Jobtalk

Securing Internet Routing

Sharon Goldberg Princeton University

Based on work with: Boaz Barak, Shai Halevi, Aaron Jaggard, Vijay Ramachandran, Jennifer Rexford, Eran Tromer, Rebecca Wright, and David Xiao

The Internet (1)

The Internet is a collection of Autonomous Systems (AS).

Connectivity requires competing ASes to cooperate.

The Internet (2)

Each Autonomous System (AS) is a collection of routers.

Different Failure Models & Formal Techniques

Honest

Follows the protocol

S

Benign / Fail-Stop

Stops responding

The Internet was designed for this.

Game Theory

Cryptography

Rational (Selfish)

Deviates from protocol for personal gain

Adversarial

Actively tries to "break" the protocol

Research Approach

Research Approach

Secure Routing on the Internet

Goal: Ensure packets arrive at their destination.

Years of security research devoted to solving this problem.

Overview of Previous Work on Secure Routing

Control Plane (Routing protocols):

• Set up paths between nodes

Data Plane:

• Given the paths, how should packets be forwarded?

NPBR [Perlman 88], Secure Msg Transmission [DDWY92], Secure/Efficient Routing [AKWK04], Secure TR [PS03], etc!

Overview of Previous Work on Secure Routing

To inform deployment efforts, my research focuses on:

- 1. Are we securing the right part of the system?
- 2. Characterizing the tradeoffs between security & efficiency

Control Plane (Routing protocols):

• Set up paths between nodes

soBGP, IRV, SPV, pgBGP, psBGP, Listen-Whisper, etc.,

Data Plane:

• Given the paths, how should packets be forwarded?

NPBR [Perlman 88], Secure Msg Transmission [DDWY92], Secure/Efficient Routing [AKWK04], Secure TR [PS03], etc!

Overview of the Results in this Talk

Part I: The Control Plane

two counterexamples & a theorem

BGP: The Internet Routing Protocol (1)

Paths between Autonomous Systems (ASes) are set up via the Border Gateway Protocol (BGP).

Forwarding: Node use **single** outgoing link for all traffic to destination. **Valuations:** Usually based on economic relationships.

Here, we assume they are fixed at "beginning of game"

BGP: The Internet Routing Protocol (2)

Paths between Autonomous Systems (ASes) are set up via the Border Gateway Protocol (BGP).

Forwarding: Node use **single** outgoing link for all traffic to destination. **Valuations:** Usually based on economic relationships.

Here, we assume they are fixed at "beginning of game"

Our desired security goal...

BGP announcements match actual paths in the data plane.

Then, can use BGP messages as input to security schemes!

- 1. Chose paths that avoid ASes known to drop packets
- 2. Protocols that localize an adversarial router on path.
- 3. Contractual frameworks that penalize nodes that drop packets.

Our desired security goal...

BGP announcements match actual paths in the data plane.

Then, can use BGP messages as input to security schemes!

- 1. Chose paths that avoid ASes known to drop packets
- 2. Protocols that localize an adversarial router on path.
- 3. Contractual frameworks that penalize nodes that drop packets.

The "Secure BGP" Internet Routing Protocol

If AS **a** announced path **abP** then **b** announced **bP** to **a**

Public Key Signature: Anyone who knows IBM's public key can verify the message was sent by IBM.

The "Secure BGP" Internet Routing Protocol If AS **a** announced path **abP** then **b** announced **bP** to **a** Comcast: Publ (IBM) Infra Local: (Comcast, IBM) **Princeton Princeton:** (Local, Comcast, IBM IBM Local ISP Comcast If we assume nodes are rational, do we get security from "Secure BGP"? **Yes** - For certain utility models (prior work) **NO** - For more realistic ones (our work)

The "No Attractions" model of utility...

Model of utility in prior work:

Utility of AS =

Utility of outgoing (data-plane) path

In all prior work: Utility is determined by the valuation function

Do control plane & data plane match?

Utility Model	Secure BGP	
No Attractions	[LSZ]	
✓ Corollary: If _	, ratio	nal ASes have no incentive
to send disho	nest BGP annor	uncements!
• [Feigenbaum-Rama	achandran-Schapria-0	6],
[Feigenbaum-Schapria-Shenker-07]		[Levin-Schapira-Zohar-08]
These results	build on	
 [Nisan-Ronen-01] [Parkes-Shneidmar Feigenbaum-Papac 	า-04], limitriou-Sami-Shenk∉	[Feigenbaum-Papadimitriou-Shenker-01], [Feigenbaum-Karger-Mirrokni-Sami-05] er-05],

The "Attractions" model of utility...

Our model of utility:

Utility of AS =

Utility of outgoing (data-plane) path

+

Utility of attracted incoming traffic

Do control plane & data plane match?

Utility Model	Secure BGP	
No Attractions	[LSZ]	
Attractions	X	

Negative result is network where a node has incentive to lie.

Do control plane & data plane match?

Utility Model	Secure BGP		Next-hop Policy	
No Attractions	[LSZ]	OR	[FRS]	
Attractions	X		?	

Next-hop policy:	Valuations depend only on 1 st		
	AS to receive traffic.		

What if everyone used next-hop policy?

Next-hop policy: Valuations depend only on 1st AS to receive traffic.

The bad example goes away.

Do control plane & data plane match?

	Secure BGP		Next-hop Policy	
No Attractions	[LSZ]	OR	[FRS]	
Attractions	X		X	

Next-hop policy, (naïve) intuition:

If a uses a next-hop policy, nothing m says affects a.

Counterexample: Next-hop policy is not sufficient! (1)

Counterexample: Next-hop policy is not sufficient! (2)

Counterexample: Next-hop policy is not sufficient! (3)

Counterexample: Next-hop policy is not sufficient! (3)

Observation: Manipulation not possible with Secure BGP. (Also not possible if nodes use clever loop detection.)

Do control plane & data plane match?

	Secure BGP	Next-hop Policy	
No Attractions	[LSZ]	[FRS]	
Attractions	✓★		

Our Main Theorem

For a network with traffic attraction where all nodes have

- 1. Next-hop valuations, and
- 2. Secure BGP;

and there is no dispute wheel in the valuations

Then no node has an incentive to lie.

Proof Idea:

- 1. Assume some node gets higher utility by lying
- 2. Show some node must have announced a false loop.
- 3. Contradiction if nodes use Secure BGP.

Our Main Theorem

For a network with traffic attraction where all nodes have

- 1. Next-hop valuations, and
- 2. Secure BGP;

and there is no dispute wheel in the valuations

There is a set **H** of **"honest strategies**" such that for every node **m**, if all nodes except **m** use a strategy in **H**, then **m** has an optimal strategy in **H**.

"ex-post set Nash"

[Lavi-Nisan 05]

Proof Idea:

- 1. Assume some node gets higher utility by lying
- 2. Show some node must have announced a false loop.
- 3. Contradiction if nodes use Secure BGP.

Securing the Control Plane: Conclusions

	Secure BGP	Next-hop Policy	
No Attractions	[LSZ]	[FRS]	
Attractions	✓ *		

These routing policies are not realistic.

⇒ Incentives to announce false paths, even if ASes are rational and use "Secure BGP"

⇒ Motivates more work on data plane security

Part II: The Data Plane

two theorems & a protocol

Detection:Does packet loss / corruption rate exceed 1% ?Localization:If so, which router is responsible?

Detection:Does packet loss / corruption rate exceed 1% ?Localization:If so, which router is responsible?

Today's approaches cannot withstand active attack (ping, traceroute, active probing, marked diagnostic packets)

[GXTBR SIGMETRIC'08] Any protocol **detecting** loss on a path (with an adversary) needs keys and crypto at **Alice and Bob**.

Argued by reduction to one-way functions.

[BGX, EUROCRYPT'08] Any protocol **localizing** the adversary on a path, needs keys and crypto at **every node on the path**.

Argued with Impagliazzo-Rudich style black box separation.

[GXTBR SIGMETRIC'08] Any protocol **detecting** loss on a path (with an adversary) needs keys and crypto at **Alice and Bob**.

[BGX, EUROCRYPT'08] Any protocol localizing the adversary on a path, needs keys and crypto at <u>every node on the path</u>.

⇒ Limited incentives to deploy these protocols in the Internet.

Efficient & Secure Detection : Protocol

Raise an alarm iff norm > 0.66%

Refresh hash key & Repeat

Refresh hash key & Repeat

Efficient & Secure Detection : Summary

This was prototyped at Cisco in summer 2008.

Securing the control plane is not a panacea.

• Even if we assume ASes are **rational** and use "**Secure BGP**"

Availability schemes that require knowledge of paths?

- **Control-plane protocols** don't guarantee that
- ... we know the paths packets actually take.
- Data-plane protocols that localize an adversary are
- ...expensive; each node on the path has to participate.

Availability schemes that involve only the end points?

- Efficient protocols are possible, even in the data-plane
- ... but with weaker security guarantees

Thanks!

Full versions of all papers available: www.princeton.edu/~goldbe/

