Kernel Malware

Zhuogun Cheng
Feb 2013



Kernel Mode vs. User Mode

* x86 provides 4 privilege levels
Ring 0 — kernel mode for kernel (highest)
Ring 1,2 - not used
Ring 3 - user mode for applications (lowest)

* Higher level can control lower levels and access more
hardware resources

Ring 0 (kermel mode)
Ring 1

Ring 2

Ring 3 (user mode)




Kernel Malware vs. User Malware

* Kernel malware is more destructive
e Can control the whole system
* including both hardware and software

* Kernel malware is more difficult to detect or remove
* Many antivirus software runs in user mode
* lower privilege than malware
e cannot scan or modify malware in kernel mode



Kernel Malware vs. User Malware

* Kernel malware is more difficult to develop
e Kernel is complex
* Kernel mode malware are more likely to have bugs
* Even a minor bug in kernel mode can cause kernel crash

* That’s why kernel mode malware is rare



An Example

 SpamTool.Win32.Mailbot.az

Found in December 2005 on Windows XP
A kernel-mode driver
Took control of the System Service Dispatcher (SSD)

Applications requesting system service could be redirected to
other system functions (including functions in malware)

So all applications are actually under its control



How to exploit kernel?

* Stack overflow?
e Kernel has only one stack
* Fixed size, 8KB, quite small
* Very likely to overwrite some important kernel data
* Cause kernel crash

* Loadable driver!
* Drivers run in kernel mode
* Windows allows drivers to be loaded at runtime
* Develop malware as drivers and ask kernel to load it



Mitigation
* Drivers must be signed since Windows Vista

 Check before driver is loaded

* Unsigned driver cannot be loaded into kernel



One possible bypass

Loaded driver (signed and checked) will be
swapped out from memory to Pagefile in disk
when short of memory

Modify Pagefile and insert our shellcode
Call that driver

Swapped in and get executed



First how to force the specific
driver to be swapped out?

* Allocate huge amount of memory for a process
to use up physical memory

* Some rarely used drivers are always swapped
into disk



Second how to locate and
modify that driver?

* Take a sufficiently long binary string (one of its
functions) of that driver

* Do a pattern search in the disk region where
Pagefile probably resides

» Replace it with our shellcode (extremely
difficult to create useful shellcode)



Final step

* Call that driver
* Driver gets swapped in and malware injected!

 Or kernel dies...

7 &



Wait...

* Why operating system doesn’t stop us from
scanning and modifying Pagefile

e Windows has documented API to allow raw access
to disk from user mode

« We can read and write disk sectors which are
occupied by the Pagefile

* While kernel has no idea what file we are modifying
since we don’t go through file system



Possible mitigations

* Forbid raw disk access from user mode
e probably break lots of programs

* Encrypt Pagefile

* Big performance impact

* Disable kernel memory swapping
 Possible. But users lose this useful feature



Thank you!
Questions?
Reference

e Kernel Malware: The Attack from Within
* Kimmo Kasslin, Kuala Lumpur

* Subverting Vista Kernel for Fun and Profit
e Joanna Rutkowska

* Wiki: Rootkit
* http://en.wikipedia.org/wiki/Rootkit



