (2.1). Take g(n)=K (n)+2. Then g is
semicomputable from above and (3.2) holds. Put a,(x) =M, (x). Then a,(x) is a
recursive function of ¢ and x. Let Server apply his winning strategy. Then b.(x) is

Relation between descriptional complexity and algorithmic probability 81

also recursive and both M(x)=a(x) and b(x) are r.e. semimeasures. We have
therefore

a(n)<am;b)ss(n;a)+g(lstn;a)])=srn)+K([srn)])+2.

Now we prove Theorem 2.1 using Theorem 3.1. Let g(n) be a monotonic function
semicomputable from above for which (3.3) holds. We show that (2.2) does not
hold. For every natural number k, put g“(n) =g(n)+k. Obviously, if g satisfies
(3.3) then so does g*. Let User play the recursive strategy a’ which makes (3.1)
fail for some n when g* is used. Put b,(x) = exp|log M,(x)|. Since b,(x) is a recursive
function and af(x) depends only on it, a®(x) is also a recursive function. Hence
a* is a r.e. semimeasure which, by the S}.-theorem, can be written as ¢y) for some
recursive function f Using (1.3) and M(k)=OM(f(k))) gives a“(x)=
O(M (x)/M(k)). With some constant C;, we have for some iand n:

am)+1zan;b)>i=s(n; ak)+gk(z’)2s(n)+g(i)+k——H(k)-—C1.

For k sufficiently large, we have k —H (k) — C; >0, hence |s(n)] <i,so g(ls(n)])<
g(D), a(n)>s(m)+g(|ls(n)]) which contradicts (2.2).

Proof of Theorem 3.1. Since g is semicomputable from above, there is a recursive
function g,(n) of ¢, n nonincreasing in ¢ with g(n) =1im,. g.(n).

Proof of (a): Suppose that (3.2) holds. The strategy of Server is to handle every
possible value of |s(n;a,)] separately. Multipliers of 2750 are needed to maintain
Y b(x)=<1. Suppose a,, b,—; are given. Put

i, =min{i: 3n |s(n;a)] =i, aln; b-1)>i+g()}

Let n(¢) be the minimal » for which the above minimum is achieved (if at all. Else
put i, = 00.) Put j, (¢t) = 1+max{j: a,(j) + b.-1(j) > O},

2780 for x =, (8),

b,—1(x) otherwise.

b,(x)={

By the definition of this strategy of Server, we will have

an;b)<|s(n;a)]+g(lsln;a)l),

hence in the limit, (3.1) for all n. We have to prove Y. b(x)<1.If b(x)>0 then
for some ¢ we have x =/, (¢) and b (x) = b,(x) = iR puyt T ={t:i=1i, g.(i)=r}=
{t1, ..., t,}. We have

Shx)=Y ¥ ki2""

x 1 r=g(i)
If we can show that k;, <2'™" then we are done because then summing over r gives
<27¢9*2 and summing over i and using (3.2) gives <1. Notice that for all p,
Jo(t,) <n(tp+1). Indeed, by definition, we will have a(n; b)) <i+r for all n <, (),
t > t.. Therefore, since |s(n(t,+1); a,.,)] =i, the sum of a must increase by at least

82 P. Gdcs

27! between tp and t,41:

277'<Y a,,..(x)-Y a, (x).

The above inequality holds also for p =0 if we put 7o = 0. Since the sum of a; can
never increase above 1, summing over p gives k;, <2'*’.

Proof of (b): Suppose that (3.3) holds. The game terminates if 2xa:(x)=1. The
strategy of User uses two constans u and m to be chosen at the end of the proof,
At each step ¢, User does nothing if for some i, n,

s(n;a)<i—g.(i), (3.5)
i<a(n;b). (3.6)

Otherwise, he will place a new weight of 2™™ after the tails of a: and b, as long as
he can. Formally, put /.(¢) = 1 +max{;: a.(j) + b.(j) >0},

27" forx =j,(1),

Are1(x) = {at(x) otherwise.

With this strategy, if the game never terminates then, (3.4) holds for some i, n.
Indeed, for some t, a, = a,, for all t=¢,. Put i(n)=min{i: (3.5) holds for ¢ = tg}.
Then S ={n:i(n)<oo}is finite. If for infinitely many ¢ there is some i, n for which
(3.5)-(3.6) holds then for some n €S, (3.6) holds with i =i(n) and all ¢. So (3.4)
follows.

Suppose therefore that the game halts at £ = 7" Then for each ¢, thereis a t'=¢
such that a does not change between ¢ and ¢’ and for all n, i, snya)<i—g,(i)
implies a (n; b)) <i. We can assume w.l.o.g. that t'=¢, i.e.

sn;a)<i—g,(i) = an;b,)<i. (3.7)

We will show that to guarantee (3.7), Server must handle the different values i of
ls(n; a)] separately, just as in the proof of (a). Put

E; ={t: 3n 27 <b,(n), be_y(n) < b, (n)}.

At each time € E;, Server uses at least 27! of his total weight of 1 to increase
some b (n). Our goal is to show that the weight used up this way is of the order of
2759, Letus fix / and write E; ={r, . . ., %} where t, <t,.1. Putt5=0, t,,; = T +1.
We will estimate s; from below by estimating the weight o, =2—'"(tp+1-t,,—1)
assigned by User at stages between tp and f,,;. While ¢, <t <{tp.1, the value b,(n)
cannot increase from 0 to =2~ for any n. Hence i <a (j,(2,); b ..-1) and from
(3.7), if o, # 0 then

ir—gu(i)gs(]‘a‘(tp)S azp+1—1) =—log o,
hence o7, <27""% However, the total weight assigned by User is 1. Hence

1=527"+Y 0, < (5, +1)3 7 +80+1
P

Relation between descriptional complexity and algorithmic probability 83

holds for i =m. Hence s; =2""%"" —1 for i <m. Since ¥, b,(x) will increase by at
least 27" M for te E;—E;_;, we have '

“1, w R R R,
1285027 "+ % (8i—5:i-1)2 = 2 82 ~ X 82

i

UG pmima TG g -3 a2
i= i=1

=

m—1
Z 2—gu(i) -1
i=1

oo

It is clear now from (3.3) that User can choose u and m large enough to get a
contradiction.

4. A simple storage-allocation game

We describe a storage-allocation game between two players called User and
Server to investigate (1.4) and see why does an analogous result not hold over N'*,

Game 2

User sends at each step 1€ N some quantities of some items. The set of items
is identified with N. Item O can be vacuum cleaners, item 1 towels, item 3 oil, etc.
Let the real number a(x, t) =0 be the total quantity sent until time ¢ from item x.
Let a(x, 0)=0. At step ¢, the function a(x, t) has rational values different from 0
only for finitely many x e N. We have), a(x,t)<1, i.e. a(x,t) is a semimeasure
(see Section 1) for all ¢ over N. The function a(x, t) is monotonically increasing in
L,

Server has a store, the interval [0, 1], where at each step ¢, every point [w]€[0, 1],
is allocatable to some item x = A (w,). The partial function A (w, t) has the property
that for each x and ¢, the set B(x, f) ={w: x = A(w, t)} (the storage space allocated
to x) is a finite union of intervals, nonempty only for finitely many x. We extend
the definiton of A(-, 1) to Z5¥ UZ3 by A(p,t)=x < [pl=B(x, t). Then for each
t, the function A (-,) is a monotonic operator. Server is never allowed to reallocate
(e.g. the store is a write-once memory), i.e. A(+, ¢+ 1) is an extension of A(-, t).
Put b(x, t)=A(B(x, t)) where A is the Lebesgue measure over [0, 1]. It is natural
to require

b(x,t)=a(x,t) 4.1)

To satisfy (4.1), Server can begin aflocating at the left end of the store and add
new intervals to any B(x, t) as a(x, t) is increasing. We suppose that Server must
allocate a large part of B(x, t) in one piece. If the store is interpreted as memory,
then this gives x a location with a short address. In AIT, this address can be used
as a short description of x.

84 P. Gdcs

Remark. I do not claim any immediate applicability of the games described here
in memory-allocation strategies of contemporary operating systems. However, the
condition that memory is not reallocatable is sometimes fulfilled, e.g. in allocating
catalogue numbers to subject areas in libraries. It is natural to require that a large
subject area receive a short number (address).

Put

¢(x, 1) =2"Faco® = max{A (p]): [p1< B (x, 1)}.

Let a(x), B(x), b(x) and c(x) be the respective limits of a(x,t), B(x,t), b(x, t) and
¢(x, t) when t - 00. Part (a) of Theorem 4.1 states that a (x, t)/c(x, t) can be bounded
by a constant if w(z) =3, a(x, t) is kept away from 1 at a constant distance. Even
if no bound on w () is available, the quotient is O(log a(x, t)). Part (b) asserts that
the estimate in (a) is sharp.

Theorem 4.1. (a) Server has a recursive Strategy guaranteeing

a(x,t)
c(x,t)

<-—11logmax{a(x, t), 1 —w()}+0O(1)

forall x, t.
(b) There is a constant C; such that for any € €(0, 3), User has a recursive Strategy
forcing

ax {a(x, t): e <al(x,t), 1—-w(t)}>C1 logl.
c(x, 1) £
Let us prove (1.5) using (a). Put a(x, t) = M,(x)/2 for any natural number x. Let
Server use his recursive strategy to produce A(p, t) for p€Z%. Then A(p, t) will
also be recursive. Then A(p)=1im,A(D, 1) is a monotonic operator,with values
x €N. As w(t)<3for all 1,

K(x)<Kjs(x)=—logc(x)<—log a(x)+0(1)=H(x)+O(1).
Proof of (a).

Lemma 4.1. Server has a strategy to achieve a(x,t)/c(x,t)<2 while w(t)<2i The
strategy is: for all x and m, allocate to x the first empty binary interval of length 2™
as soon as a(x, t) passes 2~ ™ - else do nothing.

For a simple proof that this algorithm works (i.e. that the desired binary interval
will always be found) see e.g. Theorem 3.2 in [3]. The strategy in Theorem 4.1(a)
is based on the following ideas.

(1) A new contiguous binary interval I(x, t) is reserved for item x at times ¢
when a(x, t) passes an integer power of 3. Storage is allocated for x in the reserved
interval as long as it lasts. Reservation is weaker than allocation: it can be cancelled.

Relation between descriptional complexity and algorithmic probability 85

Puts;=1-27"and ¢, = min{t: s;_1 < w (£)}. We can suppose that w () = s;—_1, since
Server can split his answers into parts. Put i(¢) =max{i: ¢ =¢}. Until time z, only
the interval [0, s;) is used.

(2) The strategy is restarted at each ¢; (reservations are cancelled) and from that
time on, only the increments in a(x, t) will count.

Put u(x, t) = [—log(a(x, t) — a(x, #;y))]. Notice that if u (x, + 1) <u(x, t) then the
increase in a(x, ¢) since # has passed some power of 3. Suppose that we are after
step t+1 of User and Server has to answer. Put i =i (). We will have |_J, B (x, e
[0, siv1), T(x,t) S [ss 8i01), T(x,)NI(x',) #B=>x=x', t=¢ and LUy B(y, t)n
I(x,t)<B(x,t). We can suppose that a(x,t+1)=a(x,) for all but one item, x,
(Server can always divide one step into many when answering). The algorithm:

1. (Allocate as much storage for x, in I(x,t) as you can.) Put §=
a(x,t+1)—a(x,t). Let o be the measure of the free area in I (x5, t). Allocate
storage of the amount §o = min{8, a} to x, in I (x,, ¢).

2. (Reserve a new interval for x, if needed.) Set I'(x,z+1)=1T (x, t) for all x # x,.
If u(x, t+1)<u(x, 1), set I'(x, t+1) to be the first empty binary interval of

length 27“% D=2 i the nonreserved area of (s 8i+1). Else, I(x,t+1)=
I(x,t).

3. Set 61 =min{6 — 8o, A (I (x,, t + 1))}. Allocate storage of the amount §; for x in
I(x,t+1).

4. Allocate for the remaining quantity § —8,— 8, of item x, a union of intervals
of this total length in the unused area of [0, s;). Remember that [0, s;) is large
enough to hold everything until ;.

This algorithm works if the new binary interval of the desired length can always
be found for I'(x, t +1). But on [s;, s;+1), we used the strategy of Lemma 4.1, which
is known to work. Now we must bound a (x, ¢)/c (x, t). Put y;(x) =a(x, t;) —a(x, t,_1)
forlsi=< l(t) and Yit+1 = a(x, t) —a(x, ti(t))- Then

i(e) i()+1
a(x,t)=al(x, t)—a(x, tiyn) + Z (alx,) —a(x, tj-1))= JZ Vs

i=1
Using our method of allocation, a binary interval of length 2772 will be reserved
in time interval (¢, f+1) to x when a(x, t) —a(x, #;) passes 27 and will be filled up
by the time this quantity passes 27" +27*7?=327% Until this time a binary interval
of length 277> was completely allocated to x. Hence 15 max; v; <c(x, t). We also
know y,-sZ_j. Minimization of the function max;y; of (y1,..., ¥+) subject to
y,-sZ"f gives the desired lower bound on c(x, t) in terms of a(x,t)=Y;vy; and
i(t)=[—-log(l—-w()]. O

We do not prove (b) before reformulating it in Lemma 5.1(a). A related result,
Lemma 5.1(b) is needed for the proof of Theorem 1.1.

86 P. Gdcs
5. Storage allocation for a tree

Game 3 is an elaboration of Game 2 in which the set of items has a hierarchical
Structure.

Game 3

User sends requests for storage of different sorts of items. These sorts form a
hierarchical structure : we identify them with N*. For example, item 3 means ‘cars’,
item 30 ‘Fords’, 311 ‘subcompact AMC cars’, etc. Here, the amount a(x,t) of
storage requests sent until time ¢ for item x is a semimeasure over N *, different
from O at only finitely many places. The function a(x, t) is nondecreasing in .
Server has a store V [0, 1] which is a finite union of intervals,

The allocation by Server at time ¢ is described by the monotonic operator A (p, ¢)
defined for [p]< V. All points of the binary interval [p] are allocated to x at time
tiff x < A(p,1). The set B(x, t) ={[eo]: x € A(w, 1)} allocated to item x is a finite
union of intervals, nonempty for only finitely many x. The partial function A (-, ¢ + 1)
is an extension of A (-, #). The quantities b(x, t), a(x), b(x), c(x, t), ¢ (x) are defined
as in Game 2.

As in Game 2, if only a(x) <5 (x) is required and V =0, 1], Server can allocate
everything. This strategy translates into the theorem in [10] asserting that for every
I.e. semimeasure v there is a monotonic operator A such that v(x)=Pr[x c A(m)],
i.e. that every r.e. semimeasure is the output distribution of some Turing machine
with the coin-tossing distribution as input. However, Server must satisfy
log(a(x)/c(x))<g(l(x)) for some function g. We can suppose that he must satisfy

IogMSg(l(x)) (5.1)

c(x,t)

since otherwise User could wait until (5.1) does not hold. Moreover, the relation
a(x)<b(x) is not required.

Theorem 5.1. Suppose that V =[0, 1].
(a) Server has a recursive Strategy to achieve

log = <min{K (1(x)), K (| ~log a(o))}

(b) For any function g semicomputable from above with ¥, 278" = 0o, User has
a recursive strategy achieving g(I(x)) <logla(x)/c(x)) for some x.

a(x)
x

Theorem 5.1 implies (1.6), (1.7) and Theorem 1.1 in the way Theorem 3.1 implies
Theorem 2.1 and Theorem 4.1 implies (1.5). One would be interested in the size
of the smallest x with k <log(a(x)/c(x)) as a function of k in (b). From the proof,

Relation between descriptional complexity and algorithmic probability 87

we get /(x) = O(2"). But the sequence x may contain very large numbers. Therefore
we can bound 1/a(x) for such an x only by a version of Ackermann’s function.

Proof. The positive part (a) of this theorem can be proved easily. The set N" of
all sequences of a fixed length n is prefixfree, hence on it, the simple strategy of
Lemma 4.1 applies. Server sets aside a store of size O(M (n)) for N", which is
feasible even though M(n) can be computed only gradually. The set G(n)=
{x: [-log a(x)] = n}is though not necessarily prefixfree but is ‘almost’ so - therefore
almost the same procedure is applicable to get the bound K (l-log a(x)]).

The proof of the negative part (b) uses the technique of the proof of the negative
part of Theorem 4.1. This result says that for some constant C, even in the prefixfree
case, to get (4.1) and (5.1) we need a surplus store of the size exp(—C2%). (It will
turn out that at several points during the game, a surplus store of size 027" is
needed.) This extra space is not allocated during the game. But it will be too
fragmented to use for the needed large contiguous intervals. In Game 3, property
(4.1) is not required but due to the hierarchical structure of items, a fragmented
area may look like an allocated area for items on a higher level.

Let us formalize the idea of reservation. For any natural numbers r<s and a
set EC V put

Li(E; V)=U{lple V:r=<l(p)<s,[p]nE #0}.

Put Li(E)=L;(E; [0, 1]). The set L;(E; V) is the union of all binary intervals in
V with lengths between 27° and 27" having nonempty intersection with E (made
unusable by E for certain kinds of reservation). Put

Wi Vy=Li(UBG 03 V),

Bi(x,t; V)=L(B(x, t);V—-{B(y,t): y Zx and x 2 y}),

we(t; VY=AW;@E; V) and bi(x,t; V)=A(B;(x, t; V)). Notice that w(f) is
controlled by User but W7 (¢; B) — which is also monotonic in - is controlled by
Server. The set B;(x, t; V) is the union of binary intervals of certain lengths which
we can consider as reserved for x at time t. It is not monotonic in ¢: reservations
may be ‘cancelled’. However, reservation in one stage, even if cancelled, may look
as irrevocable allocation from the point of view of subsequent stages. To implement
this idea we must prepare Game 2 in a form applicable as a recursion step in
Game 3.

Gaine 2 %

The set of items is the set N2 of sequences of length 2. The store is V [0, 1].
The following additional parameters are given: an infinite nonincreasing sequence
ro=ry=- - of natural numbers, r, kK € N with k <r=<r, and a real number y>0.
Put I =max{l, v}, o =I"*27""2. The rules are those of Game 3 and additionally

88 P. Gdcs

the following. We have a(x, t)=3Y,a(xy, t) for all x e N and
alx, t)<27k | (5.2)

User is permitted to change a(xy, t) only in a special fashion. He chooses a pair
x:y: and puts

alxy,t)+8() forxy=xy,

alxy,t+1)= {a (xy, 1) -otherwise.

The number 6(¢) [0, 20] is not chosen by User: we can suppose it is chosen by
Server. Server must satisfy

alx,t)=2""* = ¢c(x,)=2"" (5.3)

for all x e N, and also the following weak version of (4.1): for x, yeN,ifa(xy, t)=0
and a(xy, t+1)>0 then

br., (xy, t+1)=va(xy, t +1). (5.4)

The game ends at some time 7. Requirements (5.2) and (5.3) mean that the size
of contiguous intervals requested in this game is always 27", Put

S =3+12%"3,

Lemma 5.1. In Game 2% User has a strategy with the following properties. As long
as Server is able to keep the rules,

(a)
wio(t; V)= yw (£)(1 +275%) | (5.5)

for all t with w(t)=2%"";
(b) for any v e[2°7*2, w(T')/2] there is a t' with w(t") e[v, 2v] and

Wt V)= w () (y +27573),

Proof of Theorem 4.1(b). Put y=1 and r = |—log & | +k. When the set of items
is restricted to N, the rules of Game 25 are harder for User and easier for Server
than the rules of Game 2. By Lemma 5 .1(a), Server can keep the rules of Game
2zuntill —¢ < w(t)onlyif (1—g)(1+27%)<1,ie.2 % < e/(l—g)<2e. If27% =2¢
ie. 2f=273 (—log & —4) then he can still keep the rules of Game 2 but there will
be anx, ¢t with e <a(x,#)=2"""% and a(x,t)/c(x, t)>2F= 273(~log & —4), which is
the assertion of Theorem 4.1(b). [

Proof of Lemma 5.1. We give the strategy of User. Put a(xy,0)=0forall x, y €N.
To determine a(x, £+ 1), User orders all items x € N in decreasing order of values
of a(x, t) (for equal values of a(x, ¢), the smaller x comes first). Let R(x, t) be the
rank of x in this order. For his decision, User looks up the first item X: in this order
which has no binary interval of length 27" ‘reserved’ for it,i.e.forwhich B (x, t; V) =

- Relation between descriptional complexity and algorithmic probability 89

@. From now on, we suppress the argument V: it serves as a parameter. Put
ye=min{y: B(x;y, t) =@}

We must prove (5.5). Put F(¢) =, B1(x,), D(u, t) = F (u) "F(t), d(!) = A (F (1))
and C(t) =\ =1 B~ (x.y., u). First, we prove that for all ¢,

woe(t)=yw(t)+d(t)/2. (5.6)
Obviously W;° ()2 C(t) U F(t). We will prove by induction on u <t that
AMCw)uD(u, t))=yw(@)+A(D(u, t))/2 (5.7)

which clearly implies (5.6). The inequality (5.7) is true for u = 0. Suppose that it
holds for u. Suppose first that D (u +1, t) = D (u, t). Then by the choice of x,y,,

Br, (xuyuw u+ 1) (C)uD(y, 1) =40.
Therefore the left side of (5.7) increases by at least b (x,y., u +1)=v8(u) while

u-+1

the right side increases exactly by v8 (), Hence (5.7) holds for u + 1. Suppose now
that E=D(u+1,t)—D(u, t) # 9. Then E N C(u) =0, therefore the left side of (5.7)
increases by at least A(E) which is a positive integer multiple of 27". Using
Y8 (u)<20y<2"""' we have

A(E)=A(E)—v8(u)+v6 (u)
=ADW+1,0))=A(D(u, 1))/2+v8(u)
hence (5.7) holds for u + 1. This proves (5.7) and hence (5.6). The inequality (5.6)
gives
R(x, t)y<2'd()<2"(wre () —yw(r)). (5.8)
Inequality (5.8) says that if the difference between space reserved (therefore in
some sense spoiled) and the space ‘actually allocated’ (reserved on some lower

level) is small then a(x, t) can increase only for some x of low rank.
Proof of (a): Suppose that for some ¢, with w(t)=2%"", § >0 we have

w0 (to) < (14 6)yw(fo).
We will show that then 27"+ < 4. Put

t=min{t: w(t)=w(to)— (2" —1)27"'}
The number ¢; is defined for all i < |log w(to)] +r+1=1i; and is decreasing in i. For
all < ¢y, put

m ()= ly2" " (1 +6)w(to) —w (r))].

By (5.8), the number m(¢) is an upper bound on R (x, t). Notice that m(¢) is a
decreasing function of ¢. Since only the weight of items x with R (x,t)<m(t) can
increase at time ¢, the set {x: R(x, £) <m(t)} is a decreasing function of . Therefore

the average
1
m(t)+1

pt)= 2{a(x, 1): R(x, t)<m(e)}

91 P. Gdcs

increases. Between f; and #-1, the rank R(x,) can take at most m(z;) + 1 different

values. Using 1 =<1 we have
m(t)+1<T+I27 (1+0)w(to) —w () < T Q21+ 6w (20)2"HY). (5-9)

The weight distributed over these x, in this time interval is w (f;,_;) — w (). We have
wlti-1) = wlt))—271(2771 = 1),
wlt)<swl(to)—27'(2' = 1)+27,
w(tio)—w(t) =272 -1)=2""3 (5.10)

for i > 1. Therefore for 1<i <1, combining (5.9) with (5.10) gives

1
plti-1)—p(t) Zm(w(ti—l) —w(t)= 140w (i)

=T 71273 (1w (r0)27+ 1Y),
Put iy = max{2, [log ow (to)2’+1] }. By (5.2), we have

2T 2pt) =TT Y (1— 6w (t0)2),

i=iy

If ig=[log ﬂw(to)Z'“] then the above sum is >log 7' —3. Rearrangement gives
27% <. If ip=2 then the above sum is >log w(fo)+r—3. Rearrangement gives

wilp) <2%7,
Proof of (b): Put

m(to, t1) =max{2'd(¢): t €[t,, 1)}

By the first inequality in (5.8), theset E(¢o, ;) = {x:R(x,) <m(t,, t1)}isindependent
of t and x,y, € E(ty, t;) for all ¢ ¢ [to, t1). Therefore

w(t)—w(t) <2k #E(fo, t))<(1+m (o, 11))2° 7",

Suppose that v e[25+2, w(T)/2]. Put to=min{t; w (t)=v}, t; =min{: wit)=20}
and m = m(ty, t;). Then |

=27 s w(ry) - w(t))<(1+m)2k™,
The maximum m is achieved for some "€ [, t;). We have w (t"Ye[v, 2v) and
dt)=m27 =27y -2 1) g~
=274y — 27 gk k2 (.
With (5.6), this completes the proof. [
Lemma 5.1 states that in the 2-level Game 23, User can force Server to devote

to reservation signiﬁcantly more area than the amount yw (t) required by the rules .
(At least y(1+27%) - always, y+s7%3 _ sometimes.) A recursive application of

Relation between descriptional complexity and algorithmic probability 91

the strategy of Lemma 5.1(b) will give this effect repeatédly. Suppose that the set
V < [0, 1] is all the store space available. Put

i, g) = 0 —8(i+1)=3
y(, g)]__2__30
The recursive functions below are, strictly speaking, functionals: they depend on
a function argument g.

Lemma 5.2. There is a recursive function f(i,r, g) such that User has a strategy
S(@i,r, g V) in Game 3 with the following properties: for all i, g: N —N, r=g(1)+3,
if Server satisfies (5.1) for all x with [(x)<2i+1 then for all v €[28V "2 1] there

isat with w(t)elv, 2v],

W{(i,r,g)(t/; V)?Y(Z, g)W(tl)- (511)

Proof of Theorem 5.1(b). Let g =lim, g, be a function semicomputable from above,
with ¥, 275" =00, We can suppose w.l.0.g. that Yi=02 8 =00, We apply the
strategy S (i, g.(1)+3, 8., [0, 1]). If Server satisfies (5.1) then with v = we get

1= w{(i,r,gu)(t'; [0,1D=vy(, g.)/4

which is a contradiction for i/, u sufficiently large. O

Proof of Lemma 5.2. The proof goes by induction on i. For p € N, certain times
!, Will have special significance. Let us call the course of strategy S(i, r, g, V)
between 1, and f,.1 the pth macrostep of this strategy. For i =0, User will raise
a(p, t,) from 0 to 2™ " instep ¢, = p. The inequality (5.1) guarantees (5.11). Suppose
that User has a strategy S(i, r, g, V) satisfying the requirements of the lemma. We
have to define S(i+1,r,8, V). Put gln)=gn +2), y=v(@, g), ' =max{l, vy}, k =
g(1),c=I""2""and T = [o~"]. We define the function f by the following double
recursion:

fO,r,g)=r,
fG+1,r, g)‘=h(T, i1 g),
where
h(0,4,7, g)=[~logo] +g(3)+2,
h(i+1, 0,1 8)=f(, h(j, 1,1, 8), 8).

Put r; =h(max{T -7, 0}, i, r, g). The ‘sum’ of moves of User in the pth macrostep
in §S({,r,g, V) is on N % the same as his move in step p of the winning strategy
in Game 23. Namely, the weight of some x,y, increases by some 8(p)e[o, 20°].
The pth macrostep itself is an application of strategy S(i, rp+1, & V,) to the tree of

92 P, Gdcs

continuations of x,y,, where

p—1
Vp =V - U B(xu)’ua fus V)
u=0

is the remaining store after P macrosteps. By the definition of 4, we have Py =
f, rp11, g) for all p with w(t,1)<1. In § (. 70 & V), the game is played unti] a
point ¢’ is reached with w(thelo, 20],

Wea s Vo) =y,)w (), (5.12)
where w denotes the w in substrategy S (;, 'p+1, &, Up). By the inductive assumption,
this point ¢ exists if o e[25®7»+1™2 11 "Thic holds because r, =h(0,i,r, g)=

[—logo]+g(3)+2. Put (p)=w(t)andt,,,= %, +t'. The inequality (5.12) implies
that in the original game,

b:f:ﬂ (Xp)’p, thi1; V) = (i, g)a(xp}’w tp+1)'

Therefore the conditions of Lemma 5.1(b) are satisfied. Hence, forany v e [2 k”’”, 3

there exists a ¢' with w(t')e[v,2v] and

we's V= (y(,) 27 () =y (i +1, gw ().

Since ro=f(i +1, r, g), this concludes the proof. []

6. Conclusion

We must note that the time-bounded approximations of KX and K may be quite
different if the time bounds are small, since the proof of Lemma 4.1 uses exponential

Acknowledgment

I am grateful to R. Solovay whose careful reading improved the quality of the
paper considerably, and to LA, Levin for many illuminating conversations on the
topic of this paper.

Relation between descriptional complexity and algorithmic probability 93

References

[1] Ya.M. Barzdin’, The complexity of programs to determine whether natural numbers not greater
than n belong to a recursively enumerable set, Soviet Math. Dokl. 9 (1968) 1251-1254.

[2] C.H. Bennett, On random and hard-to-describe numbers, Research Report RC 7483 (#32272),
IBM Research Center, Yorktown Heights NY 10598 (1979).

[3] G. Chaitin, A theory of program-size formally identical to information theory, J. ACM 22 (1975)
329-340,

[4] P. Gécs, On the symmetry of algorithmic information, Soviet Math. Dokl. 15 (1974) 1477-1480.

[5] P. Gacs, Exact expressions for some randomness tests, Z. Math. Logik. Grundl. Math. 26 (1980).

[6] M. Gardner, The random number omega bids fair to hold mysteries of the universe, Scientific
American 241(5) (1979) 20-34.

[7] P.R. Halmos, Measure Theory (Van Nostrand, New York, 1950).

[8] A.N.Kolmogorov, Three approaches to the quantitative definition of information, Problems Inform.
Transmission 1 (1965) 4-7.

[9] A.N. Kolmogorov, Logical basis for Information Theory and Probability Theory, IEEE Trans.
Inform. Theory 14 (1968) 662-664.

[10] L.A. Levin and A.K. Zvonkin, The complexity of finite objects and the development of the
concepts of information and randomness by means of the theory of algorithms, Russian Math.
Surveys 25(6) (1970) 83~124.

[11] L.A. Levin, On the notion of a random sequence, Soviet Math. Dokl. 14(5) (1973) 1413-1416.

[12] L.A. Levin, Laws of information conservation (nongrowth) and aspects of the foundations of
probability theory, Problems Inform. Transmission 10(3) (1974) 206-210.

[13] D.W. Loveland, A variant of the Kolmogorov concept of complexity, Information and Control 15
(1969) 510.

[14] P. Martin-L6f, The definition of random sequences, Information and Control 9 (1966) 602-619.

[15] T. Rado, On a simple source for non-computable functions, Proc. Symposium Mathematical Theory
of Automata, MRI Symposium Series XII (Polytechnic Press, Brooklyn, 1962) 75-81.

[16] C.P. Schnorr, Process complexity and effective random tests, J. Comput. System Sci. 7 (1973) 376.

[17] R. Solomonoff, A formal theory of inductive inference, 1., Information and Control 7 (1964) 1-22.

(18] R. Solovay, Unpublished manuscript (1976). ‘

