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We build a three-dimensional array of unreliable cellular automata that can simulate a 
universal Turing machine (more generally, a one-dimensional universal iterative array) 
reliably. This is the first reliable real-time simulation. The encoding is simple repetition, and 
no decoding is needed. The construction is based on Toom’s work. 0 1988 Academic Press, Inc. 

1. INTRoDUCTJ~N 

The theoretical problem of reliable computation is based on the assumption that 
computing devices of arbitrary size must be built from a few types of elementary 
components. Each component makes errors with some frequency independent of 
the size of the device to be built. What are the architectures enabling us to deal with 
all combinations of errors likely to arise for devices of a given size? Is it possible to 
achieve reliability without sacrificing the speed of computation? 

We will consider the case when a failure does not incapacitate the component 
permanently, only causes it, in the step when it occurs, to violate its rule of 
operation, In the following steps, the component obeys its rule of operation again, 
until the next error. The case of permanent component failure may be of greater 
practical importance, but it has not been investigated in the same generality. 
(However, see [6] for some elegant geometrical results in a similar model.) There 
are reasons to believe that many of the techniques developed for the case of 
transient failure will be applicable for the case of permanent failure (see the 
Conclusions). 
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Let us remark that any model of reliable computation with unreliable com- 
ponents must use massive parallelism. Indeed, any information temporarily stored 
anywhere during computation is subject to decay and therefore must be actively 
maintained. 

In 1953, von Neumann proposed a design for reliable Boolean circuits. In his 
model, each component had some constant probability of failure. For a circuit con- 
sisting of n perfect components, he built a circuit out of O(n log n) components, 
computing the same function. (For an eflicient realization of his ideas, see [ 11.) In 
1968, Taylor, using Gallager’s low-density parity-check codes, constructed a 
Boolean circuit out of O(K) unreliable components and memory elements, capable 
of holding K bits of information for a polynomial number of steps. This construc- 
tion was improved by Kuznietsov, using an idea of Pinsker, increasing the storage 
time to an exponential functon of K. 

All the above constructions suffer from the same deficiency: the circuits use a 
rather intricate connection pattern which cannot be realized in three-dimensional 
space with wires of constant length. On the other hand, the natural assumption 
about a wire is that as its length grows, its probability of failure converges to l/2. 

A cellular space (medium) is a lattice of automata in, say, three-dimensional 
space where every automaton takes its input from a few of its closest neighbors. 
Such devices are now sometimes known as “systolic arrays.” Typically, all automata 
are required to have the same transition function and are connected to the same 
relative neighbors, i.e., the device is translation-invariant. The spatial uniformity 
suggests the possibility of especially simple physical realization. 

Cellular media are desirable computing devices, and it is easy to construct a one- 
dimensional cellular space that is a universal computer. (Take a one-tape Turing 
machine.) These devices are sometimes called iterative arrays. However, up to now 
there is no simple design for a reliable cellular medium made out of unreliable com- 
ponents. In 1974, solving a problem arising in mathematical physics, Toom con- 
structed some two-dimensional infinite cellular spaces capable of holding a bit of 
information for any number of steps. In 1976, Tsirel’son constructed a one-dimen- 
sional medium holding a bit in n cells for a nearly exponential number of steps. 
However, Tsirel’son uses components of three different kinds, and the kind of the 
components changes in both space and time according to a grand plan not subject 
to errors. 

In [2], using some of Kurdyumov’s ideas, G&s constructed a one-dimensional 
cellular space M capable of reliable computation. Any computation using a one- 
dimensional array of K perfect automata and taking T steps can be modelled on M 
using K log’(KT) cells and T Tlog’(KT) steps (c is a constant). However, the 
construction and the initial encoding of the inputs are quite complex. 

In 1984, Reif noticed that a three-dimensional real-time reliable computing 
medium can be constructed using one of Toom’s error-correcting rules in two- 
dimensional slices and the rule of an arbitrary one-dimensional medium across the 
slices. The reliability of the infinite version of this construction follows from [9]. 
However, Toom’s proof uses an elaborate topological argument, developed from 
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the Peierls argument of statistical physics, that we would not adapt to an efficient 
finite version of the theorem. Gacs used the technique of “k-sparse sets of errors” 
developed in [2] to give a more straightforward proof of Toom’s theorem. Using 
this result, one can now do the following. Given K cells of a one-dimensional 
medium D working for T steps, one can build a three-dimensional medium M on 
the set { 1, . . . . K} x Zk. Here m = log ’ +“(KT), where E + 0 as KT + co, and Z, is 
the group (0, . . . . m - 1 } of remainders modulo m (with Z, = Z, the set of integers). 
When started with the appropriate input (each site in a torus-shaped slice {i} x Zi 
receives the same input symbol), the medium M will simulate D reliably step-for- 
step, without any time delay, for T steps. (This statement is made precise in the 
theorem below.) 

The strange topology of the torus Zi is not necessary. A torus can be folded up 
into a square, by doubling up in each of the two dimensions simultaneously. 
However, the cells on the edges of the square will then obey a somewhat different 
transition function, i.e., we lose homogeneity. 

This construction contrasts remarkably with the one given in [2]. A newer 
version of this latter construction works with a constant space-redundancy factor 
(O(K) cells needed for K cells of input) and logarithmic time delay. The present 
result has no time delay, i.e., it is real-time, and has a space factor logZt2”(KT). 
Moreover, the encoding is just repetition, with no decoding. 

The proof below gives the ridiculously small lower bound (10e2*) on the largest 
error probability permitting already reliable computation. However, the present 
paper was not written with the intent to find good constants, only to find out the 
asymptotic behavior of the redundancy. For better constants, probably very dif- 
ferent techniques are needed. We made our estimates explicit only on the insistence 
of one of our referees. Bennett’s experiments on Toffoli’s Cellular Automata 
Machine give convincing empirical evidence that Toom’s medium is nonergodic at 
error probabilities below 0.05. Let us note that for two dimensions and Toom’s 
rule, our theoretical bound would also drop.r 

2. STATEMENT OF THE RESULT 

As a notational convenience, we define, in analogy with Pascal and real analysis, 
the intervals 

etc. Let G = [ - 1 . . . 11. For any function f and any subset H of its domain of 
definition, we will denote by f(H) the restriction of f to H. We will apply this 

f Nofe added in proof: Piotr Berman of Pennsylvania State University recently adapted Toom’s proof 
to toruses. His result decreases the space factor to log2(KT) and increases the error probability bound to 
10-7. 
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notion a little loosely, so if x[ 1 ] . . . x[n] is a string and 1 < i < n then by x[i + G] 
we mean the string x[i - 1 ] x[i] x[i + 11. An r-dimensional medium (cellular 
automaton, cellular space) D is given by a finite set S = S, of states and a transition 
function D that assigns a value D(x) E S to all functions x: G’ -+ S. 

The set W of cells, or sites is a direct product of the form 

z,, x . . x z,,. 

For some positive integer time limit T, let V= [0 . . . T] x W. A function x: I’+ S, is 
called an evolution of the medium D over W. An evolution x is called a trajectory if 
forallt<TanduEWwehave 

x[t + 1, u] = D(x[t, u + G’]). (2.0) 

For r = 1 this is D(x[t, u - 11, x[t, u], x[u + 11). We say that a failure occurred in 
x at (t + 1, u) (with respect to D) if (2.0) does not hold. If y is a trajectory then the 
event x[o] # y[u] is a deviation (of the evolution x from y). Intuitively, a medium 
is reliable if it can keep the number of deviations small despite the occasional 
occurrence of failures. 

EXAMPLE. Toom’s two-dimensional error-correcting medium R. This medium can 
be defined for any finite state-space. Let us define first the majority function 
Maj(x, y, z), If two of the three arguments coincide then their common value is the 
value of Maj, otherwise Maj(x, y, z) =x. Let 

ff= {al), (-L-l), (L-l)}3 R(x[G2]) = Maj(x[H]). (2.1) 

In words, rule R says: “to obtain your next state, take the majority among your 
current state and the state of your northern, southwestern, and southeastern 
neighbor.” Any constant function is a trajectory of R. To fix the example, suppose 
S, = { 0, 1 }, and y is the identically 0 trajectory. For some evolution x, we have a 
failure in x[t, u] if it is not the value obtained by voting from the triple 
x[ t - 1, u + H]. We have a deviation if x[t, u] = 1. 

Let (<[It, u]: t 6 T, u E W) be a system of random variables. We say that 5 is a 
p-perturbation of D if for each subset B of V the probability that for all u E B a 
failure occurs in 5 at 0 is at most p IBI . ( This condition is satisfied if the failures occur 
independently with probability p.) We will say that 5 is a p-perturbation of a trajec- 
tory y if it is a p-perturbation of D with r[O, u] = y[O, u] for all u in W. Our goal 
is to find situations in which if the probability p of failure is small then the 
probability of deviations is also small: in other words, failures do not accumulate, 
there is a “healing effect.” 

Let us be given an arbitrary one-dimensional medium D, and the (possibly 
infinite) integers K, T. For any integer m, we define the sets W= Z, x Zi (our 
space) and V= CO . . . T] x W (our space-time). For any trajectory x of D on 
[0 . . . T] x Z,, we define the function y: V + S, by 

yCt, n, hjl = XC4 nl. (2.2) 
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Thus, each cell of the one-dimensional medium D is repeated m* times, on a whole 
“plane” (a torus for finite m) in W. 

THEOREM 2.1. There is a three-dimensional medium M with S, as its set of states 
and function E(n) such that lim, _ a, E(n) = 0, and the following holds. For all K, T, 
there is an 

m = (log(KT))‘+“!KT), 

such that for any trajectory x of D over [0 . . . T] x Z K, if the trajectory y of M over V 
is defined by (2.2), then for any p < 10-28, any p-perturbation 5 of y and for all v 
in V the probability of 5[0] # y[v] is less than lo** p. 

The theorem says that in case of the medium M and the trajectories y, the 
probability of deviation can be uniformly bounded by 1O25 p. The trajectories y 
encode (by (2.2)) an arbitrary computation in an arbitrary cellular space D (e.g., a 
universal Turing machine), hence this theorem asserts the possibility of reliable 
computation in three-dimensional space. Moreover, the encoding used is a simple 
one: repetition of log * +*‘(KT) times. The decoding is even simpler: if a plane of W 
represents a state s of a cell of D then each cell in this plane will be in state s with 
large probability. 

We made some remarks on the unrealistically small upper bound lo-** in the 
Introduction. 

3. THE IDEA OF THE PROOF 

We define M(x[G3]) = D(R(x[- 1, G*]), R(x[O, G*]), R(x[l, G’])), where the 
rule R is given in (2.1). 

Majority voting over a centrally symmetrical neighborhood would not work. 
Charles Bennett’s computer simulations convincingly show that such rules eliminate 
small islands by a phenomenon strikingly similar to surface pressure. Surface 
pressure is a function of curvature, hence a large island will grow if the failure 
probabilities favor its growth. 

If m = cc then our theorem becomes a special case of Theorem 1 in [9]. Toom 
probably did not notice this consequence of his results, since he gives only examples 
of media with a finite number of periodic stable trajectories, while our construction 
gives a continuum of stable trajectories (in three dimensions) and a countable 
number of periodic stable ones. 

The proof in [9] is rather difficult, and what can be obtained from it 
immediately in the finite case is an m as large as K + T. Here we give a new proof of 
Toom’s theorem (at least its special case for the rule M: some generalizations will 
be obvious), using the technique of k-sparse sets developed, following Kurdyumov’s 
ideas, in [9]. This technique also led to a simpler proof of Tsirel’son’s result. Our 
proof of Toom’s theorem is not necessarily shorter or more elegant but its guiding 
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idea is more elementary (even if some details are messy), therefore it may be more 
widely applicable. 

We suggest the reader look at the special case D(x, y, z) =y, i.e., the cells of D 
just want to keep their state forever, without looking at their neighbors. In this 
special case, the trajectories x[t, u], y[r, u] do not depend on the time t, and the 
planes {u} x Zi of the medium A4 work independently, each trying to keep the 
value x[O, u]. We can therefore ignore the parameter u, and we are left with the 
medium R of the example. Without loss of generality, we can supose then that 
S, = (0, 1 > and that y is 0 everywhere. The essential part of the general proof given 
below concerns this special case. The proof is easier to read if we just forget the 
extra dimension. 

Let 5 be a p-perturbation of y. We want to prove that for appropriate values of 
m, for any t, u we will have {[It, u] = 0 with probability 1 - 102*p. Thus whenever 
some island of cells in state 1 arises as a consequence of failures in 5, it will be 
quickly erased, preventing the proliferation of cells in state 1 for a very long time. 

Why is Toom’s rule R likely to preserve a nearly constant initial configuration? 
Let us define the linear functions 

I,(x,y)= -2x+x 4(x, Y) = 2x + Y, 4(x, Y) = -Y. 

For an arbitrary subset F of 2’ we define mj(F) = supvEFZi(a). We call mj(F) the 
measurements of F. For any real numbers a,, a,, a3, let us define the triangle 

The numbers aj are the measurements mj(Z). Let us call II\ = (a + b)/2 + c the size of 
triangle I. If the size is negative then the triangle is empty. For finite diameter m of 
the torus, the above definition does not work since inequality is not defined in Z,. 
But the definition can be easily extended as long as the size is less than m. Let us 
add this requirement to the definition of triangles. 

For any sets H, I of the plane, let us define 

d,(H, I) = inf(Zj(x): x E Z} -m,(H). 

This quantity is called the j-separation of the sets H and I. It is easy to check the 
following propositions, which can be considered the “separating hyperplane 
theorem” for triangles. 

LEMMA 3.1. For triangles H and Z, we have 

dj(H, I) = mj(Z) - II) - mi(H). 

Triangles H and Z are disjoint if and only if there is a j such that their j-separation is 
positive. 

The following assertion is easy to verify. 
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LEMMA 3.2. Suppose that x is a trajectory of R in which at time t, the set of 
deviations from y is enclosed into the triangle L(a, b, c). Then at time t + 1, the same 
set is enclosed in L(a- 1, b - 1, c- 1). 

It is this speed of shrinking, independent of size of the set of deviations that 
distinguishes Toom’s rule. 1Z1/2 error-free steps would eradicate a triangle Z of 
deviations entirely. Unfortunately, this simple argument will not suffice for our 
purpose because we will allow more frequent failures. 

We will need more refined reasoning, based on a certain hierarchical charac- 
terization of failures and deviations. We will define the notions of k-noise and 
k-anarchy. The k-anarchy is derived from deviations by a process similar to the one 
used to derive the k-noise from failures. The main lemma will be analogous to 
Lemma 3.2. It says that outside the k-noise, the k-anarchy shrinks with constant 
speed. The k-noise and k-anarchy will be defined recursively, and the proof of the 
main lemma is inductive. Going up from level k to level k + 1 can decrease the 
speed of shrinking of the covering triangles of the k-anarchy only by a certain 
amount which is the member of a convergent series. 

Toom used a topological construction for the estimation of the probability of 
deviation. 

4. NOISE 

Most failures are isolated. Sometimes a larger group of failures occurs but this is 
rare. This is the idea behind the notion of a k-noise. Let us be given a set E of 

’ failures in our space-time Z x Z,. The noise of order 0 is the set of failures. Noise of 
order k+ 1 (a k + l-noise) is the set of all points that have too much k-noise in 
their k-hypercube. In order to make this notion precise, we only have to say what is 
“k-hypercube” and what is “too much.” 

Let cl, be an integer parameter. We will choose 

Cl = 41730. (4-I) 

We define rl = 104, rk = 2k for k > 1. This rk is going to be the number of failure 
bursts tolerated within a k-hypercube. (The case k = 1 is treated specially in order 
to increase somewhat the upper bound on p in Lemma 4.1 below.) The size P, of a 
k-hypercube is defined recursively as follows: 

P,= 1, 

Qk = Clk2rk, 

Pk=QkPk--l for k > 0. 

Let us denote P, = [0 . . . Pk)3, 



132 GACS AND REIF 

Sets of the form u + P,[i, j, , j,] are called k-colonies. They are canonical if u = 0. 
Thus, colonies are cubes of width Pk. The notion of canonical colonies makes most 
sense if the measurements of our torus are divisible by P,. To keep the theorem 
simple, we do not make even this mild assumption. If P, is relatively prime to the 
measurements of our torus then every colony is canonical. For a k-colony 
E = P,[i, jr, jz], let us call its neighborhood the union of E and its 26 neighbor 
colonies Pk[i, jr, j, - 11, etc. Each k-colony has a natural partitioning into 
(k - 1)-colonies, which will be called its subcolonies. 

Let us denote 

Ck = [O . . . P,)4 

Sets of the form u + C,[h, i, j,, j,] are called k-hypercubes. They are canonical if 
u = 0. We will call a k-hypercube a k-event. Each k-event has a natural partitioning 
into (k - 1 )-events that will be called its sub-events. 

The O-noise of a set E of space-time is E itself. For k > 0, the k-hypercube C 
belongs to the k-noise of a set E of space-time if the number of its sub-events of 
order (k - 1) belonging to the (k - 1)-noise is greater than rk. 

EXAMPLE. A l-event is in the l-noise if it has at least two failures. In general, we 
can speak of the k-noise within any union of some disjoint canonical k-events. 

LEMMA 4.1. For p < 1Op24 the following holds. Let < be a p-perturbation of some 
medium. Let us denote by d the (random) set of failures in 5. Let B be any k-event. 
For k > 0, the probability that B is in the k-noise of d is less than 

For k = 0 the same probability is p by definition. For k = 1,2, the lemma gives 
the estimates p’, p2’. 

Proof By the definition of p-perturbation, for any set D, the probability of 
DcB is at most p , ID’ We can therefore increase the probabilities of all sets of 
failures by assuming that individual failures occur independently with probability p. 
Let us make this assumption. The following statement follows immediately from the 
definition. 

LEMMA 4.2. Let B,, B,, . . . be disjoint k-events. Let 2!i be the euent that Bi is in the 
k-noise. The events Si are independent. 

Proof: We will prove Lemma 4.1 by induction. The probability of O-noise on a 
O-cube (one space-time point) is at most p, hence the statement holds for k=O. 

Let us suppose now that the lemma holds for k - 1. We prove it for k. To 
estimate the probability that B belongs to the k-noise we use the inductive 
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assumption and Lemma 4.2. It gives that for each sequence of rk + 1 disjoint 
(k- 1)-events in B the probability that they are all in the (k- l)-noise is less than 

The total number of possible such sequences is less than 

Qt ( ) r,+ 1 
< (C1k2rk)4(‘k+‘)/(rk + l)! < (ec;k%:)‘k+‘. 

In the last inequality, we applied the relation n! > n”el -“. 
Let us distinguish now the cases k = 1 and k > 1. For k = 1, the probability that B 

is in the k-noise is less than ((104)3 ec:)“’ p lo5 We have to show that this quantity . 
is less than p5, i.e., that l/p is greater than (( 104)3 ec:)‘.“. Computation shows that 
the last expression is less than 2 x 1026. 

For k > 1 the probability that B is in the k-noise is less than 

This is less than pk if we have 

i.e., 

rk+ 1 
5r2”-rk_, 

log(ectk8r:) < -log p. 

It is easy to see that the left-hand side is monotonically decreasing with k, therefore 
it is enough to check the inequality for k = 2. For k = 2 it turns into ec!214 c l/p. 
The left-hand side is here less than 2 x 1023, which completes the proof. 1 

5. ANARCHY 

5.1. Triangles 

In the analog of Lemma 3.2 in the presence of failures, the statement “x[t, w] = 0 
for all w outside L(a, b, c),, must be replaced with the statement “the k-anarchy is 
confined to L(a, b, c).” The notion of k-anarchy used here is the analog of the 
notion of k-noise introduced in Section 4. 

For a set 3 of triangles we denote by U f their union and by I$[ the sum 
CJE9 (JI. We say that f cmers a set if its union does so. 

For a triangle I= L(a, b, c) and positive number d, we define the new triangle 

D(I,d)=L(a-d,b-d,c-d) 
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called the dejZution of I by the amount d. For a set 9 of triangles, we define 

D(<Y, d) = {D(Z, d): ZE Y}. (5.1) 

For points x = (x,, x2), y = (y,, y2) in 2’ we measure their distance by 

Distance is defined similarly in Z3. For a set E in 2’ and a positive number d we 
denote by Z(E, d) the set of points at a distance d or less from E. We call it the 
d-blowup of E. This notion is defined analogously in Z3. For a set E in Z*, let us 
denote by d(Z, d) the smallest triangle Z with the property that its deflation D(Z, d) 
contains E. These two operations are extended to sets similarly to (5.1). The 
relation between rectangular and triangular inflation is expressed by the following 
relation, which can be immediately verified: 

f(E, d) c d(Z, 2d). (5.2) 

Both the deflation of triangles and the blowup of sets are additive, in the sense of 
the property: 

D(D(Z, c), d) = D(Z, c + d), 

T(T(E, c), d)=f(E, c+d). 

It is easy to verify the following: If the triangles Z and .Z have nonempty intersection 
and 111 + J.ZI <m (where m is the diameter of the torus) then the size of the smallest 
triangle containing their union is smaller than 111 + lJ1. We can transform a finite 
set 9 of triangles with 191 <m into a set Y’ of disjoint triangles in the following 
way: we successively replace any pair of intersecting triangles in the set with the 
smallest triangle containing their union (this process will be called merging), as long 
as we find intersecting triangles. We have 

Let us define the projection proj of the three-dimensional space to the two- 
dimensional space of a slice by 

projk Y, 2) = (Y, z). 

There will be only two kinds of projection in the present paper: this projection, 
called simply projection, and the space-projection of a set in space-time. 

5.2. Shrinking Anarchy 

The k-noise was defined as a function of a set in space-time that is interpreted as 
the set of failures in an evolution with respect to the medium M. Similarly, the 
k-anarchy is a function of a set in space that is interpreted as the set of deviations of 
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an evolution from a certain trajectory of M. Let us thus be given an evolution 
x[h, i, j,, j,] of medium A4 over a three-dimensional lattice W and a trajectory 
y[h, i, j,, j,] of A4 over the same space. 

We define the notion of health at time t for colonies. The k-anarchy within a 
(k + 1)-colony C is the union of sick subcolonies of order k in C. The O-anarchy at 
time t is the set of points (i, j,, j,) such that x[t, i, j,, j2] differs from y[t, i, j,, j,]. 

We will use the parameter 

c2 = 432. (5.3) 

For k > 0, a k-colony C is healthy at time t if there is a set 9 of disjoint triangles, 
where (91 is bounded by cZrk P, ~, such that the projection of the (k - 1 )-anarchy 
in C is covered by D(X, P,_ i). In general, we can speak of k-anarchy within any 
union of disjoint canonical k-colonies. 

The deflation by Pk-, in the definition of the k-anarchy makes sure that the 
triangles covering the projection of the (k - 1)-anarchy 
each other. 

Let us introduce the “drag” 

vk = 0.2 i ip2 < 0.5~~16 < 0.3. 
i= 1 

are well separated from 

From now on, we will speak frequently about the k-noise for the set of failures 
(within some union of canonical k-events). Let us call it simply the k-noise. The 
k-noise at time t will mean the set of points v such that (t, v) belong to the k-noise. 

The following lemma investigates the evolution x over a union C of k-colonies in 
the time interval [t, t + sP,] for s > 0. Let 

C’ = r( c, SPk). 

Let us denote by W(n) the cube [-n . . . n). The following lemma confines several 
objects to a cube of the form W(m/3) to make sure that triangles and colonies do 
not become degenerate by reaching around the torus. 

LEMMA 5.1 (Main Lemma). Let C be the union of some disjoint canonical 
k-colonies such that c’ is contained in W(m/3). Let 9 be a set of disjoint triangles 
contained in W(m/3). Suppose further that 

The k-noise is empty in the set [t . . . t + sP,) x C’. (5.4a) 

At time t, the projection of the k-anarchy of c’ is covered by D(X, Pk). (5.4b) 

Then at time t + sP,, the projection of the k-anarchy of C is covered by 

D(9, P,+(s(l -v/J-2) P/J. 
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5.3. The beginning of the Proof 
The case k = 0. Condition (5.4a) says that the O-noise is empty, i.e., there are no 

failures. The projection of the O-anarchy is enclosed into the l-deflation of the 
disjoint triangles of 9. An application of M means an application of Toom’s rule to 
the O-anarchy; it compresses the projection of the O-anarchy into the 2-deflation of 
9. Similarly, each application of h4 results in a further compression. 

In what follows we assume that the lemma is true for k - 1, and prove it for k. 
For the sake of this proof, let us call a small deflation a deflation by the amount 
P k-1 and a big deflation a deflation by the amount Pk. The k-anarchy, k-noise, and 
k-events will be called global anarchy. noise, and events, as opposed to the 
(k - 1)-anarchy, noise and events, which will be called local. The notions “big,” 
“small,” “ global,” and “local” and are thus relative to the level k. 

The local anarchy. Let us formulate an assertion that implies the Main Lemma. 

LEMMA 5.2. Under the assumptions of the Main Lemma, at time t + sPk, for each 
k-colony E in C, there is a set A of triangles with IAl < c2rkPk-, such that the 
projection of the (k - 1 )-anarchy in E is covered by the small deflation of the system 

dd u D($, P, + s( 1 - vk) Pk). 

Proof of the Main Lemma. Let E be a colony in C whose projection is not 
covered by D(4, Pk + (s( 1 - ok) - 2) Pk). Then, as it iS easy to see from (5.2), this 
colony has no intersection with the triangles in D(Y, Pk + s( 1 - vk) Pk). Application 
of Lemma 5.2 gives then that colony E is healthy. 1 

Lemma 5.2 can be proved using induction on s. For s = 0, it follows directly from 
the assumptions of the Main Lemma and the definition of health. The proof from s 
to s + 1 is the same for all s, so it is enough to prove the lemma for s = 1. Similarly, 
we can assume t = 0 without loss of generality. We will use the notation 

6. SHRINKING LOCAL ANARCHY 

We will proceed in time steps of size 6. Application of the Main Lemma for k - 1 
would eliminate the global anarchy if the set of failures did not have any local 
noise. The effect of the local noise will only be to slow the shrinking of the local 
anarchy. Indeed, in the time intervals when there is no local noise, the space-projec- 
tion of earlier local noise can be added to the set 4 of triangles, and the lemma can 
be applied inductively. The local noise is not too large, since the global noise is 
empty. Therefore the slowdown will be small. 

A refinement of this plan must consider that at the beginning, there is some local 
anarchy in C’ outside 9. We should worry that the local noise of failures might 
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increase it, possibly turning thereby a big colony sick. We will find that this does 
not happen. Outside the local noise, the original local anarchy shrinks so fast that it 
will disappear near the beginning of the time period [0 . . . Pk). This is proven in 
Lemma 6.6 below. Hence all local anarchy outside the somewhat shrunken original 
triangles in 9 will be the result of the local noise of new failures: no accumulation 
takes place. 

6.1. Clock Cycles 

We step through the period [O . . . Pk) in steps of size 6. In an instant qS, the set 

r!Jc, 4) = r(c p, - 4) 

contains the only cells at time qS that can have any effects on the state of the cells 
in C at time P,. 

According to condition (54a) in Lemma 5.1, the global noise in the set C’ during 
our time interval is empty. It follows that since C’ is the union of 27 big colonies, 
the local noise on it consists of at most 27r, small events. 

Actually, we will step through the period [O . . . Pk) in steps of size 236. The 
reason is that we want to use the fact that in the application of the Main Lemma 
for k - 1, the expression 

s(l-u,-,)-2 

is positive if s is at least 3. Let us find therefore some integers 

(6.1) 

O=q,<q,< ... <qr=Qk. 

We will call these integers boundaries. The interval [qi . . . qi+ ,) is called singular if 
the (k -- 1)-noise is nonempty during the time interval [qi6 . . . qi+ ,S). Otherwise, 
this interval is called regular. We will enforce the following properties: 

l Singular intervals have length 3. 
l Every regular interval is surrounded by singular intervals. 

Such boundaries qi are easy to find, given that the number of singular integers is 
much smaller than Qk. First we find a big interval [a . . . 6) consisting of regular 
numbers. Let a’ be the smallest number >a divisible by 3, and let b’ be the largest 
number <b congruent to Qk mod 3. Now we partition the interval [O . . . a’) into 
intervals of length 3 and keep the boundaries of those subintervals that contain 
singular numbers. We do the same with the interval [b’ . . . Qk). The two kinds of 
boundaries form the set {qO, . . . . ql}. 

For each boundary q, we will define a colony Yq of disjoint triangles such that the 
following proposition holds. 

LEMMA 6.1. For all numbers q of the form qi, at time q& the small deflation of 
the system Yq covers the projection of the local anarchy in T,(C, q). 

571/36/2-3 
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DEFINITION OF .Yq. The sets Yq will be defined inductively. Let us define .a, first. 
The assumptions of the Main Lemma together with the definition of healthy 

colonies imply that for each of the big colonies E, (i= 1, . . . . 27) in C’, if the projec- 
tion of E, is not covered by the big deflation of .f then there is a set of triangles 
with size less than c2rkh whose small deflation covers the projection of the local 
anarchy in E, at time 0. 

Let X be the union of these 27 sets of triangles. Now, we define 

x0 = (D(9, P, - 6) u X)‘. 

Thus, to find -00 we first deflate 9 so that the projection of the global anarchy is 
still within a small deflation of the result. Then we add the triangles of X, contain- 
ing the projection of the local anarchy in their small deflation. Finally, we make the 
resulting set of triangles disjoint by repeated merging. 

We proceed to the definition of .a, for q > 0. Let us assume that q is a boundary 
number qi and that Yq is defined. 

Let us assume first that qi begins a singular interval. Let Pq be the set of those 
small colonies (at most 27r,) that cover the space projection of the part of the local 
noise falling in the time interval [qi6 . . . qi+ ,S). Since we want to apply the Main 
Lemma for the case k - 1, we have to cut out the small colonies that could be 
affected by PU. Therefore we define 

The following lemma holds, by definition. 

LEMMA 6.2. During the time interval [qi6 . . . qi+ ,S) the local noise is empty over 
the set Cl. 

In the definition of -pY + , , the set 9q will be taken into account via the following set 
of triangles: 

d;“, = d( proj .9$ 76). 

Here, the blowup by 76 has two causes. A blowup by 66 accounts, according to 
(5.2), for the spreading of the effect of the noise $ during the interval 
[qS . . . (q + 3) 6). The additional blowup by 6 provides for the possibility of a later 
deflation by the same amount. 

With these quantities, now we define J$ + 3 = (Yq u Yq)‘. Now assume that [q . . . p) 
is a regular interval. We define 

4=D(& ((p-qM1 -uk-,1)-2)6). 

Proof of Lemma 6.1. We use induction on q. It holds for q = 0 by the definition 
of 9& Let us assume that it holds for q. 
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Suppose first that q is singular. By Lemma 6.2, the local noise is empty over Cl in 
the period [qS . . . (q + 3) S). It follows from the application of Lemma 6.1 to q that 
at time q6, the projection of the local anarchy in Cb is covered by a small deflation 
of .a,. Therefore we can apply the Main Lemma for k - 1, with C, in place of C, 
with Yq in place of .a, with qS in place of t, and 3 in place of s. We obtain that at 
time (q + 1) 6, the projection of the local anarchy over C, is covered by the small 
deflation of 

D(#$3(1 -ukp,)8-26). 

Since 3(1 - ukP 1) - 2 is positive, the same set is therefore covered by the small 
deflation of Yq. It follows from the definition of Yq and (5.2) that the projection of 
the difference between the sets C, and Z,(C, q + 3) is covered by the small deflation 
of &. This fact, together with the definition of Yq+ 3, proves that the projection of 
the local anarchy at time (q + 3) 6 is covered by the small deflation of -O,+ 3. 

Suppose now that [q . . . p) is a regular interval. We can apply the Main Lemma 
for k - 1 again, with the same substitutions as above except for s =p - q and 
Z,(C, p) in place of C. We obtain the statement of the present lemma for p. 1 

6.2. Big and Small Triangles 

The process of creating Yq involved three kinds of steps. Sometimes we added a 
new triangle. Sometimes we inflated or deflated an old triangle. And sometimes we 
merged two triangles into the smallest one containing both. For each element of 9q 
we can define the set of their ancestors. New triangles are their own ancestors. 
Inflating or deflating a triangle does not change its ancestors. Merging two triangles 
unites their ancestry. Those triangles that have some ancestry in are called big, the 
rest are called smaN. 

LEMMA 6.3. Each big triangle has exactly one big ancestor. 

Proof: In order to prove this statement, we have to show that in the process of 
constructing Xq, two big triangles will never be merged. Let H and Z be two such 
triangles. They are disjoint, so according to Lemma 3.1, there is a j such that their 
j-separation d,(H, I) is positive. The construction begins by deflating each big 
triangle by the amount Pk - 6. This increases the j-separation by twice the same 
amount. From that time on, the big triangles suffer only merging with small 
triangles or deflation. Each deflation increases the separation. The merging 
decreases the separation at most by the size of the small triangle merged with the 
big one. 

There are two kinds of original small triangle. The first kind are the elements of 
X. These come from 27 different sets of size at most c2rkS. It is easy to see that for 
any fixed j, the measurement mj of a big triangle can be changed by merging with 
at most 18 from these 27 sets of triangles. This follows from the following simple 
geometrical fact. 
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LEMMA 6.4. For any c, for j = 1, 2, 3, a strip of’ the form 

{u:c<li(u)<c+c,r,) 

can intersect the projection I$ at most 18 members of a set qf21 neighbor k-colonies. 

Proof To see this, it is enough to note that if we have an array of 9 squares of 
size 1 forming a square of size 3 then a straight line of one of the mentioned three 
directions will intersect at most 6 of these squares. 1 

The second kind of small triangles are all elements of Sp, for some q. It is easy to 
see that the size of each such small triangle is at most 166. They come from 27 dif- 
ferent sets with at most rk elements. 

This is also the maximum number of singular intervals. Therefore in the worst 
case, there will be 27r, cases when the separation decreases by the amount 166. 
Therefore the maximum total decrease is 

(18c,+ 16.27)r,6=(18~,+432)r,& 

It follows from (4.1) and (5.3) that we have 18c,+432 < 2c, -2. Therefore the 
maximum total decrease is smaller than (2c, - 2) r,6 < 2(Pk - 6), and the 
j-separation of H and I will never be brought to 0. fl 

Shrinking big triangles. For each big triangle Z and 9 and q of the form qi, let 
us denote by n,(Z) the big triangle in .a, whose ancestor it is. The following lemma 
estimates the total deflation suffered by a big triangle. 

LEMMA 6.5. Let I be an element of 3 and q a boundary number. Then we have 

n,w = @A Pk + ad), 

wherea=q(l-v,-,)-(18c,+570)r,. 

Proof. Each big triangle is subjected, at the construction of &, to an initial 
deflation by Pk and inflation by 6. 

Just as in the proof of Lemma 6.3 we can see that the total increase in a 
measurement during the singular intervals is at most 432r,& Adding the original 
inflation by 6 and the effect of merging with elements of X brings this at at most 

(18~ + 433) r,6. (6.2) 

To estimate the change caused by the regular intervals on [0 . . . q] let us note that 
there are at most 27r, + 1 such intervals. Their total length is at least q - 3 .27r,. 
According to the definition of Yqy, over such such an interval [q . ..p) the 
measurements of /i,(Z) decrease by the amount ((p - q)( 1 - vk _ r ) - 2) 6. Adding all 
these decreases, we get at least 

(q-81r,)(l-v,_,)6-2(27r,+l)& 
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Taking into account the increase (6.2) and disregarding the factor 6, the total 
decrease is at least 

(q-Slr,)(l-v,_,)-56r,-(18c,+433)r, 

>q(l-o,-,)-(18c,+570)r,. 1 

Vanishing small triangles. Let us denote by da; the set of small triangles in J$~. 
This set is obtained by consecutive deflations and mergings between the elements of 
X and those of 6p, for s< q. The next lemma states that by the time q =p, the 
deflations eliminate the effect of X. 

LEMMA 6.6. There is a boundary number q for which 9, is empty. Consequently, 
the triangles in ,abk are covered by the small deflation of the set 

The second statement follows since the first statement shows that by the time Qk, 
all triangles with ancestors in X vanish. 

ProoJ Suppose now that & never vanishes. Then in all regular intervals 
[q . . . p), the size of da; decreases by the amount 2( (p - q)( 1 - uk) - 2) 6, since this is 
the decrease suffered by each triangle that does not disappear. The total decrease in 
size is thus at least (using again the fact that the number of regular intervals is at 
most 27r, + l), 

2(Qk-81r,)(l -v,-,)a--4(27rk+ 1)6 

>r,6(2c,k*(l-vk-,)-274)>r,6(0.4cI-274). 

How large is the largest small triangle we can get? Using a reasoning similar to 
Lemma 6.4 we can see that the ancestor of any small triangle can come only from 
at most 12 of the 27 groups. Therefore the size of the largest small triangle is 
bounded by 12(c, + 16) r,6 = ( 12c, + 192) r,6. The small triangles will therefore 
disappear if we have 

12c, + 192 < 0.4~~ - 274. 

Thus we need 12c2 + 366 < 0.4c,. This follows from (4.1) and (5.3). 1 

Proof of Lemma 5.2. Applying Lemma 6.1 for q = Qk we find that at time P,, 
the system D(J$:, S) covers the projection of the local anarchy in C. The system Yq 
consists of big and small triangles. According to the application of Lemma 6.5 for 
q = Qk, for each big triangle Z the triangle /i,(Z) is contained in D(Z, Pk + cP,), 
where 
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It follows from (4.1) and (5.3) that we have 

18c, + 570 f 0.2~~. (6.3) 

Therefore n,(l) is contained in D(Z, Pk( 1 + 1 - uk)). According to Lemma 6.6, 
the small triangles are covered by J?’ = (U,, g$)‘. As estimated in the proof of 
Lemma 6.3, the size of JP?’ is at most 

432r,6 = cark6. 1 (6.4) 

Let us note that the relation determining the definition of c2 was (6.4). The 
relation determining the definition of cr was (6.3). 

7. PROOF OF THE THEOREM 

Under the conditions of the Main Lemma, the k-anarchy is covered by a set of 
shrinking triangles. If those conditions hold long enough, therefore, the k-anarchy 
will be eliminated. This is the statement of the next lemma. 

LEMMA 7.1. Let k > 0. Suppose that Pk < m/3. Suppose that the (k - l)-noise is 
empty in W(P,) during the interval [t . . . t + P,/2) and none of the canonical 
k-colonies in W(P,) belongs to the k-anarchy. Then the (k - I)-anarchy is empty in 
W(P,/2) at time t + Pk/2. 

Proof: By the assumption of the present lemma there is a set 9 of triangles with 
size at most 8c,r, P, _ i such that D(Y, P, ~ ,) covers the projection of the (k - l)- 
anarchy in W(P,). Therefore the Main Lemma is applicable with k - 1 and 
s = Qk/2. We obtain that the projection of the k-anarchy is covered by 

DV,P,-,(I +Qdl -v,c)/2-2)). 

This set of triangles is empty. Indeed, otherwise its size, disregarding a factor Pk _ , , 
is at most 

8c,r, - c, k2r,( 1 - uk) + 2 < r,(8c2 - 0.2c,) + 2. 

It follows from (4.1) and (5.3) that this quantity is negative. 1 

LEMMA 7.2. Suppose that no canonical k-event in the set [0 . . . T] x W belongs to 
the k-noise. Then all k-colonies are healthy at all times in [0 . . . T]. 

Proof: Let us remember that we have not used anywhere the fact that the one- 
dimensional rule D used in the definition of M is homogeneous in time (or space). 
Everything remains unchanged for a medium D,(x, y, z) dependent on time. Let 
D,(x, y, z) = D(x, y, z) with the old D for t 2 0 and DI(x, y, z) = y for t < 0. We only 
consider p-perturbations <[t, v] of the new medium M, in which with probability 1 
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we have {[r, u] = <CO, o] for all negative t. All earlier results remain in force for this 
ad hoc generalization. 

By the above paragraph, the set of deviations is empty for any negative t. 

Therefore it is enough to prove that if all k-colonies are healthy at some time t 

when they are all healthy at time t + Pk. This follows by an application of the Main 
L,emma to any k-colony C with an empty set f of triangles. 1 

Let K and T be given, and let L = log(U). The number m will be chosen to have 
the form 4P, with 

z= r(2 i0g L)O.S~. (7.1) 

LEMMA 7.3. For L Z 4, the choice (7.1) satisfies 

16KTp, < p, (7.2) 

and we have m < L22’C’0g’+o(1”. 

Proqf Let R = -log p. By definition, we have logp, = R(2.5 . 2’(‘+‘)/2). 
Therefore (7.2) can be written as 

2.5R2’(‘+ “I2 3 L + R + 4. (7.3) 

From (7.1) we have 

p”2/2<L<2l~l2, (7.4) 

hence 2’(‘+ 1)‘2 B L2’j2. Therefore the left-hand side of (7.3) is greater than or equal 
to 2.5RL2q2. It is therefore enough to check that this is greater than L + R + 4, i.e., 
that we have 1 JL + 1/R + 4/LR < 2.5 . 2’12, which is obviously true. This proves (7.2). 

Expanding the recursive definition of P, and using (7.4) we have 

m = 4p, = 4cf’(/!)2 .52 .2’(‘+ lV2 
<~8+2/(log/+log~,)+(/~1~2/2+3/<~~/(2log1+2lo~r,+3)+8 

This proves the second assertion of the lemma. 1 

Proof of the Theorem. We want to estimate the probability of having a 
deviation at a point (t, U) in space-time. Without loss of generality, we can assume 
u = 0. We define 

Wk = WP,), vk= [O... PJ2)x Wk. 

Let us define the sequence to, . . . . t, of times and space-time blocks Z, as 

to = t, tk+1=fk-Pk+1/2, zk=(tk,o)+ vk. 
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If we imagine the direction of time pointing downwards then the sets I, are 
4-dimensional blocks forming a reversed tower on top of each other. The base of I, 
is Wk. 

Let E, be the property that for all k between 1 and I, the set of failures has no 
(k - 1 )-noise on I,. Let E, be the property that no l-event belongs to the I-noise on 
V. By Lemma 4.1 the probability that a certain (k - I)-hypercube belongs to the 
(k - 1 )-anarchy is at most pkp,. The set V, contains (2Qk)3 Q,/2 = 4Qi hypercubes 
of order k - 1. Therefore the probability that E, does not hold is at most 

k=l 

Each term of this series is clearly at least 10 times smaller than the previous one. 
The first term is 4(~,r,)~ p which is less than 2 x 10”~. By the same lemma, the 
probability that El does not hold is at most 16KTp, which is smaller than p, 
according to (7.2). Indeed, for each I-event, the probability that it belongs to the 
l-noise is estimated by pI. Since m =4P,, the number of canonical l-events in 
V= Zi x Z, x [0 . . . T] is at most 16KT. 

Let us now suppose that the properties E, and E, hold. The contrary happens 
only with probability less than lO’*p. We verify that at time t, the Z-anarchy is 
empty in W,. There are two cases. If t, is negative then this follows from the 
assumption made in the proof of Lemma 7.2: the set of deviations is actually empty 
for negative t,. Otherwise, this follows from E, and Lemma 7.2. 

It follows from E, and Lemma 7.1 that the (I- l)-anarchy is empty in W,- 1 at 
time t,- r. Continuing this repeated application of E,, and Lemma 7.1 gives that 
there is no deviation in (t, 0). 

Lemma 7.3 implies that m has the required bound on its rate of growth as a 
function of L. 1 

8. CONCLUSIONS 

In this paper, a three-dimensional reliable cellular computer was given with an 
extremely simple construction. Any one-dimensional automaton consisting of K 
reliable components and working for T steps can be simulated in real-time and, 
essentially, without encoding, but using repetition about log2(KT) times. Let us dis- 
cuss some related results and problems. 

Better constants. The theoretical error-bound 1O-28 is ridiculously small. Bring- 
ing it closer to the experimental bounds given by Bennett (0.05 for 2 dimensions 
and somewhat smaller for 3 dimensions) is a challenging task. (See note added in 
proof.) 

The need for lower-dimensional devices. There are some theoretical reasons to 
look for a reliable cellular array in 2 dimensions. It follows from general thermo- 
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dynamical principles that in a “physical” error-correcting medium, each component 
turns free energy into heat at a constant rate. Therefore each component needs, 
essentially, a private line for feeding free energy and for conducting away the heat. 
An extra dimension is taken up by these lines. 

D~~jTcculties in lower dimensions. In the work [3] (which is more recent than the 
present paper), a two-dimensional reliable cellular array is constructed. The error- 
correcting organization takes the form of a hierarchy of “colonies.” During its work 
period, a colony of level k performs an additional layer of error correction on the 
work of its constituent colonies of level k - 1. One of the main problems of an 
elaborate construction like this is that the organization itself is also bombarded by 
the failures. 

It is an important technical point of both [2 and 31 that all essential structural 
information about a given colony C can be expressed with the help of two variables 
T and n called phase variables. Here t counts the number of work periods passed by 
C in the work period of the enclosing higher order colony B, and rc shows the 
position of the colony within B. The solution offered in [3] is based on the 
recognition that the phase-variables vary periodically, therefore their maintenance 
is possible using Toom’s rule. Since there is no Toom rule in one dimension, the 
maintenance of the phase variables must be achieved by other means. This accounts 
for the difference in complexity between the papers [2 and 33. 

Redundancy. All results of the style discussed in the present paper indicate that 
if the size of the computation is N then the size of the simulating computation must 
be at least N log N, provided that some real computation is being performed. The last 
qualification is necessary since information storage needs only a constant factor in 
redundancy. The factor log N can be considered the price we pay in redundancy for 
reliability. In the model of cellular arrays, it is possible to distinguish between the 
time and space requirements of the computation, and it is therefore possible to 
represent the redundancy as a product of the redundancies in space and time. Thus 
if t steps of computation of n cells of a deterministic medium are simulated reliably 
by t’ steps of n’ cells of a stochastic medium then t’/t is the time redundancy and 
n’/n is the space redundancy. 

The results available to date on cellular arrays indicate that the product of the 
time and space redundancies must be logarithmic in the size of the computation. 
We can state this as a conjecture, but it seems a difficult one to prove, especially in 
that the case of “no real computation” must be excepted. 

The logarithmic redundancy can be shifted entirely to space, or almost entirely to 
time, as the following examples show: 

l The 3-dimensional simulation of the present paper is real-time: there is no 
time redundancy, but there is space redundancy of size log’+” N. The ideas of the 
present paper applied to [2] give a real-time 2-dimensional reliable simulation with 
space redundancy log’ +’ N. Indeed, one can use parallel lines (cycles) of the two- 
dimensional array to store one symbol each of the one-dimensional medium D to 
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be simulated. Along each of these lines, the one-dimensional error-correcting 
medium works. Across the lines, we apply the rule D. The time-delay of the one- 
dimensional computation is irrelevant now since this computation is used only to 
preserve one symbol. The two-dimensional medium constructed this way is as com- 
plex as the one-dimensional medium it relies on. 

l The 2-dimensional simulation described in [3] has constant space redun- 
dancy, and time redundancy log’ + ’ N. The ideas of [3] combined with those in 
[2] give the same parameters in one dimension. 

Synchronization. Most works on the theory of interacting particle systems are 
concerned with the case of cointinuous time. The problem of dealing with 
asynchrony arises naturally in the context of reliable computation, too. There are 
simple ways to implement a synchronous error-free computation by an 
asynchronous but otherwise failure-free computation. Indeed, one can use the same 
topology for the asynchronous device and a somewhat enlarged local alphabet. The 
state x[t, n] is replaced by the triple 

(x[t - 1, n], x[t, n], t mod 3). (8.1) 

But no such simple construction is known to turn a reliable discrete-time cellular 
array into a reliable continuous-time cellular array. The hierarchical construction 
used for error-correction in [Z, 31 can probably also be used for synchronization. 
Each block of cells is supposed to be synchronized to a close tolerance and is 
periodically resynchronized. Higher order blocks are synchronized to progressively 
looser tolerances. Details must be worked out yet. 

For the 3-dimensional case, Charles H. Bennett’s physical analysis and 
simulation of the behavior of transformations like (8.1) holds some promise. 

Permanent failures. If we desire to extend the present investigation to per- 
manent failures then some other assumptions must also be changed. If namely 
permanent failures appear with some constant frequency then in a constant number 
of steps almost all components will be out of service. There are several ways to 
introduce restrictions preventing this. One is to declare that all permanent failures 
are due to manufacturing defects, and their number does not increase. This model is 
almost like our original one, except that at time 0 some randomly chosen cells are 
permanently damaged: nothing can be assumed about their transitions. It is our 
conviction that the hierarchical -reasoning applied in the present paper will be 
successfully applicable to this model. 
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