Linked Lists

Kruse and Ryba Textbook
4.1 and Chapter 6

Linked Lists

Linked list of itemsisarranged in order

Size of linked list changes asitems are
inserted or removed

Dynamic memory allocation is often used
in linked list implementation

Ten fundamental functions are used to
manipulate linked lists (see textbook).

Fundamentals

» A linked list is asequence of items arranged one
after another.

e Eachiteminlistisconnected to the next itemviaa

link

d
121 14.6 | maker

14.6

\ 4
v

» Eachitemis placed together with the link to the

next item, resulting in a simple component called a

node.

Declaring a Class for Node

struct Node

{
typedef double Item;

Item data; // datastored in node
Node *link; // pointer to next node

h

A struct isaspecial kind of class where all members are

public. Inthis case there are two public member
variables: data, link.

Whenever a program needs to refer to the item type, we
can use the expression Node::Item.

Head Pointers, Tail Pointers

Usually, programs do not actually declare
node variables. Instead, thelist is accessed
through one or more pointers to nodes.

head_ptr tail_ptr

e
] —fue] e]

Struct Node

{
typedef double Item;

Item data;
Node *link;
b

Node *head_ptr;
Node *tail_ptr;

head ptr tail_ptr

e —

Null Pointer

Thefinal nodein the linked list does not
point to a next node.

If link does not point to anode, itsvalueis
set to NULL.

NULL isaspecia C++ constant, from the
standard library facility <stdlib.h>

NULL pointer is often written O (zero).

Use of NULL pointer in last node of linked
list:

head_ptr tail_ptr

e -

Empty List

» When thelist isempty, both the head_ptr and tail_ptr
are NULL.

» When creating anew linked list, it starts out empty
(both tail and head pointers NULL).

Node *head _ptr,*tail_ptr; head_ptr tail_ptr
i pr ZNULL; N[N
tail_ptr = NULL;

» Any linked list functions you write should handle the
case of empty list (head and tail pointers NULL).

Member Selection Operator

Suppose a program has built alinked list:
head ptr tail_ptr

e =

head ptr isa pointer to anode. How can we get/set
the value of the Item inside the node?

Member Selection Operator

One possible syntax:
(*head_ptr).data=4.5;
cout << (*head_ptr).data;

The expression (*head ptr).data means the data
member of the node pointed to by head ptr.

Member Selection Operator

Preferred syntax:
head ptr->data = 4.5;
cout << head ptr->data;

The symbol “->" is considered a single operator.
Reminds you of an arrow pointing to the member.

The expression head_ptr->data means the data member
of the node pointed to by head ptr.

Two Common Pointer Bugs

» Attempting to dereference a pointer via*p or p->
when p=NULL.
» Attempting to dereference a pointer via*p or p->
when p is not properly initialized.
* NOTE: thiserror does not cause a syntax error,
but instead causes errors:
— BusError
— Segmentation violation
— Address protection violation

Computing the Length of a
Linked List

size tlist_length(Node * head ptr)
{

Node * cursor;

size t answer=0;

for(cursor=head ptr; cursor '= NULL; cursor=cursor->link)
answer++;
return answer;

Computing the Length of a
Linked List

cursor=head ptr;

head ptr

N

Computing the Length of a
Linked List

cursor=cursor->link;

head_ptr

N

Computing the Length of a
Linked List

cursor=cursor->link;

head ptr

N

Computing the Length of a
Linked List

cursor=cursor->link=NULL;

head_ptr

N

Computing the Length of a
Linked List

size tlist_length(Node* head ptr)

{
Node * cursor;
size t answer=0;
for(cursor=head_ptr; cursor '= NULL; cursor=cursor->link)
answer++;
return answer;
}

Traversing aLinked List

Common pattern in functions that need to traverse alinked list:

for(cursor=head_ptr; cursor '= NULL; cursor=cursor->link)

Will thiswork for an empty list?

Always make sure your functions work in the empty list case!!

10

Inserting aNode at List Head

void list_head insert(Node* head ptr, const Node::Item& entry)

{
// Precondition: head_ptr is a head pointer to alinked list

I/ Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

head ptr

Node *insert_ptr;

insert_ptr = new Node; 35| —»|6.2|nuLL
insert_ptr->data = entry;
insert_ptr->link = head_ptr;
head ptr = insert_ptr;

Inserting aNode at List Head

void list_head insert(Node* head ptr, const Node::Item& entry)

{
I/ Precondition: head_ptr is a head pointer to alinked list

I/ Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

head ptr

Node *insert_ptr;

insert_ptr = new Node; 35 —» (6.2
insert_ptr->data = entry;
insert_ptr->link = head_ptr;
head_ptr = insert_ptr; insert ptr

11

Inserting aNode at List Head

void list_head insert(Node* head ptr, const Node::Itemé& entry)

{
I/ Precondition: head ptr is ahead pointer to alinked list

I/ Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

Node *insert_ptr; heed ptr

insert_ptr = new Node; -

insert_ptr->data = entry;
insert_ptr->link = head_ptr;

head ptr = insert_ptr; insert ptr
) e

Inserting aNode at List Head

void list_head insert(Node* head_ptr, const Node::Item& entry)

{
/I Precondition: head_ptr is ahead pointer to alinked list
/I Postcondition: new node is added to front of list containing entry, and
I/ head_ptr is set to point at new node.

Node *insert_ptr; head DU

insert_ptr = new Node; -

insert_ptr->data = entry;
insert_ptr->link = head_ptr;

head ptr = insert_ptr; insert ptr
}

12

Inserting aNode at List Head

void list_head insert(Node* head ptr, const Node::Item& entry)

{
I/ Precondition: head ptr is ahead pointer to alinked list
I/ Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

head ptr

Node *insert_ptr;

insert_ptr = new Node;
insert_ptr->data = entry;
insert_ptr->link = head_ptr;
head_ptr = insert_ptr; insert ptr

Inserting aNode at List Head

void list_head insert(Node* head_ptr, const Node::Item& entry)

{
/Il Precondition: head_ptr is a head pointer to alinked list
/I Postcondition: new node is added to front of list containing entry, and
I/ head_ptr is set to point at new node.

Node *insert_ptr; head DU

insert_ptr = new Node; -—> -

insert_ptr->data = entry;
insert_ptr->link = head_ptr;
head ptr = insert_ptr; insert ptr

13

Inserting aNode at List Head

void list_head insert(Node* head ptr, const Node::Item& entry)

{
// Precondition: head_ptr is a head pointer to alinked list
/I Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

Node *insert_ptr; head ptr

N\
insert_ptr = new Node; 35| —»|6.2|nNuL
insert_ptr->data = entry;
insert_ptr->link = head_ptr; \
head_ptr = insert_ptr; 8.9 N

Inserting aNode at List Head

void list_head insert(Node* head_ptr, const Node::Item& entry)

{
I/ Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: new node is added to front of list containing entry, and
I/ head ptr is set to point at new node.

Node *insert_ptr; head plr
\
insert_ptr = new Node; Y 8.9 35 6.2 | nuLL

insert_ptr->data = entry;
insert_ptr->link = head_ptr;
head ptr = insert_ptr;

14

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::Item& entry)

{
I/ Precondition: previous ptr isa pointer to anodein avalid linked list
// Postcondition: new node is added after the node pointed to by

/I previous _ptr
prev_ptr

head_ptr

Node *insert_ptr;

35 —*|6.2

insert_ptr = new Node;

NULL

insert_ptr->data = entry;
insert_ptr->link = previous_ptr->link;
previous_ptr->link = insert_ptr;

Inserting a Node not at List Head

void list_insert(Node* previous ptr, const Node::Item& entry)

{
I/ Precondition: previous_ptr isa pointer to anodein avalid linked list
I/ Postcondition: new node is added after the node pointed to by
/I previous_ptr

head_ptr prev_ptr
Node *insert_ptr;
insert_ptr = new Node; 35| /> |6.2]nwu
insert_ptr->data = entry;
insert_ptr->link = previous_ptr->link;
previous ptr->link = insert_ptr; insert_ptr

15

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::ltem& entry)

{
I/ Precondition: previous ptr isa pointer to anodein avalid linked list
I/ Postcondition: new node is added after the node pointed to by
/I previous _ptr

head_ptr prev_ptr
Node *insert_ptr;
insert_ptr = new Node;
insert_ptr->data = entry;
insert_ptr->link = previous_ptr->link;
previous_ptr->link = insert_ptr; insert_ptr

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::ltem& entry)

{
/I Precondition: previous ptr isa pointer to anodein avalid linked list
// Postcondition: new node is added after the node pointed to by
/I previous_ptr

prev_ptr

head_ptr
Node *insert_ptr;

insert_ptr = new Node;
insert_ptr->data = entry;

insert_ptr->link = previous_ptr->link;
previous_ptr->link = insert_ptr; Insert_ptr
}

16

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::ltem& entry)
{
I/ Precondition: previous ptr isa pointer to anodein avalid linked list
I/ Postcondition: new node is added after the node pointed to by
/I previous _ptr
head_ptr prev_ptr
Node *insert_ptr;

insert_ptr = new Node;
insert_ptr->data = entry;
insert_ptr->link = previous_ptr->link;

previous_ptr->link = insert_ptr; insert ptr
}

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::ltem& entry)

{
/I Precondition: previous ptr isa pointer to anodein avalid linked list
// Postcondition: new node is added after the node pointed to by
/I previous_ptr

head_ptr prev_ptr

Node *insert_ptr; -

insert_ptr = new Node;

insert_ptr->data = entry;
insert_ptr->link = previous_ptr->link;

previous_ptr->link = insert_ptr; insert ptr
}

17

Inserting aNode not at List Head

void list_insert(Node* previous ptr, const Node::Item& entry)
{
I/ Precondition: previous ptr isa pointer to anodein avalid linked list
// Postcondition: new node is added after the node pointed to by
/I previous _ptr
head_ptr

Node *insert_ptr;

insert_ptr = new Node;

insert_ptr->data = entry; /

insert_ptr->link = previous_ptr->link;
previous_ptr->link = insert_ptr; 8.9 [nuLL

List Search

» Find thefirst nodein alist that contains the
specified item.
 Return pointer to that node.

18

Searching List for Item

Node* list_search(Node* head_ptr, const Node::Item& target)

{
/I Precondition: head_ptr is ahead pointer to alinked list
// Postcondition: return value is pointer to first node containing
/I specified target. Returns NULL if no matching node found.

Node *cursor;
for(cursor = head_ptr; cursor != NULL; cursor = cursor->link)
if(target == cursor->data)
return cursor;
return NULL;

}

Locating n" Node in List

Node* list_|locate(Node* head ptr, size t position)

{
/I Precondition: head ptr is ahead pointer to alinked list
/I Postcondition: return value is pointer to node at specified position
/I first nodein list has position=0

Node *cursor;
size ti;

cursor = head_ptr;
for(i=0; (i<position) && (cursor != NULL); ++i)
cursor = cursor->link;

return cursor,

}

19

Removing aNode at List Head

void list_head remove(Node* head ptr)
{
// Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr is set to point at head_ptr->link. Removed nodeis deleted

Node *remove ptr; heed ptr
AN
remove_ptr = head_ptr; N 89 35 6.2 | NuLL
head ptr = head ptr->link;
delete remove _ptr;
}

Removing aNode at List Head

void list_head_remove(Node* head ptr)
{
I/ Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr is set to point at head_ptr->link. Removed nodeis deleted

Node *remove ptr; head plr
AN
remove_ptr = head_ptr; Y 8.9 35 6.2 | NULL
head ptr = head ptr->link;
delete remove ptr;
} remove_ptr

Removing aNode at List Head

void list_head _remove(Node* head ptr)
{
I/ Precondition: head ptr is ahead pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr isset to point at head_ptr->link. Removed nodeis deleted

Node *remove ptr; heed ptr

remove_ptr = head_ptr;
head_ptr = head_ptr->link;

delete remove_pitr;
remove _p

Removing aNode at List Head

void list_head remove(Node* head_ptr)
{
/Il Precondition: head_ptr is a head pointer to alinked list
/I Postcondition: first node is removed from front of list, and
I/ head_ptr is set to point at head_ptr->link. Removed node is deleted

head ptr

Node *remove_ptr;

remove_ptr = head ptr;
head ptr = head ptr->link;
delete remove ptr;

}

remove_pt

21

Removing aNode at List Head

void list_head remove(Node* head ptr)
{
// Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr is set to point at head_ptr->link. Removed nodeis deleted

Node *remove ptr; heed ptr
\
remove_ptr = head_ptr; 35 6.2 | NuLL
head ptr = head ptr->link;
delete remove _ptr; /
) remove_pt
/

Will it work if head ptr=NULL?

void list_head_remove(Node* head ptr)
{
I/ Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr is set to point at head_ptr->link. Removed nodeis deleted

Node *remove_ptr;
remove_ptr = head ptr;

head_ptr = head_ptr->link;
delete remove ptr;

22

Will it work if head ptr=NULL?

void list_head remove(Node* head ptr)
{
// Precondition: head_ptr is a head pointer to alinked list
I/ Postcondition: first node is removed from front of list, and
I/ head ptr is set to point at head_ptr->link. Removed nodeis deleted

Node *remove_ptr;

if(head_ptr == NULL) return;
remove_ptr = head_ptr;

head ptr->link = head ptr->next;
delete remove _ptr;

Removing anot Node at List Head

void list_remove(Node* previous ptr)
{
I/ Precondition: previous_ptr isa pointer to nodein alinked list
/I Postcondition: node is removed from front of list, and
/I removed node is deleted
previous _ptr

Node *remove ptr; head ptr N

o W
g9 2 6.2 L

remove_ptr = previous_ptr->link;
previous_ptr->link = remove J)tr_>“rr<]e|r<ﬁove i
delete remove ptr; P

}

23

Removing anot Node at List Head

void list_remove(Node* previous ptr)

{
I/ Precondition: previous ptr isa pointer to nodein alinked list
I/ Postcondition: node is removed from front of list, and
/I removed node is deleted

previous_ptr

Node *remove_ptr; head ptr

remove_ptr = previous_ptr->link;
previous_ptr->link = remove _ptr->|irr(1alr<'%ove i
delete remove _ptr; P
}

Removing anot Node at List Head

void list_remove(Node* previous ptr)

{
/I Precondition: previous _ptr is a pointer to nodein alinked list
/l Postcondition: node is removed from front of list, and

I/ removed node is deleted
previous _ptr

Node *remove_ptr;

remove_ptr = previous_ptr->link;
previous _ptr->link = remove_ptr->next;
delete remove ptr; remove ptr

}

24

Removing anot Node at List Head

void list_remove(Node* previous ptr)

{
I/ Precondition: previous ptr isa pointer to nodein alinked list
I/ Postcondition: node is removed from front of list, and
/I removed node is deleted

previous_ptr
Node *remove_ptr; head ptr
remove_ptr = previous_ptr->link;
previous_ptr->link = remove_ptr->link;
delete remove ptr; femove pur

}

Removing anot Node at List Head

void list_remove(Node* previous ptr)

{
/I Precondition: previous _ptr is a pointer to nodein alinked list
Il Postcondition: node is removed from front of list, and

I/l removed node is deleted
previous _ptr

Node *remove_ptr;

remove_ptr = previous_ptr->link;
previous_ptr->link = remove_ptr->link;
delete remove ptr; remove ptr

}

25

Other List Functions

« list clear: empties a list, deleting all nodes.
* list copy: copiesa list, and all its nodes.
* list append: appends one list onto the end of another

Implementations and interfaces may vary, but the basic
operations on lists remain more or |less the same.

Better implementation: define alist class!! Thisis object
oriented programming after all.

26

