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Optical Encryption?
Optical signals are analog signals at frequencies in the THz

Not feasible to measure all high frequency parts of optical signal

Key ideas behind optical encryption:
• Assume a realistic adversary that cannot measure all the high frequency 

portion of an optical signal.
• Hide information in the optical signal using secret key and noise 

much interest in the optics community
• The hope: extremely fast encryption

Today we begin to cryptanalyse a variant of the promising 
optical encryption system of [Menendez, et.al., Oct. 2005]

…and we show situations where we learn key with 2 known plaintexts
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Why use optical encryption?   (1)
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The holy grail:
Encryption with data rates FASTER than crypto operation rates

rate of keystream << rate of data stream

Use properties of optical signals to do more than an electronic one-time-pad

Why use optical encryption?   (2)
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Encryption with optical CDMA
Over 10 years of research by the optics community:

[Tancevski and Andonovic, Elec. Lett., 1994]

“… suitable for truly asynchronous highly secure LAN applications…”

DARPA Optical CDMA program (2002-Today):
“The benefits of the program will be optical communications systems 
with enhanced multi-level security, low probability of intercept, detection 
and jamming, traits which enhance the reliability and the survivability of 
military networks.”

Some recent (independent) publications:
[TH Shake, J. Lightwave Technology, April 2005]

[R. Menendez et al., J. Lightwave Technology, Oct. 2005]

[F Xue, Y Du, B Yoo, and Z Ding, Optical Fiber Communication Conference, 2006]

[DE Leaird, Z Jiang, AM Weiner, Optical Fiber Communication Conference, 2006]

[BB Wu, EE Narimanov, Optics Express, 2006]      & EE Times & ScienceDaily &&&&
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BUT

Very little work by the 
security or cryptanalysis community!
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System overview: 1st  (bad) attempt

Alice and Bob get a pair of unique codewords
To send a 0 bit:  Alice transmits codeword C0
To send a 1 bit:  Alice transmits codeword C1
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System overview: 1st  (bad) attempt

Bob’s (simplified) bit recovery algorithm
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System overview: 1st  (bad) attempt

Plaintext                  Key

{C0,C1}

The many-time-one-time pad: 
Eve can distinguish between C0 
and C1 using her own ‘Bob’ detector 
with two random codewords

[TH Shake, April 2005]
[DE Leaird, Z Jiang, AM Weiner, 2006]

Bob’s (simplified) bit recovery algorithm
Check for a 0 bit:
1. Take dot product with C0
2. Check for pulse of height 4

Check for a 1 bit:
1. Take dot product with C1
2. Check for pulse of height 4
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System overview: 2nd  (still bad) attempt

Key 
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Suppose key bits don’t change

To secure this system:
Refresh key for each new bit of plaintext

Now it’s a one-time pad BUT it’s not particularly interesting
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Still the many-time-one-time pad: 
Eve can distinguish between C0 
and C1 using her own ‘Bob’ detector 
with two random codewords

[TH Shake, April 2005]
[DE Leaird, Z Jiang, AM Weiner, 2006]
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Overview of [Menendez2005]’s system

Encoding proceeds in three steps
Mapping: Each Alice maps an electronic bit to a unique optical codeword

Combining: Combine the optical signals from each Alice

Scrambling: Phase scrambling according to key is applied
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[Menendez2005]’s system:  Mapping
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Bob1’s bit recovery algorithm

This works because we use orthogonal codes (e.g. Hadamard codes)  
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Bob1’s bit recovery algorithm

This works because we use orthogonal codes (e.g. Hadamard codes)  
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No Pulse

Check for a 1 bit:
1. Take dot product with C11
2. Check for pulse of height 4

This works because we use orthogonal codes (e.g. Hadamard codes) 

But the cardinality of orthogonal codes is small
(e.g. an orthogonal code of length w has only w codewords)

So Eve can learn plaintext by building her own Bobs
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[Menendez2005]’s system: A One-Time-Pad?

It is not trivial!  We get extra entropy (in addition to key) from:
• Eve’s inability to exactly measure the optical ciphertext
• Continuous random phase noise during the combining ‘+’ operation 
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Suppose key bits don’t change.
Do the attacks that we saw before still work?

Is this just the trivial one-time-pad used many times?
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Folklore: 2frequencies brute force operations to learn key

Folklore: Only known way to learn key is via brute force search

Overview of our results

Our result: Need 2Alices brute force operations to learn the key

Our result: Can learn the key (w.h.p) using only 2 known plaintexts
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plaintext matrix 
Θ ∈ {1,-1}Frequencies x Alices

Discrete matrix elements set by
the bits sent by each Alice

θ11 θ21  …    θN1
θ12 :              θN2
θ13 :              θN3
θ14 θ24  …    θN4

Our attack: Step 1 - Abstract the encoder
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scrambler key vector
k ∈ {1,-1} Frequencies

Discrete & Secret

Eve’s measurement
y ∈ [N,-N] Frequencies

Real-valued measure of ciphertext 

cos φ1
cos φ2

cos φN

phase noise vector
x ∈ [1,-1] Alices

Unknown
Real-valued random process

y = diag(k) • ΘT • x
Assuming y is a noise-free 

amplitude measurement
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1. Eve (optically) obtains a measurement y and a plaintext Θ
2. Eve has W equations in W + N unknowns

Offline, guess N key bits
then solve for phase noise vector x

then solve for W-N remaining key elements
3. Repeat step 2 (offline) until learning key
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Our attack: Step 2 - Brute force search space

known known ?unknown?secret

Folklore: 2frequencies brute force operations to learn key
Our result: Need 2Alices brute force operations to learn key
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1. Eve (optically) obtains a 2 measurement-plaintext pairs (y1, Θ1) (y2, Θ2)
2. Eve has 2W equations in W + 2N unknowns where 2N ≤ W

Offline solve the equations for the key k.
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Our attack: Learning the key with 2 known plaintexts

?secret
fixed

What is dimension of solution space for this system of equations?
If dimension N, there are 2N solutions and Eve learns nothing.

If there is a unique solution, Eve has learned the key
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Our attack: Learning the key with 2 known plaintexts
What is dimension of solution space for this system of equations?

If there is a unique solution, Eve has learned the key

For a system using Hadamard codes (e.g. [Menendez2005]) with 2N=W
Eve gets 2 plaintexts Θ1 ,Θ2 chosen at random and 2 noise-free measurements
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Theorem: If either known 
plaintext represents an odd 
number of ‘0’ bits then there 
is a unique solution.

at least 75% of plaintext 
pairs give a unique solution

Folklore: Only known way to learn key is via brute force search
Our result: Can learn the key (w.h.p.) using only 2 known plaintexts
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The promise of optical encryption 
• Limited measurement capabilities of adversary
• Extra entropy from noise  
• Encryption faster than data rates

Known plaintext attacks on [Menendez 2005] 
• If Eve can make noise-free measurements then:

Security depends on parallelism, not coding complexity
2 known plaintexts break system when Alices’ codewords known

• Future: Attacks with noisy measurements

Some Open Problems: 
• Cryptanalysis of Wu and Narimanov’s scheme
• Extending bounded storage model to this setting
• Positive results for optical encryption!

Conclusion and Open Problems
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