The Evolution of Microsoft’s

Exploitation Mitigations




Agenda

What are mitigations?

Blocking the transfer of control

Blocking the malicious code itself




What is a vulnerability?

A software defect that allows an attacker to do
something they shouldn’t

For this presentation, we consider only
memory corruption vulnerabilities

> i.e. buffer overflows

Used in real life to install viruses



Exploiting a vulnerability

Step O: Find vulnerability

Step 1: Exploit the vulnerability to transfer
control to malicious code

» The processor goes where it’s pointed. In this step
the exploit points the processor to malicious code.

Step 2: Execute the malicious code.
> In this step the bad stuff actually happens



Why not just fix all the bugs?

Have you ever written bug-free code?
-inding the last bug is really really hard

ncremental cost to fix each bug




What are mitigations?

Address Steps 1 and 2

Countermeasures to exploitation techniques
> Prevent
> Reduce reliability

Generic protection for known & unknown
vulnerabilities



Arms Race

Implement a mitigation

Someone finds a way to bypass it

> Sometimes only partially
Goto 1



Assumptions

C/C++

Non-exotic architecture, e.g. x86/x64, ARM,
PowerPC



P
Block the

Transfer of
Control




Buffer Overflow: Under the Hoo

e |t's all numbers
* Programs compiled to machine code

— Very low-level numeric instructions to the CPU

Bytos Mnemonic
(2) 33C0 XOr ax, ax
(2) 8EDO MoV 88, ax
(3) BCOO7C mov 8p, Ox7c00
(2) 8ECO mov &3, ax
(2) 8ED8 mov ds, ax
(3) BEDO7C mov si, 0x7c00
(3) BF mov di. (0600

BFO006

00007¢11 (3 mov cx, 0x0200
00007c14 (1) FC cid

00007c15 (2)F3AMd rep movsb byte ptr es [di]. byte ptr ds [s1]
0000717 (1) 50 push ax

00007c18 (3) 681C06 push Ox061c

00007c1b (1)CB red

00007¢ 1¢ (1)FB at

00007c1d (3) BSO400 mov cx, 0x0004
00007c20 (3) BDBEO?7 mov bp. (0 7be
0000723 (4) SO7TEQDDO cmp byte pir ss fbp). Ox00
00007¢27 (2) 7C08 il *11 (0x00007c34
00007¢29 (4)OF851001 jnz +272 (0x00007d3d
00007c2d (3) 83C510 add bp. 0x0010
00007¢30 (2)E2F1 loop <15 (x00007c23)
00007c32 (2)CD'8 nt Ox18

00007c34 (3) 885600 mov byte pir ss [bp). d
00007¢37 (1)55 push bp

00007c38 (4)C6461105 mov byte pir ssfbp+17), Ox05
00007c3c (4) C6461000 mov byte pir sefbp+ 16], Ox00
00007c40 (2) B44 mov ah, Ox41



Buffer Overflow: Memory

 When you call a function, the CPU needs:
— To tell the function its parameters
— To leave room for the function’s variables

— To remember where it came from, so you can go
back when the function returns

e This is a memory address —a number

Local variable 1

Local variable 2

Frame pointer

Return address

Function parameters




Memory Layout, Oversimplified

e Stack:
— Highly structured memory, not very flexible, fast
— Used for:

o System operations like function calls
e Local variables

— One big chunk of memory per program
* Heap:

— Unstructured, dynamic, flexible

— Used for malloc, new, etc.

* Program memory: the code itself



Memory Management

At the beginning and end of every function,
the compiler inserts standard code

— Called “prologue” and “epilogue”
— Sets up and cleans up the stack for the function

e The heap has its own memory manager

— More on this at the end if we have time

e The OS handles initializing program memory



Buffer Overflow: Strings

e Strings are really an array of characters
— And characters are really numbers (“A” = 65)

e In C, strings have predefined lengths
— Called “char *” instead of String

— Each character can be accessed individually

A String in Memory

MyString[0]
MyString[1]
MyString[2]
Etc.




Buffer Overflow: Now, we hack!

Char* removeEnd(char* inStr, int length)

char result[255]; ot
for (inti=0;i<length-1; i++)] length
. 1. Result[0] = inStr[0] = “R”
result[i] = inStrli]; ETR——
return result; Result[2] = instr[0] = “d”
} Etc.
Result[254]
 What happens if length > 255?  [frame pointer
Return address




Buffer Overflow: Now, we hack!

result[255] = input[255];

inStr

length

Result[0] = Input[0]
Result[1] = Input[1]
Result[2] = Input[2]

Etc.

Result[254] = Input[254]

Repurti2sddress <- Input[255] goes here!




Buffer Overflow: Code Runs

e The function ends
— Time to return to where we were
— Where we were?

e Input[255] has overwritten the original location!
e Input[255] will be interpreted as a memory address!
 And we’ll start executing whatever is there

e How could a bad guy use this?



Buffer Overflow: Virus Running

e What if we constructed Input[255] to point to
a program?
— We could store the program in Input[0], input[1]...

Result[0] = Program instruction 1

Program instruction 2

Program instruction 3
Etc.
Input[255]




Mitigation: Stack Cookie

/GS adds to the program initialization,
prologue and epilogue:
> At run time, get a pseudo-random number

> In prologue, in between locals and frame pointer,
store a copy of this pseudo-random number
(“cookie”)

> In epilogue, just before returning, check the
cookie to make sure it’s the same number



Mitigation: Stack Cookie (/gs)

Local
Variables

GS
Cookie

Frame
pointer

Return
address

Arguments

Buffer overflow

4

The attacker must overwrite the GS cookie on the way to

the return address

If the GS cookie doesn’t match our pre-calculated value, an
exploit has occurred




Exploit: Overwrite variables

void vulnerable(char *in, char *out) {
char buf][256];
strcpy(buf, 1In); // overftlow!
strcpy(out, buf); // out 1s corrupt
return; // GS cookie checked

Cookie is only checked at function return

Corrupt arguments or locals may be used before return

> In this example we just did a strcpy, but we might have done something
more interesting like send data to the internet

Attacker could overwrite cookie or other memory[2,8]



Mitigation: /GS improvements

Local GS Saved Return (Not grfgel:;ir;tds Sfter
Variables Cookie EBP address :
copying to locals)
- N
Arguments
& Arrays
Pointers Buffer overflow [>

V

Safe copies of arguments made as locals

Arrays positioned directly adjacent to GS cookie

Corruption of dangerous locals and arguments is less likely



Exceptions Quick Intro

Exception = an error
> Exceptions have types e.g. TimeoutException

Chainable:

> Class A handles TimeoutExceptions

> Class B inherits Class A and also handles
TimeoutExceptions

> When an instance of Class B throws a TimeoutException:
e Class B’s Exception Handler gets called
e Then Class A’s Exception Handler gets called too

Lets you build very dynamic error handling
> And also lets you bypass /gs...



Exceptions Memory Structure

Pointer to exception handler function

y
Pointer to next I ]
- N H app!_except_handler4

exception record
N I H ]—-) k32! except_handler4

in chain
N I H ]—-) ntdl1!_except_handler4

OXFFFrffff



Exploit: SEH Overwrite

Local

Variables

Exception
Registration
Record

GS

Cookie

Buffer overflow

Next J\ Handler

4

void vulnerable(char *ptr){
char buf[128];
try {
strcpy(buf, ptr);
. exception ..

} except(.) { }

Overwrite an exception handler using the
vulnerability being exploited

Trigger an exception some other way

> Pretty easy to do



Exploit: SEH Overwrite

Normal SEH Chain

N I H H app!_except_handler4 }

N I H H k32!_except_handler4 }

N I H ]—-)[ntdll!_except_handleml

Oxffffffff}

Corrupt SEH Chain

N I H H Ox7c1408ac }
-

0x414106eb } pop €ax
pop eax

ret

An exception will cause 0x7c1408ac to
be called as an exception handler as:

EXCEPTION_DISPOSITION Handler(
PEXCEPTION_RECORD Exception,
PVOID EstablisherFrame,
PCONTEXT ContextRecord,
PVOID DispatcherContext);



Mitigation: SafeSEH

Safe SEH Handler

app! except _handler4 applehl
\) app!eh2
app! except _handler4
Valid

VS2003 linker change (/SAFESEH)[ 9]

Invalid SEH Handler

app! main+0xl1c

7

Not found in table

Binaries are linked with a table of safe exception handlers

> Stored in program memory — not corruptible by an attacker

Exception dispatcher checks if handlers are safe before calling



Exploit: Modules without SafeSEH

app.exe

Compiled with
> /SAFESEH

v L

Not compiled

randonm.dli| [T with /SAFESEH

SafeSEH is most effective if all binaries in a process have been
linked with it

Handler can be pointed into a binary that does not have a
safe exception handler table



Sentinels

Sentinel: a fake value in a linked list whose only
role is to be recognizable

We insert the sentinel at the end of a list
We also keep a copy of it

When following the list, we compare every record
to the sentinel

> When we get to the sentinel, we know we reached
the end of the list

> If we never get to the sentinel, we know the list was
tampered with



Mitigation: SEHOP

Valid SEH Chain Invalid SEH Chain
N I H ]—) app!_except_handler4 N I H }—) app!_main+0x1c
N H k32!_except_handler4 0x41414141
A J I
I
Y N\ V V4 M M
|
N H > ntdll!FinalExceptionHandler 5 Can’t reach validation frame!

Dynamic protection for SEH overwrites in Srv08/Vista SP1| 4 |

> No compile/link time hints required

Symbolic validation frame inserted as final entry in chain

Corrupt Next pointers prevent traversal to validation frame



Recap: GS, SafeSEH, and SEHOP

Attacker cannot...
» Overwrite the frame pointer or the return address
> Overwrite arguments & non-buffer local variables

They can overwrite SEH...
» But SafeSEH/SEHOP prevent it from being called

These primarily protect stack overflows
» We’ll talk about the heap if we have time.



More about Memory

Memory used to be very predictable

A program would always load into the same
position in memory
» Performance, simplicity

An attacker needs to know where in memory
the malicious code is

In Windows XP, this was simple: it was always
in the same place



Mitigation: ASLR

Boot 1 Boot 2 Boot 3
user32.dll / i ssleay32.dll i
pggcess ntdll.dll \f[ — ]
AddreSS—
space ssleay32.dll app.exe ntdll.dll
ntalldll ssleay32.dll user32.dll
_ e

Address Space Layout Randomization (ASLR)[12]
> Randomize where applications are placed in memory
> Introduced in Vista/Server 2008, 8 bits of entropy
> Images must be linked with /DYNAMICBASE



Exploit: Partial overwrite

memcpy (
Local Saved Return dest, & Stack buf
Variables EBP address src, & Controlled

Buffer overflow length); < Controlled

Only the high-order two bytes are randomized in image mappings
> The application moves around. Things within the application don’t.

> This works because the attacker has to hard-code the memory location —
can’t use relative locations. Except...

Low-order two bytes can be overwritten to return into another
location within a mapping

> Overwriting 0x1446047c with 0x14461846

Only works with specific vulnerabilities that allow partial overwrites



Exploit: non-reloc/fixed executables

process
address—
space

g—

Boot 1
_\
e |

user32.dll
| )N

kernel32.dll
ntdll.dll
Oy

Boot 2

SEE==

app.exe

\;

ntdll.dll

user32.dll

kernel32.dll

Boot 3

———

f ;i app.exe i

\

S~y

kernel32.dll

ntdll.dll

Y
3\
— \
>
4
o
J

4
<

user32.dll

J

Not all binaries are compiled with relocation information
> Executables often don’t have relocations (/FIXED: YES)
> .NET IL-only assemblies in IE[13]

ASLR is most effective if all regions are randomized



Exploit: Brute force

DLLs are generally randomized once per-boot
> Some attacks can be tried repeatedly
Brute forcing addresses less likely on Windows

> No “forking” daemons in Windows

> Vista service restart policy limits number of times
a service can crash and automatically restart



Exploit: Information disclosure

Software bugs may leak address space
information

> Requires a second, lower severity vulnerability

Can be used to construct reliable return
addresses



P
Block the

Malicious
Code lItself




Problems if you’re a bad guy

Found a vulnerability

Wrote an exploit
Bypassed the other mitigations
Where do | put my malicious code?

> I’'m already sending the user a malicious webpage

> I'll store the code as text in that page!
e That’ll get it loaded in memory where | can jump to it



Exploit: Execute data as code

Stack | Local Saved Return T
Layout Variables EBP address
— =| Buffer overflow ,\
Exploit : AT
- Padding of Shellcode
Buffer

jmp esp




Mitigation: Hardware DEP (NX)

Stack — Lgcal LEA? Arguments
Layout Variables 5 dréss
= — Buffer overflow >
Exploit Address
S ,,gwheﬁp else in memorjadding of Shellcode
| jmp esp
HEHRE
% No-exec stack

Hardware-enforced DEP allows memory regions to be
non-executable

» Leverages NX features of modern processors

Shellcode stored in these regions cannot be executed



Exploit: Ret2libc

Stack | Local Saved Return FR—
Layout Variables EBP address &

= : Buffer overflow >
Exploit Address Fake Address

- Padding of Return of
B
uffer system | Address | ‘“‘cmd”

NX pages can prevent arbitrary code execution

However, executable code in loaded modules can be
abused[11]

» Return into a library function with a fake call frame



Simplified Example

Put the literal text “bash rm —rf” on the stack
using your buffer overflow

Set the return address to point to “exec”

Result: the system API “exec” runs with the
parameter “bash rm —rf”

> “exec” simply runs the command line specified:
bash rm —rf

e This erases all files in the home directory
> No attacker-provided code was executed!



Exploit: Disable DEP for a process

There is an APl VirtualProtect to change how a piece
of memory is marked as code vs. data

> Required for interpreters, compilers, etc.

Abusing VirtualProtect requires the ability to use
NULL bytes

» Often impossible (string-related overflows)

Windows has an API to disable NX for a process
> NtSetInformationProcess [info class 0x22]

Exploit can use ret2libc to return into this function and
easily disable NX[3]



Mitigation: Permanent flag

Boot flag can force all applications to run with
NX enabled (AlwaysOn)r10]

Processes can prevent future updates to
execute flags

> NtSetInformationProcess|[22] with flag 0x8

Does not mitigate return into VirtualProtect



Exploitation & Mitigation Chronology

1. Smashing : /. Heap 13. Browser
B the stack[6] overflow ASLR/DEP
bypass[13]

advances[15]

2. Heap 6. SEH
overflows overwrite[1]
2002 2003 2004 2005 2006 2007 2008
3. V52002 5.VS2003 10. VS2005 12. Srv 2008
GSvl GSv1.1 & SafeSEH GSv2 SEHOP
8. XP SP2 11. Vista RTM
GS, SafeSEH, DEP ASLR




References

[1] Litchfield, David. Defeating the Stack Based Buffer Overflow Prevention Mechanism of Microsoft
Windows 20003 Server. http://www.ngssoftware.com/papers/defeating-w2k3-stack-protection.pdf.

[2] Ren, Chris et al. Microsoft Compiler Flaw Technical Note.
http://www.cigital .com/news/index.php?pg=art&artid=70.

[3] skape, Skywing. Bypassing Windows Hardware-enforced DEP. http://www.uninformed.org/?v=2&a=4&t=sumry.
[4] skape. Preventing the Exploitation of SEH Overwrites. http://www.uninformed.org/?v=5&a=2&t=sumry.
[5] skape. Reducing the Effective Entropy of GS Cookies. http://www.uninformed.org/?v=78&a=2&t=sumry.

[6]1 Alephl. Smashing the Stack for Fun and Profit.
http://www.phrack.org/issues.html?issue=49&id=14#article.

[7] Microsoft. /GS Compiler Switch.
http://msdn2.microsoft.com/en-us/library/8dbf701c(VS.80) .aspx.

[8]1 Whitehouse, Ollie. Analysis of GS Protections in Microsoft Windows Vista.
http://www.symantec.com/avcenter/reference/GS_Protections_in_Vista.pdf.

[9] Microsoft. /SAFESEH Compiler Switch. http://msdn2._microsoft.com/en-us/library/9a89h429(VS.80).aspx-
[10] Microsoft. A detailed description of DEP. http://support.microsoft.com/kb/875352.

[11] Wikipedia. Return-to-libc attack. http://en.wikipedia.org/wiki/Return-to-libc_attack.

[12] Wikipedia. Address Space Layout Randomization (ASLR). http://en.wikipedia.org/wiki/ASLR.

[13] Mark Dowd and Alex Sotirov. Impressing girls with Vista memory protection bypasses.
http://taossa.com/index.php/2008/08/07/impressing-girls-with-vista-memory-protection-bypasses/.

[14] Johnson, Richard. Windows Vista Exploitation Countermeasures.
http://rjohnson.uninformed.org/Presentations/200703%20EuSecWest%20-
%20Wi1ndowsh20Vista%20Exploirtation®h20Countermeasures/rjohnson%20-
%20Windows%20Vistah20Explortation®20Countermeasures.ppt

[15] Matt Conover and Oded Horovitz. Windows Heap Exploitation.
http://ivanlefOu.free.fr/repo/windoz/heap/XPSP2%20Heap%20Exploitation.ppt




P

Extras




Exploit: Heap metadata overwrite

Heap —_ Heap chunk heas heas Heap chunk
Layout chunk chunk
— =| Buffer overflow >
Exploit : e What Where
~ Padding chunk Shellcode
Buffer header address | address

Interesting things happen on the heap:
> Heap coalesce i.e. defrag

> Lookaside list allocation: The memory manager keeps a
short list of fixed-size blocks to perform rapid allocations

Corrupt the heap metadata and...



Mitigation: Heap hardening

Safe unlinking during heap coalesce

> List entry integrity verified prior to coalesce

Heap cookies

> 8-bit cookie verified on allocation from free list

Heap chunk header encryption

> Header fields are XOR’d with a random value



Exploit: Re-protect memory via ret2libc

Address Address Address Size Writable
of of of of RWX address shellcode
VirtualProtect | jmp esp shellcode shellcode
Entry to Return from

VirtualProtect VirtualProtect

t Return from
vulnerable

function

Windows makes extensive use of stdcall
» Caller pushes arguments
» Callee pops arguments with retn

Allows multiple functions to be changed with ret2libc



Exploit: Heap Spray/NOP Sled

Attacker can’t predict where in memory the
malicious payload will be

Exploit:

> Fill the entire memory space with “NOP” instructions
* NOP = No Operation = Do nothing

> Place malicious payload at end

> Jump anywhere. Eventually you wind up at the
payload.

Can take a while to fill 8 GB of RAM
Typically requires script



Mitigation: Heap Spray Protection

Pre-allocate blocks throughout memory and
fill them with exit instructions

Makes it impossible to construct a continuous
NOP sled



