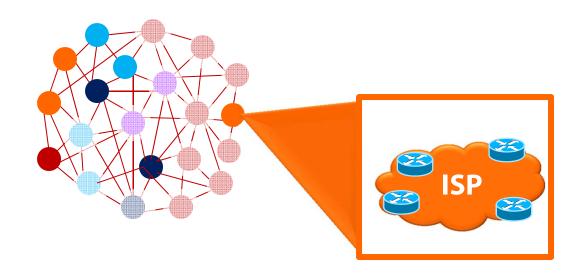
Diffusion of Networking Technologies



Bellairs Workshop on Algorithmic Game Theory Barbados April 2012

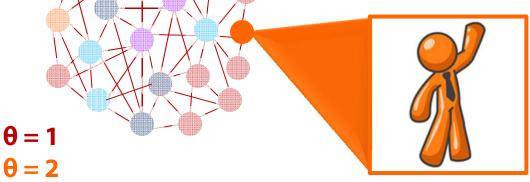
Sharon Goldberg Boston University

Zhenming Liu Harvard University

Diffusion in social networks: Linear Threshold Model

[Kempe Kleinberg Tardos'03, Morris'01, Granovetter'78]

A node's utility depends only on its neighbors!



I'll adopt the innovation if θ of my friends do!

 $\theta = 3$

 $\theta = 1$

 $\theta = 4$

 $\theta = 6$

Optimization problem [KKT'03]: Given the graph and thresholds, what is the smallest seedset that can cause the entire network to adopt?

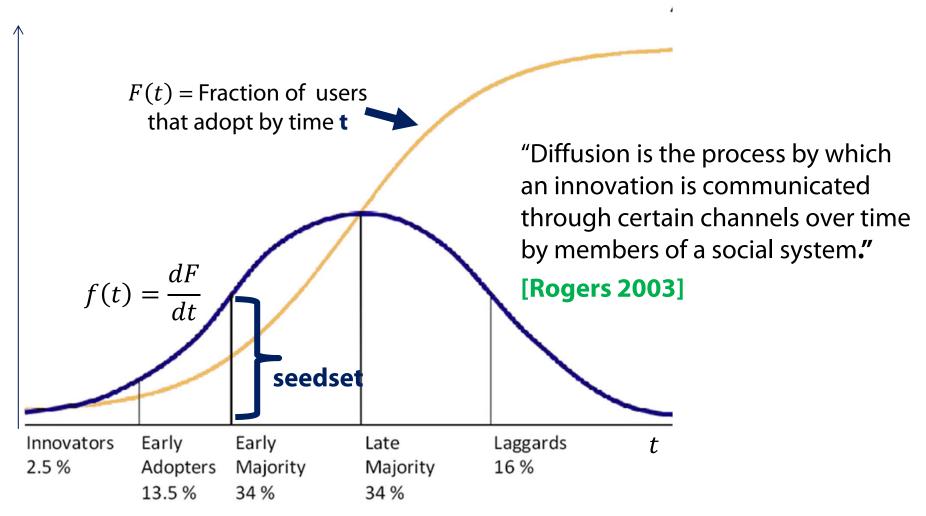
Seedset: A set of nodes that can kick off the process. Marketers, policy makers, and spammers can target them as early adopters!

What if the innovation is a networking **technology** (e.g. IPv6, Secure BGP, QoS, etc)

And the **graph** is the network?

Inspiration: The literature on diffusion of innovations (1)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)



Inspiration: The literature on diffusion of innovations (2)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it

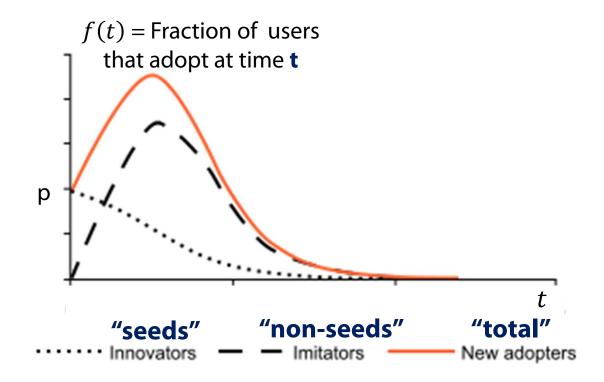


Image: Wikipedia

Inspiration: The literature on diffusion of innovations (3)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it
- Economics: "Network externalities" or "Network effects" [Katz Shapiro'85...]
 - Models to analyze markets, econometric validation, etc

"The utility that a given user derives from the good depends upon the **number** of other users who are in the same "network" as he or she."

[Katz & Shapiro 1985]

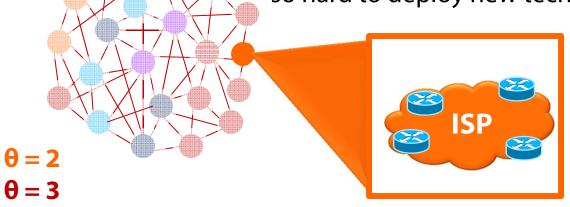
Inspiration: The literature on diffusion of innovations (4)

- Social Sciences: [Ryan and Gross'49, Rogers '62,]
 - General theory tested empirically in different settings (corn, Internet, etc)
- Marketing: The Bass Model [Bass'69]
 - Forecasting extent of diffusion, and how pricing, marketing mix effects it
- **Economics:** "Network externalities" or "Network effects" [Katz Shapiro'85...]
 - Models to analyze markets, econometric validation, etc
- Popular Science: "Metcalfe's Law" [Metcalfe 1995]

Traditional work: No graph. Utility depends on number of adopters. [KKT'03, ...]: The graph is a social network. Utility is **local**. **Our model:** Graph is an internetwork. Utility is **non-local**.

Diffusion in Internetworks: A new, non-local model (1)

Network researchers have been trying to understand why its so hard to deploy new technologies (**IPv6**, **secure BGP**, etc.)



I'll adopt the innovation if I can use it to communicate with at least θ other Internet Service Providers (ISPs)!

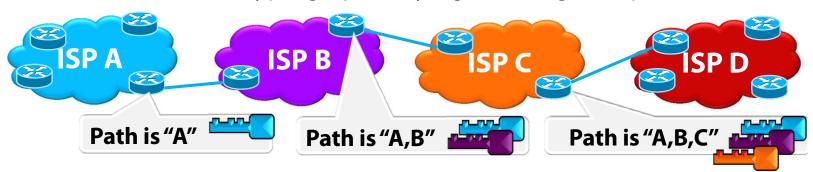
 $\theta = 12$

 $\theta = 15$

 $\theta = 16$

These technologies work only if **all nodes on a path** adopt them.

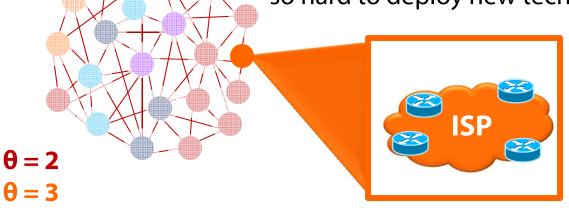
e.g. **Secure BGP** (Currently being standardized.)
All nodes must cryptographically sign messages so path is secure.



Other technologies share this property: QoS, fault localization, IPv6, ...

Diffusion in internetworks: A new, non-local model (2)

Network researchers have been trying to understand why its so hard to deploy new technologies (**IPv6**, **secure BGP**, etc.)



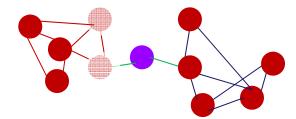
I'll adopt the innovation if I can use it to communicate with at least θ other Internet Service Providers (ISPs)!

 $\theta = 12$

 $\theta = 15$

 $\theta = 16$

Our new model of node utility: Node u's utility depends on the size of the connected component of active nodes that u is part of.



Seedset: A set of nodes that can kick off the process. Policy makers, regulatory groups can target them as early adopters!

Optimization problem: Given the graph and thresholds, what is the smallest seedset that can cause the entire network to adopt?

Social networks (Local) vs Internetworks (Non-Local)

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Local influence: Deadly hard!

Thm [Chen'08]: Finding an $O(2^{\log^{1-\epsilon}|V|})$ -approximation is NP hard.

Non-Local influence (Our model!): Much less hard.

Our main result: An O(r-k-log |V|) approx algorithm

Maximization formulation: Given the graph, assume θ 's are drawn uniformly at random. Find seedset of size k maximizing number of active nodes.

Local influence: Easy!

Thm [KKT'03]: An O(1-1/e)-approximation algorithm.

How? 1) Prove submodularity. 2) Apply greedy algorithm.

Non-Local influence (Our model!): The usual submodularity tricks fail.

Our Results

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

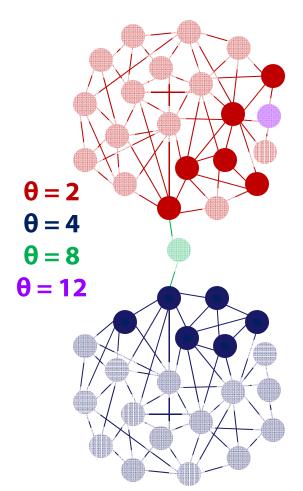
Main result: An O(r·k·log |V|) approx algorithm

r is graph diameter (length of longest shortest path)k is threshold granularity (number of thresholds)

Lower Bound: Can't do better than an $\Omega(\log |V|)$ approx. (Even for constant r and k.)

Lower Bound: Can't do better that an $\Omega(\mathbf{r})$ approx. with our approach.

Terminology & Overview



The problem: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Seedset:

Activation sequence:

(Time at which nodes activate, one per step)

Talk plan:

Part I: From global to local constraints

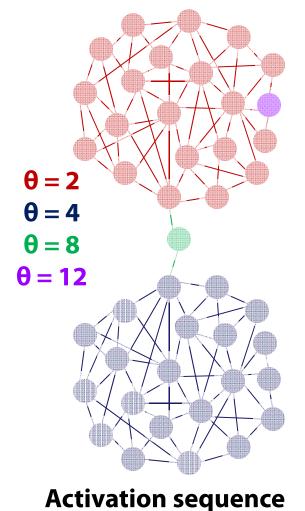
• Using connectivity.

Part II: Approximation algorithm

Part I: From global to local.

(via a 2-approximation)

Why connectivity makes life better.



The trouble with disjoint components:

Activation of a distant node can dramatically change utility

utility(
$$u$$
) = 7 $\xrightarrow{v \text{ activates}}$ utility(u) = 15

It's difficult to encode this with local constraints.

What if we search for connected activation sequences?

(There is a single connected active component at all times)

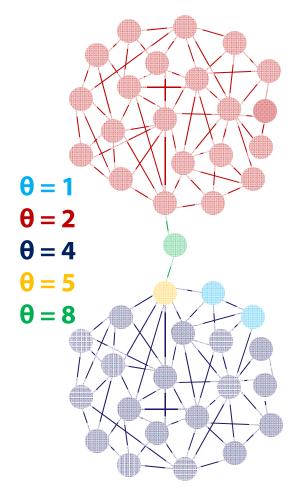
- Utility at activation = position in sequence
- To extract smallest seedset consistent with sequence:

Just check if $t > \theta$!

Thm: There is a connected activation sequence which has |seedset| < 2opt.

⇒ v is a seed θ • u is not a seed!

Proof: ∃ connected sequence with |seedset| < 2opt. (1)



Seedset:

Proof: Given any **optimal sequence** transform it to a **connected sequence** by adding at most **opt** nodes to the seedset.

Optimal (disconnected) activation sequence

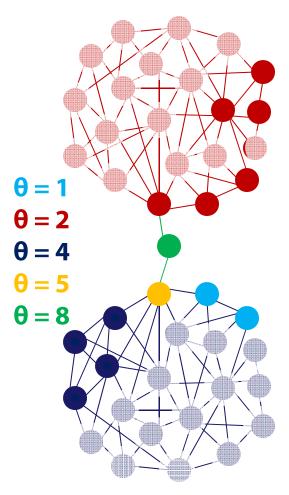
"connectors" (join disjoint components)

Transform: Add connector to seedset, rearrange

We always activate large component first.

Why? Non-seeds in small component must have θ smaller than size of large component \Rightarrow no non-connectors are added to seedset!

Proof: ∃ connected sequence with |seedset| < 2opt. (2)



Proof: Given any **optimal sequence** transform it to a **connected sequence** by adding at most **opt** nodes to the seedset.

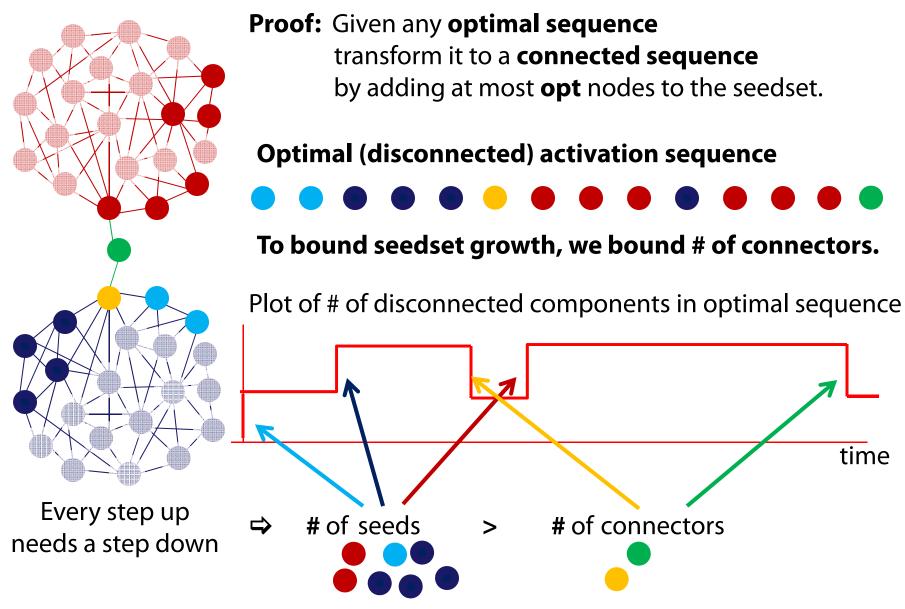
Optimal (disconnected) activation sequence

Transform: Add connector to seedset, rearrange

Transform: Add connector to seedset, rearrange

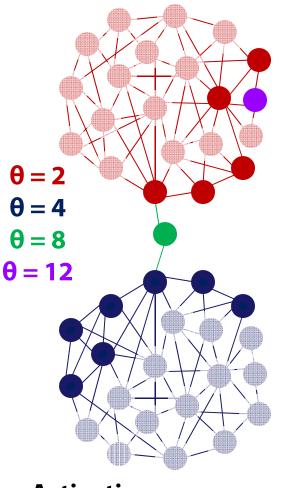
The activation sequence is now connected.

Proof: ∃ connected sequence with |seedset| < 2opt. (3)



In the worst case, our transformation doubles the size of the seedset!

This IP finds optimal connected activation sequences



Let $X_{it} = 1$ if node i activates at time t

0 otherwise

 $\min \Sigma_i \sum_{t < \theta(i)} x_{it}$ (minimizes size of seedset)

Subject to: = 1 if i is seed

 $\Sigma_t x_{it} = 1$ (every node eventually activates)

 $\Sigma_i x_{it} = 1$ (one node activates per timestep)

 $\sum_{\text{edges (i,j)}} \sum_{\tau < t} x_{j\tau} \ge x_{it}$ (connectivity) = 1 if neighbor j is on by time t(connectivity)

Cor: IP returns seedset of size < **2opt**.

Activation sequence

Part II: How do we round this?

Iterative and adaptive rounding with **both** the seedset and sequence.

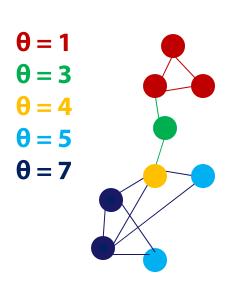
We return **connected seedsets** instead of **connected activation sequences**.

(⇒ O(r)-approx instead of 2-approx)

Rounding the seedset or the sequence?

Because integer programs are not efficient, we relax the IP to a linear program (LP).

Now the $\mathbf{X_{it}}$ are fractional value on [0,1]. How can we round them to an integers?



Threshold $\boldsymbol{\theta}$ is $\boldsymbol{\checkmark}$ if at least $\boldsymbol{\theta}$ nodes are active by time $\boldsymbol{\theta}$

Optimal

Seedset:

Approach 1: Sample the seedset.

i is a seed with probability $\propto \sum_{t<\theta(i)} X_{it}$

Pro: Small seedset.

Con: No guarantee that every node activates.

Approach 2: Sample the activation sequence.

i activates by time t with probability $\propto \sum_{\tau < t} x_{i\tau}$

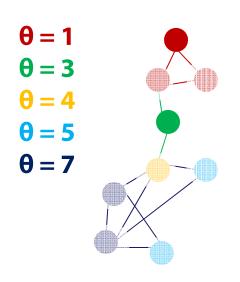
Pro: Every node is activated.

Con: Corresponding seedset can be huge!

Solution?

Approach 3: Sample both together. Then reconcile them adaptively & iteratively.

Approach 3: Sample seedset and sequence together!



Sampled seedset:

Sample seedset: (use Approach 1)

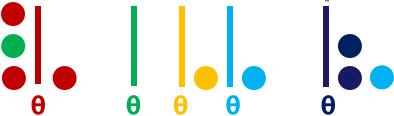
- 1. Let i be a seed with prob. $O(\log |V|) \sum_{t < \theta(i)} X_{it}$
- 2. Glue seedset together so it's connected

This grows seedset by a factor of **O(r log |V|)**

Construct an activation sequence deterministically:

- Activate all the seeds at time 1
- For each timestep **t**
 - For every inactive node connected to active node
 - ... activate it if it has threshold $\theta > t$

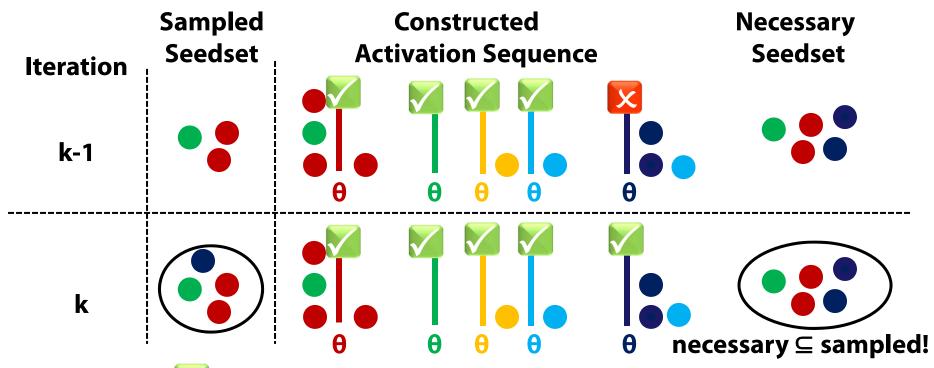
Constructed Activation Sequence:



Iteratively round both seedset and sequence!

At iteration j:

- Use rejection sampling to add extra nodes to sampled seedset
- ... so that $\boldsymbol{\theta_i}$ is $\overline{\boldsymbol{\theta_i}}$ in constructed activation sequence.



When all **0** are **1**, con

Threshold $\boldsymbol{\theta}$ is $\boldsymbol{\psi}$ if at least $\boldsymbol{\theta}$ nodes are active by time $\boldsymbol{\theta}$

By how much does this grow the seedset? k thresholds, with O(r log|V|) increase per threshold. Total O(r k log|V|) growth.

Why does this work?

How to show: For each iteration **j**, rejection sampling ensures

 θ_i is in constructed seedset?

Approach 3: Sample seedset.

• Let **i** be a seed with prob. $\propto \sum_{t<\theta(i)} X_{it}$

Deterministically construct sequence:

- Activate all the seeds at time 1
- For each timestep **t**
 - Activate all nodes with θ > t
 - ...that are connected to an active node

With Approach 3 we gain:

- 1. Connectivity
- 2. Every node activates
- 3. Small seedset

 \approx

Approach 2: Sample the activation sequence.

- i activates by time t with probability $\propto \sum_{\tau < t} x_{i\tau}$
- \Rightarrow Enough nodes on by time $\mathbf{t} = \boldsymbol{\theta}_{\mathbf{i}}$, and $\boldsymbol{\theta}_{\mathbf{i}}$ is $\mathbf{1}$!

This is the tricky part. Our proof uses two ideas:

Add **flow constraints** to LP

&

Activate seeds at **t=1** in constructed sequence.

(⇒ connected seedset)

Wrapping up

Minimization formulation: Given the graph and thresholds θ , find the smallest seedset that activates every node in the graph.

Main result: An $O(r \cdot k \cdot log |V|)$ -approx algorithm based on LPs

r is graph diameter, **k** is number of possible thresholds

Algorithm finds **connected seedsets**.

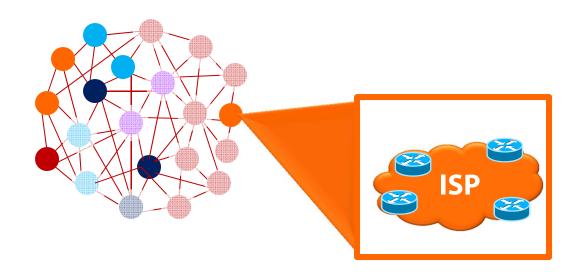
Lower Bound: Can't do better than an $\Omega(\log |V|)$ approx. (Even for constant r, k)

Lower Bound: Can't do better that an $\Omega(\mathbf{r})$ approx if seedset is connected.

Open problems:

- Can we solve without LPs?
- Can we gain something with random thresholds?
- Apply techniques in less stylized models? (e.g. models of Internet routing.)
- ...

Thanks!



http://arxiv.org/abs/1202.2928