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ABSTRACT
The ability of an ISP to infer traffic volumes that are not di-
rectly measurable can be useful for research, engineering, and
business intelligence. Previous work has shown that traffic ma-
trix completion is possible, but there is as yet no clear under-
standing of which ASes are likely to be able to perform TM
completion, and which traffic flows can be inferred.
In this paper we investigate the relationship between the AS-

level topology of the Internet and the ability of an individual
AS to perform traffic matrix completion. We take a three-stage
approach, starting from abstract analysis on idealized topolo-
gies, and then adding realistic routing and topologies, and fi-
nally incorporating realistic traffic on which we perform actual
TM completion.
Our first set of results identifies which ASes are best-

positioned to perform TM completion. We show, surprisingly,
that for TM completion it does not help for an AS to have
many peering links. Rather, the most important factor enabling
an AS to perform TM completion is the number of direct cus-
tomers it has. Our second set of results focuses on which flows
can be inferred. We show that topologically close flows are
easier to infer, and that flows passing through customers are
particularly well suited for inference.

Categories and Subject Descriptors
C.2.3 [NetworkOperations]: Network monitoring; C.2.5 [Local
and Wide-Area Networks]: Internet — BGP

Keywords
Interdomain Routing, Matrix Completion

1. INTRODUCTION
Interdomain traffic – the traffic flowing between autonomous

systems – is the fundamental workload of the Internet. It re-
flects global economic activity and information flow. Knowl-
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edge of interdomain traffic volumes is therefore of immense
engineering, scientific and societal interest.
On a more local scale, knowledge of interdomain traffic vol-

umes has great value for business intelligence. Consider an
ISP that is pondering a bid for a competitor’s customer. That
ISP has a significant advantage if it knows how much busi-
ness the competitor currently does with the customer (i.e., how
much traffic they exchange), and how the customer’s traffic
would impact the ISP’s network should the customer change
providers.
Unfortunately, broad knowledge of interdomain traffic vol-

umes on the Internet is hard to come by. The inherently dis-
tributed architecture of the AS-level Internet means that there
is no single place where all Internet-wide traffic can be mea-
sured, and the competitive relationship of the commercial In-
ternet means that sharing such information across organiza-
tional boundaries is unlikely. The authors in [10] review the
situation and note that an inter-AS traffic matrix is an “elusive
object.”
Hence we are prompted to turn to statistical inference where

direct measurement is impossible. The problem can be cast
in terms of a traffic matrix – measurements of traffic volume
from sources (rows) to destinations (columns). Any given AS
can observe some of the elements of this matrix – namely, ex-
actly the traffic that flows through the AS. Can an AS ever
‘fill in’ the missing entries (corresponding to traffic not flow-
ing through the AS) thereby ‘completing’ the matrix? Doing
so would give the AS a view of a much larger set of traffic
volumes, or even of traffic volumes across the entire Internet.
Surprisingly, recent work has suggested that in some cases,

a single AS can complete at least some of the missing portions
of its traffic matrix [2, 27]. The general idea (described in de-
tail in Section 2) is as follows. The first step is to note that traf-
fic matrix elements show strong statistical regularities. There
are predictable relationships between elements, such that miss-
ing elements can often be cast in terms of linear functions of
observable elements. One way of describing this phenomenon
is to note that traffic matrices often have low effective rank
(which we define in Section 2). The second step is to apply
methods of statistical inference that are recently emerging in
the signal processing community, termed matrix completion.
These methods are specifically designed to perform missing-
element inference on matrices that have low effective rank. A
wide variety of such methods have now been developed [3, 4,
5, 17, 25].
The key to matrix completion is the ability to observe a

sufficiently useful subset of the matrix entries. If enough en-



tries, in the right positions, can be observed, the rest of the
entries can be ‘filled in.’ In the context of interdomain traf-
fic matrices, this question relates to the network’s AS-level
connectivity and routing patterns. Some ASes, by virtue of
their topological position and commercial roles, may observe
enough traffic passing through their networks to allow them to
infer traffic volumes not passing through their networks. Ini-
tial studies have shown existence proofs that such inference
is possible [2, 27]. The question is – for whom? For which
ASes is traffic matrix completion most likely to be successful?
And, for those ASes that can infer some TM elements, which
elements can they infer?
Those questions are the focus of this paper. We seek to un-

derstand which ASes are likely to be able to perform TM com-
pletion, which elements they can infer, and why. We seek to
answer these questions from two standpoints: from an analyt-
ical standpoint, we look for graph-theoretic properties of the
AS topology that lead to increased traffic inference ability for
an AS. And from a practical standpoint, we look to answer to
these questions in terms of metrics that relate to an ISP’s busi-
ness and engineering relationships – e.g., howmany customers
and peering links it has.
To do so, we provide a framework for analyzing the infer-

ence capability of a given AS based on its position in the AS
graph and the set of paths that pass through it. This is the first
contribution of our paper, and is independently useful, for ex-
ample, when an individual AS seeks to evaluate its own infer-
ence capability. However, once having developed this frame-
work, our second contribution is to apply the framework to a
large AS graph to investigate actual ASes and their TMs.
The first stage of our work explores the relationship between

TM completion ability and certain idealized graph models. We
develop an algorithm that allows us to prove a lower bound on
TM completion ability, and using it we gain insight into how
TM completion ability relates to local graph topology.
The second stage of our work brings realistic routing into

the picture. For this we rely on an extensive survey of the AS-
level Internet, comprising over 100 million AS paths, captured
at a single time. This rich dataset allows us to explore how
TM completion ability varies over the set of all ASes in the
Internet.
Finally, the third stage of our work applies actual matrix

completion to realistic TMs across ASes in the Internet. For
each AS we evaluate its accuracy when completing a TM com-
prising about 30 million elements, of which between 0.001%
and 0.3% are actually visible to the AS, depending on the set
of AS paths that flow through it.
The three stages of our effort mutually support our primary

conclusions. We find that the key to TM inference ability
lies in the set of customers of an AS. Our analysis and mea-
surements show that an AS’s customers provide the AS with
crucial knowledge of interdomain traffic flows needed for TM
completion. When asking which flows are most readily es-
timated, we find that the closer a flow passes to an AS in the
BGP graph, the more readily it may be estimated; and when an
AS seeks to specifically recover the entries of flows that pass
through another AS, it is most successful when the other AS
is a neighbor – especially, when the other AS is a customer.

2. BACKGROUND & RELATEDWORK

2.1 Definitions
A traffic matrix (TM) is an m×n matrix T in which Ti j is a

measure of the traffic flowing from a set of IP addressesSi to
a set of IP addresses D j during a specific time interval. At any
moment, the view of a network P consists of all the source-
destination pairs (s,d) such that any traffic flowing from s to
d will at some point pass through P. A network’s view can
be captured in the form of an m×n visibility matrix M, where
Mi j = 1 if traffic from Si to D j passes through P, and zero
otherwise.
A key property for traffic matrices in our work is low ef-

fective rank. If an m× n matrix T can be factored into an
m×d matrix X and a d×n matrix Y , such that XY = T , then
T has rank (no greater than) d. If d " min(m,n) then we
say T has low rank. When working with measurement data,
a matrix T may be strictly speaking full rank, but nonetheless
well-approximated by a low-rank matrix. That is, if there ex-
ists a rank d matrix T ′ such that T ≈ T ′, we say that T has low
effective rank. For example, we may use a least-squares crite-
rion: T ≈ T ′ if ∑i, j(Ti j−T ′

i j)
2/∑i, j T 2i j is small enough. Low

rank is important because it means that elements of T are re-
lated; only a small amount of information (X and Y ) is needed
to construct T , so some elements of T can be computed as
linear functions of other elements. Likewise, if a matrix has
low effective rank, then some elements can be approximated
as linear functions of other elements.
In this work, TMs will be organized as either node-to-node

TMs (in our idealized examples in Section 3) or AS-to-prefix
TMs (when using real topologies in Sections 4 and 5).

2.2 Properties of Traffic Matrices
Our work deals with large-scale inference of traffic matrices

that span ASes. While an interdomain TM remains an “elusive
object” [10], a few previous studies have built models of in-
terdomain traffic. The work described in [13] estimates Web-
related interdomain traffic, using server logs from a large CDN
provider. The work described in [8] brings more AS-specific
information to the table, including business relationship, pop-
ulation size, and AS role, and fuses this information to form
estimates of interdomain traffic volume. These models and
methods inform our work, but the focus of our work is not ex-
plicitly on modeling TMs. Rather, we only assume that TMs
show low effective rank.
Indeed, there is considerable evidence that traffic matrices

often show low effective rank. In [19], the authors document
low effective rank in measurements of temporal traffic matri-
ces, in which each column is a time-series of the traffic vol-
ume between a source-destination pair. In [2], the authors
present a similar result for measurements of spatial traffic ma-
trices, in which the rows represent the sources and the columns
represent the destinations (as do the matrices in this paper).
More generally, traffic matrix modeling often assumes that
TMs have low effective rank. The often-used gravity models
are rank-1 models; such models have been used, for example,
in [9, 20, 22, 23, 26]. Likewise, the authors in [12] show that a
rank-2 model is a good fit to measured TMs. Finally, a number
of papers have explicitly relied on the property of low effective
rank in TMs as the basis for their results [2, 18, 27].
In this paper we start from the assumption that TMs show



low effective rank. However, we do not assume that TMs have
any particular effective rank; our analyses and experiments
treat matrix rank k as a parameter.

2.3 Traffic Matrix Completion
Our paper applies ideas from matrix completion to traffic at

the AS level. Matrix completion is a relatively new area in sta-
tistical inference with a number of recent results [5, 17]. The
matrix completion problem consists of recovering a low-rank
matrix from a subset of its entries. Let the m×nmatrix T hav-
ing rank k" min(m,n) be unknown, except for a subset of its
entriesΩwhich are known. If the setΩ contains enough infor-
mation, and T meets a condition called incoherence, then there
is a unique rank-k matrix that is consistent with the observed
entries.
Recently, a variety of algorithms have been proposed that

solve the matrix completion problem under various assump-
tions [3, 4, 5, 17, 25]. These algorithms are typically analyzed
under the assumption that the locations of the known entries of
T are distributed uniformly at random across the matrix. How-
ever, matrix completion can be possible when the location of
entries are not uniformly spread across the matrix. In partic-
ular, the algorithm in [21] does not assume uniformly spread
entries, and furthermore has a more general capability. Rather
than focusing exclusively on matrix completion, it can also be
used to identify which elements of a matrix can be recovered,
even when full completion is not possible. It is this property
of the algorithm that we make use of in our work. We review
this algorithm and our use of it in the next subsection.
Given the tendency for traffic matrices to show low effec-

tive rank, a number of authors have applied matrix completion
to different types of TMs. In particular, the authors in [27]
develop algorithms for accurately recovering missing values
(due to measurement failures) in intra domain TMs in which
the sources and destinations are in the observer’s network.
And in the study mentioned previously, the authors in [2] de-
velop methods for inferring traffic volumes for traffic that does
not pass through the observer’s network, and hence cannot be
measured. In [2], the authors show that a network P can infer
the traffic that does not flow through P but flows through its di-
rect customer network T . However [2] only demonstrates this
for one particular pair of networks and does not give insight
into when TM completion is possible in general. In contrast,
our paper asks the broader question - what relationship should
P and T have in order for TM completion to be successful.

2.4 ICMC and AICMC
To analyze the ability of an AS to perform matrix comple-

tion, we adopt a particular algorithm from the matrix com-
pletion literature called Information Cascading Matrix Com-
pletion (ICMC) [21]. ICMC can be applied to matrices that
are exactly low-rank, or approximately low-rank; for simplic-
ity in the description below we describe it as applied to an
exactly low-rank matrix. However extensions to deal with ap-
proximately low-rank matrices are not difficult, as described
in [21].
We use ICMC as a tool for exploring the TM completion

ability of ASes. The advantage of using ICMC as compared to
other matrix completion algorithms is that it identifies which
matrix elements can definitely be recovered in a given setting.
That is how we use it in this Section and Sections 4 and 5.
However, not all matrix completion algorithms work in this

elementwise, all-or-nothing fashion; other algorithms try to
form estimates of all missing elements. Hence we confirm
our results by using a different matrix completion algorithm in
Section 6.
ICMC assumes that them×nmatrix T having rank k is non-

degenerate, meaning that T can be factored into the matrices
X ∈Rm×k and Y ∈Rk×n such that any k rows of X are linearly
independent, any k columns of Y are linearly independent, and
XY = T . The basic idea of ICMC is to progressively compute
rows of X and columns of Y so that (XY )i j = Ti j, ∀(i, j) ∈Ω.
In fact, our goal in this paper is not performing matrix com-

pletion per se, but rather identifying whether and when matrix
completion is possible. Hence we employ ICMC in a manner
we refer to as abstract ICMC, or AICMC.
AICMCmay be expressed in terms of operations on a bipar-

tite graph, as shown in Figure 1. The graph consists of two sets
of vertices, U = {ui, i = 1, . . . ,m} and V = {v j, j = 1, . . .n}.
An edge exists between ui and v j if (i, j) ∈ Ω; otherwise no
edge exists. Thus there is a correspondence between vertex ui
and row i of X ; and there is a correspondence between vertex
v j and column j of Y .
AICMC progresses by successively marking vertices as ‘in-

fected,’ which means that the corresponding row of X or col-
umn of Y can be recovered. The set L consists of infected u
vertices, and R consists of infected v vertices. Infection propa-
gates through the graph: v j can be infected if there are at least
k edges from v j to vertices in L. Analogously, infecting ui re-
quires at least k edges from ui to vertices in R. When no more
nodes can be infected, the set L identifies the rows of X that
can be recovered, and R identifies the recoverable columns of
Y . The authors in [21] prove the correctness of this process for
recovering X and Y .
Figure 1 shows an example visibility matrix and correspond-

ing bipartite graph. This process is shown in the figure for
k = 1. Starting with infected vertex u1, each step progres-
sively infects nodes on alternating sides of the bipartite graph.
While in this case the final set of infected nodes corresponds to
the largest connected component, note that for k > 1 the final
set of infected nodes is not necessarily the largest connected
component.
To start the algorithm, one notes that the solution X ,Y is not

unique, and hence without loss of generality the algorithm can
be initiated by setting any k rows of X to the k× k identity
matrix, and marking the corresponding k vertices as infected
(forming the initial population of the set L). Beginning from
this initial set of infected nodes, the algorithm proceeds by
alternately adding to the sets R and L. When these sets contain
all vertices in the graph, the entire matrix is recovered at rank
k.
That said, one can set aside the graph interpretation and ex-

press AICMC simply in terms of an observer’s visibility ma-
trix M. Note that Mi j = 1 iff (i, j) ∈ Ω. AICMC proceeds as
follows

1. Choose k rows of M and set L to those rows.

2. If L contains all rows of M and R contains all columns
of M, stop - the matrix T can be fully recovered. Other-
wise:

(a) For every column of M such that there are at least
k 1s in rows from set L, add the column to R. If
there are no such columns, stop.
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Figure 1: AICMC Example: T is a 4× 4 data matrix (not shown) of rank k = 1. T ’s known elements correspond to the
positions of the 1s in its visibility matrix M (left side of the figure). The steps of AICMC are: (1) L = {u1}, (2) R= {v2,v4},
(3) L= {u1,u2,u4}, (4) R= {v1,v2,v4}. The algorithm stops at the end of (4). The completed elements are (1,1), (2,1), (2,4),
and (4,2) - 1s shown in bold in M (right side of the figure).

(b) For every row ofM such that there are at least k 1s
in columns from set R, add the row to L. If there
are no such rows, stop.

3. Go to 2.
At completion, an element (i, j) can be recovered if row i is in
L and column j is in R. Thus AICMC allows us to examine an
AS’s visibility matrix, and identify, for each invisible element,
whether it can be recovered at a given rank (or approximate
rank) k. In Figure 1 the recoverable elements are shown on the
right side of the figure. Note that if an AS can complete its
TM at rank k, it can complete it at any rank r ≤ k.

2.5 Interdomain Topology
A central aspect of our work is establishing a connection

between the AS-level topology of the Internet, and the ability
of individual ASes to do traffic matrix completion. Hence we
rely on the considerable body of work that has characterized
the AS level topology, of which we can only review a portion
here.
At the highest level, the AS graph is usually characterized

as having roughly three distinguishable parts [6, 15, 16, 24].
Forming the center of the graph is a mesh-like core that is a
clique or ‘almost’ a clique. This core is fed by a collection
of ASes in provider-customer relationships that are ‘tree-like’
but not strictly trees. Finally the vast majority of ASes are
stubs, ASes at the edge of the network having no customers
themselves. A number of methods have been proposed for
organizing ASes into a small number of tiers [15, 24].
In our work we seek a finer-grained and less arbitrary mea-

sure of centrality in the AS graph than tiers, and so we turn to
a tool for graph analysis called k-core decomposition 1 [1]. K-
core decomposition separates the vertices of a graph into suc-
cessive sets called “shells”. These are operationally defined:
the 1-shell consists of all nodes of degree 1, plus all nodes that
become degree-1 when degree-1 nodes are removed. Remov-
ing all such nodes leaves only nodes of degree-2 and higher,
and the process repeats. As described in [6], this is a parameter-
free way of characterizing the AS graph, and it naturally iden-
tifies a ‘nucleus’ (innermost shell) of the graph which is ob-
served to consist of major provider ISPs, major IXPs, CDNs
and content providers. In our data the nucleus is shell 58, con-
taining 120 ASes. Each node in the nucleus is connected to
about 70% of the other nodes.
1Note that parameter k used in k-core decomposition repre-
sents degree order It is unrelated to rank parameter k we use
throughout the paper.

Our knowledge of the AS level graph is derived from mea-
surements, and is generally understood to be imperfect. A
good review of the issues is presented in [10], but a persistent
concern is that maps of the AS graph miss links, in particular
peering links [7]. Missing links may result in some inaccuracy
in certain graph metrics we use: k-core decomposition, degree,
number of peers and number of customers. For that reason
we do not base results on precise values of these metrics, but
rather focus on the trends seen as these metrics vary. However
missing links do not cause inaccuracies for our key metrics:
completion ability and expected rank (defined below). This is
because (as explained in Section 4.1) we select a subset of all
AS paths in such a way that these metrics are known with high
confidence.
Finally, a portion of our results relies on the classification

of AS-AS links as customer-provider or peer-peer (we do not
consider sibling-sibling links). For this we rely on the body
of knowledge that has been built up on how to do this classifi-
cation since [14], and in particular rely on the comprehensive
approach used in [11].

3. ANALYSIS
Our first step is to develop high-level insight about the re-

lationship between graph topologies and the opportunity for
traffic inference. We do that by establishing provable lower
bounds on traffic matrix completion in various idealized net-
works. These models necessarily ignore important aspects of
the AS level Internet (e.g., they assume shortest-path, sym-
metric routing) but our goal here is to build intuition. Later, in
Sections 4 and 5, we will examine real AS level graphs.
Each of our idealized models starts with a particular graph

G = (V,E), with |V | = n. Each node vi ∈ V sends one traf-
fic flow to every node v j ∈ V (including vi itself). All flows
travel over shortest paths, assuming edges have unit weight.
In each graph we designate an observer node, denoted vo; we
will analyze the observer’s ability to do traffic inference.
The information available to the observer node is summa-

rized in a visibility matrix M of size n× n. We set Mi j = 1 if
the flow from vi to v j passes through vo and so is measurable
by vo; otherwise we set Mi j = 0. By convention we assign vo
to matrix index 1. Thus the first row and the first column ofM
are always fully populated with 1s, since all traffic that origi-
nates or terminates at vo is visible to vo. Furthermore, because
of our assumptions about flow routing,M is symmetric.
To find a lower bound on the traffic inference capabilities of

vo, we apply Abstract ICMC (AICMC) to M as described in
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Figure 2: Full mesh network.

Section 2.4. Using AICMC we can identify invisible elements
of the network-wide traffic matrix that can be recovered by vo,
assuming the traffic matrix is rank k. For simplicity, we ask
the following question in each case: For what values of k can
vo recover the entire TM? Larger values of k imply a greater
ability to do TM completion.
We study a progression of idealized networks, starting with

highly decentralized networks, then moving to trees and tree-
like networks, and finally considering some more specialized
topologies that are inspired by the connection pattern of ASes
in the Internet.

3.1 Idealized Networks
We study three idealized networks: a clique, and two trees

that differ in terms of size and degree.
Clique: In a clique (a full mesh), there is a direct link be-
tween every pair of nodes (Figure 2). As a result, the observer
node vo can only measure flows having itself as either source
or destination, resulting in the visibility matrix shown in the
Figure.

PROPOSITION 3.1. Given a full mesh with n nodes, (a) the
observer can complete its TM for k = 1; and (b) the observer
cannot complete its TM at any rank k > 1.

PROOF. For (a): in the initial step we choose the first row
of M and set L to that row, i.e. L= {1}. Next, all columns are
added to R, i.e. R = {1, . . . ,n}, since they all have 1s in the
first row of M. Finally, all the rest of the rows are added to L,
i.e. L= {1, . . . ,n}, since they all have 1s in the first column of
M.
For (b): when k > 1, the initial step chooses k rows of M

and sets L to those rows. However, no choice of k rows yields
more than one column with k 1s, so completion is impossible
at rank k > 1.

Trees: Figure 3 shows an example tree and the visibility ma-
trix of an arbitrary observer node, vo. Node vo has two chil-
dren, which form the roots of its left and right subtrees (ex-
tension to the case where vo has more than two children is
straightforward). Nodes besides vo and its children are re-
ferred to as others. The visibility matrix reflects the fact that
the observer can measure traffic between nodes in its subtrees
and others, and traffic between nodes in its right and left sub-
trees. The observer cannot measure traffic flowing only within
the right subtree, or within the left subtree, or among others.

PROPOSITION 3.2. Given a tree containing an observer
node vo with (at least) two children, as in Figure 3, let nr be
the number of nodes in the right subtree, nl be the number of
nodes in the left subtree, and no be the number of other nodes.
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Figure 4: Mesh-of-Trees

If nr ≥ k− 1, nl ≥ k− 1, and no ≥ k− 1, the observer can
complete its TM at rank k.
PROOF. Let Nl be the indices of the left children, Nr be

the indices of the right children, and No be the indices of the
other nodes. The initial step chooses the first k rows of M and
sets L to those rows, i.e. L= {1, . . . ,k}. Next, the columns that
correspond to the indices of the observer, left children, and the
others are added to R, i.e. R= {1,Nl ,No}, since they have at
least k 1s in the rows of L due to the assumption nr ≥ k− 1.
Next, all the remaining rows are added to L, i.e. L= {1, . . . ,n},
due to the assumptions nl ≥ k−1 and no ≥ k−1. Finally, the
columns that correspond to right children are are added to R,
i.e. R= {1, . . . ,n} since they have at least 3k−2 1s in the rows
of L.

Note that the proposition does not hold if the observer has
only one child; observation of traffic between children is im-
portant for overall traffic matrix completion.
The previous proposition showed that the number of cus-

tomers in each subtree matters. Next, we show that local con-
nectivity (node degree) matters as well.

PROPOSITION 3.3. Given a tree (a star) consisting of an
observer node vo connected to d other individual nodes, the
observer can complete its TM at rank k, where 2k ≤ d+1.
PROOF. In this topology, the observer vo sees the traffic

between any pair of nodes. This results in a visibility matrix
M in which all elements are 1s except the last n− 1 elements
in the diagonal. In the initial step we choose the first k rows
of M and set L to those rows, i.e. L = {1, . . . ,k}. Next, the
columns that correspond to the indices greater than k are added
to R, i.e. R = {1,k+ 1, . . . ,n} since they have k 1s in each
of the rows of L. Next, all the remaining rows are added to
L, i.e. L = {1, . . . ,n}, since they have at least k 1s due to the
assumption 2k ≤ d+1. Finally, all the remaining columns are
added to R, i.e. R = {1, . . . ,n} since they have at least 2k− 1
1s in the rows of L.

Thus there are two node characteristics that influence the
ability to complete the TM in a tree: the observer can complete



!
!

!
"

"
#

#

"
#

"
#

$%&'()*('+%(

,-./+

!
"

!
!

0

!
!

!
" #

1

!

1 ##

# # 1

# # #
0

!

"
!$"

"
%&"

"
!$"

"
%&"

!

0

Figure 5: A node with k single-parent customers

its TM if the number of nodes in each of its subtrees is high
enough, or if its degree is high enough.

3.2 Internet-Like Graphs
Now we turn to graph models that are intended to capture

aspects of the Internet topology at the AS level. We apply
the idealized graph models studied above to various Internet-
inspired topologies. Again, these models ignore important
aspects of the AS level Internet, but we build some intuition
about the AS level Internet by studying them.
Our first model is a full mesh of nodes, each of which is

the root of a subtree, as illustrated in Figure 4. This model is
intended to capture some aspects of the relationship between
top-tier ASes, as described in Section 2.5.

PROPOSITION 3.4. Given a mesh of trees in which each
mesh node vi is the root of a tree, the observer mesh node vo
has at least two child trees each of size at least nc ≥ k−1, and
the sum of the sizes of all other trees (including the roots) is
≥ k− 1, the observer node vo can fully complete its visibility
matrix at rank k.

PROOF. Straightforward adaptation of Proposition 3.2.

This example shows that even though a node participates
in a decentralized mesh (as for example happens at the top of
the AS hierarchy), if it has enough nodes in its subtrees it can
complete its traffic matrix.

Single-Parent Stub Customers: Next we turn to analyze
models of AS topologies that are more typical further down
in the AS hierarchy. We define single-parent customers as
nodes that use only one provider to connect to the rest of the
network during the time interval in which measurements are
taken. Note that single-parent customers are not necessarily
single-homed customers — they may have multiple providers,
but they only route traffic through one provider at any given
time.
A node with single-parent customers can see the traffic be-

tween these customers and the rest of the network. Figure 5
(left) shows an observer vo that has k single-parent customers,
c1, . . . , ck, which are stub networks. Figure 5 (right) shows the
visibility matrix of vo.

PROPOSITION 3.5. Given a network of size n, an observer
vo that has k single-parent stub customers can complete its
visibility matrix M at rank k, where n≥ 2k+1.
PROOF. In the initial step we choose the first k rows of M

and set L to those rows, i.e. L= {1, . . . ,k}. Next, the columns
that correspond to the indices vo, ck, vk+1, . . . , vn, are added to
R, i.e. R= {1,k+1, . . . ,n}. Next, the row that corresponds to
ck is added to L, i.e. L= {1, . . . ,k+1}. Next, the columns that

correspond to c1, . . . , ck−1 are added to R, i.e. R= {1, . . . ,n}.
Finally, the rows that correspond to vk+1, . . . , vn are are added
to L, so that L= {1, . . . ,n}. Note that this is a simple extension
of Proposition 3.3.

An important loss of visibility occurs when some customers
have peering relationships. If two customers ci and c j have a
peering relationship, vo can not see the traffic between them.
This yields a visibility matrix like Figure 5, but with two more
0 entries on the upper left submatrix. In general, this type of
peering relationship can happen between more than one pair
of customers. In the worst case, all customers have peering
relationships and this makes the upper left part of M all 0s
except for its first row and column.

PROPOSITION 3.6. Given a network of size n, for an ob-
server vo that has k single-parent stub customers, if at least
k− p− 1 of its customers have no more than p peering links
with other customers, where p≥ 0 and n≥ 2k+1, then vo can
complete its TM at rank r = k− p.

PROOF. Assume that the customers are indexed (starting
from 2) in order of increasing number of peering links. In the
initial step we choose the first r rows of M and set L to those
rows, i.e. L = {1, . . . ,r}. Next, the columns that correspond
to vo, vk+1, . . . , vn have r 1s in the rows of L. The columns
that correspond to customers are not guaranteed to have r 1s; it
depends on the number of peering links they have. Therefore,
R= {1,k+1, . . . ,n}. Next, the rest of the rows that correspond
to the customers are added to L, i.e. L = {1, . . . ,k+1} due to
the assumption that n > 2k+ 1. After this point, the columns
that are not added to R yet are {2, . . . ,k+1}. These correspond
to the customers c1, . . . , ck. Likewise, the rows that are not
added to L are vk+1, . . . , vk. For these rows to be added, at
least r− 1 columns that correspond to the customers should
have at least r 1s. Rewriting this statement for r = k− p, to
complete the matrix at rank k− p, at least k− p− 1 columns
that correspond to the customers should have at least k− p
1s. If an AS has p peering links, then it has k− p 1s in its
corresponding column. This shows that in order to complete
the matrix at rank k− p, at least k− p− 1 customers should
have no more than p peering links with other customers.

This shows that the presence of a limited amount of peer-
ing links diminishes, but does not necessarily destroy, the ob-
server’s ability to complete its TM.

Single-Parent Customer Trees: Next, we consider non-stub
single-parent customers. We refer to the set of all single-
parent descendants of the observer as its Single-Parent Cus-
tomer (SPC) Tree. Figure 6 shows a SPC tree example. In this
example, vo cannot observe traffic between c1 - c2, c1 - c3, c2
- c3, or c4 - c5. Note that this creates the same visibility matrix
as the case where all nodes c1, . . . ,c5 are stubs, but with peer-
ing relationships between the pairs (c1, c2), (c2, c3), (c1, c3),
and (c4, c5).

PROPOSITION 3.7. Given a node vo and its SPC tree, any
subtree of vo which consists of d nodes creates the same visi-
bility matrix as the case where the nodes are stubs, and there
are peering links between each pair of nodes of the subtree.

PROOF. Clear by construction.
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Figure 6: Single-Parent customer tree example.
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Figure 7: Multi-Parent customers.

Thus a subtree of size d has the same completion effect as
d stubs, each having d− 1 peering links. Thus, given an ob-
server vo and its SPC tree, proposition 3.7 and 3.6 can be used
together to determine matrix completion ability at any rank.
For example, the network in Figure 6 is equivalent to one hav-
ing five stub customers, each having no more than 2 peering
links, and so vo can complete its matrix at rank 3.

PROPOSITION 3.8. Consider a network of size n, and a
node vo which has a SPC tree that consists of m subtrees of
sizes d1, . . . , dm. Let k be the total number of customers in this
SPC tree s.t. d1+ · · ·+ dm = k and 2k+ 1 ≤ n. Let the size
of some subtrees be smaller than p+1, i.e., d1, . . . ,di ≤ p+1,
where p≥ 0. For vo to complete its visibility matrix M of rank
r = k− p, it must be true that d1+ · · ·+di ≥ k− p−1.

PROOF. Follows from Propositions 3.6 and 3.7.

Multi-Parent Customers: Finally, we consider the influence
of multi-parenting on the ability of a node to do TM com-
pletion. We define multi-parent customers as nodes that use
multiple providers to connect to the rest of the network during
the time interval in which measurements are taken. Note that
all multi-parent customers are multi-homed customers.
Assume that the observer vo has a multi-parent customer ci.

Customer ci exchanges traffic with some nodes in the rest of
the graph, as well as the other customers of vo, through vo.
However, ci also exchanges traffic with some other nodes in
the rest of the graph through other providers. The example
graph in Figure 7 yields the visibility matrix shown in the Fig-
ure.

PROPOSITION 3.9. Given a network of size n, an AS vo,
which has c+ 1 multi-parent customers out of k customers,
is guaranteed to fully complete its visibility matrix M at rank
k− c, where c≥ 0 and n> 2k+1.

PROOF. Assume that the customers are indexed (starting
from 2) in the order of decreasing number of 1s in their rows.
In the initial step we choose the first k− c rows of M and set
L to those rows. Due to the assumption that n > 2k+ 1, the
densest rows correspond to vo, c1, . . . , cr−1, i.e. L= {1, . . . ,r}.

Next, if none of the customers were multi-homed, the columns
that correspond to vo, vk+1, . . . , vn since they would have r 1s.
However, if some of the customers are multi-homed, then the
columns that correspond to the ASes which they send/receive
traffic to/from through other providers may have less than r 1s.
For instance, consider an AS v j which all c+ 1 multi-homed
customers send/receive traffic to/from through other providers,
then its corresponding column has k− c 1s. This implies that
completion at ranks higher than k− c is not guaranteed for
vo.

Thus, Proposition 3.9 can not provide a guarantee that a
multi-parent customer can improve an node’s TM completion
ability. However, in practice there are a number of ways in
which the flows sent by the multi-parent node through the ob-
server may contribute to TM completion ability. First, they
may nonetheless provide sufficient visibility to improve TM
completion, since the Proposition only establishes a lower bound
on ICMC’s performance; and second, the additional visibil-
ity may be useful when using inference methods other than
ICMC.
In summary, the examples in this section have provided a

number of insights into the relationship between graph topol-
ogy and TM completion ability. First, we find that the de-
centralized nature of meshes is a strong impediment to TM
completion. On the other hand, tree structures can be suitable
for TM completion, and two aspects of a tree are important:
increasing the degree of the observer node and increasing the
number of nodes in each subtree both tend to improve TM
completion.
Applying these models to Internet-like topologies, Proposi-

tion 3.4 suggests that despite its mesh-like nature, the topo-
logical relationship of top-tier ASes is amenable to TM com-
pletion. For ASes further down in the AS hierarchy, Propo-
sition 3.5 shows the value of having single-parent customers,
while Proposition 3.6 shows that peering relationships between
one’s customers are detrimental, but only in a limited way,
to TM completion. Propositions 3.7 and 3.8 show that when
one’s customers themselves are providers, nodes deeper in the
tree contribute more limited information for TM completion.
Taken together, Propositions 3.5 and 3.8 show that it is good

to have a large single-parent customer tree, and it is better for
those nodes to be arranged in a wide tree rather than a deep
tree. For example, we can compare two organizations of a SPC
tree, as shown in Figure 8. Consider the case when an AS vo
has k ASes in its SPC tree (and assume the network as a whole
is large enough). When all of vo’s descendants are its direct
customers (a), it can complete its TM at rank k. In comparison,
when only two of vo’s descendants are direct customers (b),
that is, its customers are grouped in two subtrees each of size
k/2, it can only complete at rank at most k/2.

4. WHICH ASES CAN DO TM
COMPLETION?

The analyses in the previous section provide some insight
regarding the best conditions for TM completion, but they have
a number of drawbacks. First, although the previous analyses
give some indication of what conditions are best to allow an
AS to perform TM completion, it is not clear where in the In-
ternet those conditions are most prevalent. Second, the analy-
ses assume highly idealized network models, which differ sig-
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Figure 8: Comparison of two SPC trees.

nificantly from the actual AS topology. For example, the anal-
yses assume there is a single source and destination in each
node, and that routing is shortest-path and symmetric. These
assumptions are all invalid in the AS-level Internet.
In this section we evaluate the ability of real ASes to do TM

completion. Our goal in doing so is twofold: first, we seek to
verify that the positive results from Section 3 hold in practice
– namely, that TM completion is possible, at least for certain
rank matrices, in the real Internet. Second, we seek to answer
a set of natural follow-on questions. In particular, we would
like to know: (1) Given that the analyses in the previous sec-
tion suggested that TM completion may be possible at differ-
ent ‘locations’ in the Internet (ie, among top-tier ISPs as well
as ISPs lower in the AS hierarchy), where in fact is the oppor-
tunity for TM completion greatest? And: (2) Given that the
analyses in the previous section pointed to various factors that
can influence TM completion ability, what factors are actually
most significant in the Internet?

4.1 Data
To answer these questions we analyze a large survey of AS

paths in use in the Internet. Our data consists of a snapshot of
all active BGP paths in use by 376 ASes (monitors), taken at
midnight UTC on August 6th, 2010. The dataset consists of
over 100 million AS paths, and contains 524,761 unique pre-
fixes. (Note that not all BGP tables show paths to all prefixes.)
Because these paths are the active paths at the time of col-
lection, each path represents the sequence of ASes that traffic
will flow through when going from the particular monitor to
the path’s destination prefix.2
Next we select a subset of monitors and a subset of prefixes

such that, for every monitor and every prefix, our dataset has
the AS path from the monitor to the prefix. This results in 133
monitors and 225,041 prefixes.
Because we have the path from every monitor to every des-

tination, we can construct visibility matrices for every AS ap-
pearing in the dataset – 28,763 ASes. These visibility matrices
have size 133 × 225,041; for each entry in each visibility ma-
trix, we can determine whether its value is 0 or 1. This is be-
cause we have the AS path corresponding to each element of
the matrix, and to determine the 0-1 status of that element for
a particular observer AS, we simply need to check whether the
observer AS appears on that AS path. So our input to the anal-
yses below consists of over 28,000 visibility matrices, each of

2We are ignoring possible configuration errors, false BGP ad-
vertisements, or path changes that have not yet reached the
monitors – each of which we expect to have negligible effects
on our results.

which consists of about 30 million elements, known with high
confidence.
Of course, these visibility matrices are only a portion of the

complete visibility matrix of each AS, so our analyses in this
section concern each AS’s attempt to apply matrix completion
to a portion of its TM.
In some our results, we make use of AS relationships (cus-

tomer/provider and peer/peer); for that purpose we use the
AS relationship labeling performed and published by CAIDA
[11], which is based on the most comprehensive methodology
available at present.

4.2 Metrics
We characterize an observer AS in two ways: via standard

metrics used in the study of complex networks, and using met-
rics that capture networking-specific properties. First, to mea-
sure “centrality” of an observer AS, we use its k-core decom-
position shell (or just “k-shell”) [1]. As described in Sec-
tion 2.5, the k-core decomposition identifies shells (vertex sets)
of a graph that are nested, and successively more densely inter-
connected. Since we have seen in Section 3 that node degree is
significant, we also measure each observer’s degree (the num-
ber of ASs that are adjacent along a BGP path with the ob-
server). Finally, we also consider networking-specific metrics:
the number of customers of the observer, and the number of
peers of the observer.
Each observer’s TM completion ability depends on the rank

k at which TM completion is attempted, with higher rank in-
dicative of more accurate completion ability. In most cases in
our data, observers cannot complete their entire TMs. How-
ever, AICMC identifies the subset of elements that can be re-
covered for any given rank. Thus rather than asking “at what
rank k can the entire TM be recovered?” as we did in Sec-
tion 3, here we use a different metric, which we call expected
rank. Expected rank is defined as the expected value of the
maximum rank at which a randomly chosen entry can be re-
covered. To compute the metric, we take the average over all
non-visible entries of the maximum rank at which the element
can be recovered (using zero when the element cannot be re-
covered at any rank).
Note that the matrices we use in this section are not struc-

tured the same way as those in Section 3. For example, ma-
trices in this section are not symmetric, and are indexed dif-
ferently. Because of this, rank values cannot be compared di-
rectly. Hence our focus is on how effective rank varies, rather
than its specific value.

4.3 Results
We first consider whether centrality in the Internet as mea-

sured by k-shell is a good predictor of TM completion ability.
For this, we look at the top 500 ASes in terms of k-shell num-
ber. Figure 9(a) shows a scatterplot of k-shell versus expected
rank, and Figure 9(b) shows expected rank for ASes in order
of decreasing k-shell number. In the this figure, values have
been smoothed to reduce the effects of noise.
The figures show that centrality as measured by k-shell has

some relationship to completion ability, but the relationship is
not strong. Among ASes in the innermost shell (the nucleus),
many have low completion ability. In fact, on average ASes in
the core have lower completion ability than those ‘just outside’
the nucleus.
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Figure 9: Expected rank as a function of (a),(b) k-shell and (c),(d) degree.
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Figure 11: Effect of peers vs. customers completion ability.
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Figure 10: Peer degree vs. customer degree.

Since centrality per se is not a strong indicator of comple-
tion ability, we turn to the analyses in Section 3 to guide our
intuition. Proposition 3.3 showed that increasing the degree of
a node can increase its TM completion ability. The relation-
ship between degree and TM completion ability is shown in
Figures 9(c) and 9(d). The figures show that degree is a much
better predictor of completion ability than centrality.
However, close examination of Figures 9(c) shows that some

of the very highest-degree ASes have poor completion ability.
Further consideration of the implications of Proposition 3.3
suggest an explanation that sharpens our understanding. The
proposition was based on the assumption of shortest-path rout-
ing, and so does not directly apply to the AS graph. In partic-
ular, in the AS graph, a link may be between customer and
provider, or it may be between two peers. The topology con-
sidered in Proposition 3.3 resulted in traffic between nodes

flowing through the observer, and so links in that case were
analogous to customer-provider links. In contrast, in the AS
graph, traffic between two peers of the observer does not flow
through the observer, because peers do not transit traffic for
other peers.
This suggests that we should separate a node’s degree into

two components: the number of customer links, and the num-
ber of peer links.3 This separation is shown in Figure 10,
which plots customer degree against peer degree across the
highest-degree ASes. The figure shows that high-degree ASes
tend to fall into two different groups (shown in circles): some
have more customer links than peer links, while others have
more peer links than customer links.
Thus, it makes sense to analyze these two groups separately.

If our analysis based on Proposition 3.3 is correct, ASes with
high customer degree should show increased TM completion
ability, while those with high peer degree should not necessar-
ily show high completion ability.
This is in fact confirmed by our results, which are shown in

Figure 11. Figure 11(a) shows TM completion ability versus
the number of peers of the observer AS. There is no strong
relationship between number of peers and completion ability;
in fact the ASes with the greatest number of peers (more than
100) all have quite poor completion ability. In the figure, the
red diamonds correspond to those ASes with the highest num-
ber of customers; it can be seen that these are the ASes with
the greatest completion ability, but which typically have inter-
mediate peer degree.
We can understand this difference by examing the influ-

ence of customers and peers on the visibility matrix of the

3The number of provider links per AS in our data is usually
quite small and we ignore them in this analysis.



8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

entropy

ex
pe

ct
ed

R
an

k

Figure 12: Expected rank vs. entropy for ASes having com-
parable densities.

observer AS. We do this by examining howmany knowns (vis-
ible flows) are contributed to an observer AS on average by a
customer and by a peer, for the set of ASes in Figure 11(a).
Figure 11(b) shows a histogram of this quantity for customers,
and Figure 11(c) shows the result for peers. The histograms
show that often, a customer provides a highly dense column of
the visibility matrix, while a peer typically provides very few
entries in the visibility matrix. In particular, a single-parent
stub customer provides a complete column.
In this regard, it is also important to note that improving

completion ability is not simply a matter of maximizing the
number of visible elements in the AS’s traffic matrix. It is im-
portant where in the matrix the visible elements appear. In
general, it is better for visible elements to be broadly dis-
tributed across columns and rows of the matrix. To demon-
strate this fact, we select a set of 9 ASes with comparable den-
sity of visible elements — all ASes for which the number of
visible elements lies in the range (4× 105, 6× 105). To char-
acterize the dispersion of visible elements we measure their
entropy across columns. That is, for a matrix M of size m×n,
we compute E =−∑nj=1

Cj
N log(

Cj
N ) whereCj is the total num-

ber of knowns in column j andN is the total number of knowns
in the entire matrix.
The relationship between entropy and expected rank for the

9 ASes is shown in Figure 12. When this entropy measure is
large, visible elements are dispersed throughout the columns,
while when it is small, visible elements are concentrated in
few columns. The figure shows that ASes with very similar
numbers of visible flows can vary considerably in their com-
pletion ability, and that completion ability is much better when
visible elements are spread widely across the columns of the
matrix.
In summary, our results in this section confirm key elements

of our analysis from the previous section. In particular, our
results point to the importance of having customers as a re-
source for TM completion. Further, we find that ASes best
at TM completion are not generally those with a large num-
ber of peers, nor do they tend to be in the innermost, densest-
connected k-shell.
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Figure 13: Computing distance to a flow. Flows x and y
take AS paths of E − B−C and C−D− E, respectively.
The distance between A and flow x is 1 while the distance
between A and flow y is 2.
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5. WHICH ELEMENTS CAN BE
RECOVERED?

While the results in the last section focused on comparing
ASes globally across the Internet, we now turn to questions
that are specific to individual ASes. Since a given AS may
only be able to recover some of its invisible elements, it is
important to develop an understanding of which elements are
most readily estimated.
To capture the relationship between an AS and a flow that

is invisible to that AS, we define a metric for distance between
an AS and a flow. Figure 13 illustrates how flow distances are
computed. For any given AS and flow, we find the shortest-
path distance in the AS graph between the observer AS and
each AS that the flow passes through. The distance between
the AS and flow is the minimum of these shortest path dis-
tances. Of course, the distance to a known flow is zero.
To get a sense of typical distance values, we measure the

distribution of distances across all (AS,flow) pairs. The result
is shown in Figure 14. The figure shows that around 60% of
unknown flows are distance 2 away from the observer ASes.
Distances 1 and 3 follow by 30% and 10%, respectively; the
percentage of unknowns that are further away is negligible.
Thus, most unknown flows are at least two hops away from
the observer AS.
Our first set of results characterizes the distance to flows

that can be recovered, aggregating across all ASes. Figure 15
shows the fraction of unknown flows that can be recovered at
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Figure 15: Distance to recovered flows.

each hop distance for varying rank values. At all rank values,
the flows that ASes recover are primarily at distance 1. Only at
rank 1 is there a non-negligible amount of flows recovered at
distance 2 (despite the fact that distance 2 flows are much more
numerous, as shown in Figure 14). The percentage of recov-
ered unknowns at hop distance 3 and greater is negligible at
any rank. These results show that there is a strong relationship
between the distances to a particular flow and the potential to
recover the flow. In particular, the unknown flows that an ob-
server AS is most likely to recover are those that pass through
its direct neighbors.
An important set of questions from a business intelligence

standpoint concerns the ability of one AS (a predictor) to infer
the set of flows that pass through some other particular AS (a
target). We call this targeted TM completion. For example,
consider the case described in the Introduction: an ISP may
wish to know how much business a competitor is doing with a
prospective customer. In this case the first ISP is the predictor
and its competitor is the target.
To understand the ability of an AS to do targeted TM com-

pletion, we consider pairs of (predictor, target) ASes. Each
pair has an associated hop distance in the AS graph. After
constructing all such pairs and measuring their distance, we
randomly sample 500 pairs at each distance. We then measure
the fraction of the flows visible in the target that were filled-in
during TM completion in the predictor. That is, let V be the
set of elements visible in the target,U the set of unknown (in-
visible) flows in the predictor, and R the set of recovered flows
in the predictor. Then for every pair we compute the fraction
frac = |V ∩R|/|V ∩U |.
The results are shown in Figure 16 as a CDF across all 500

pairs at each hop distance. The figure shows that for pairs at
hop distance 2 or 3, very little targeted completion is possible
– in more than 95% of such cases, no targeted completion can
be performed. However the situation is quite different for hop
distance 1, which corresponds to ASes that are adjacent in the
AS graph. In that case, only 45% of predictors cannot do any
targeted completion. Most predictors can do some targeted
completion, and for 19% of the predictors, all of their target’s
flows can be recovered. Thus, if an AS wishes to do targeted
completion, its best targets are its neighbors.
While an AS’s neighbors make the best targets, it is impor-

tant to note that an AS can have a variety of different kinds
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Figure 16: Success rate of targeted completion: fraction of
target-visible unknowns that can be recovered in the pre-
dictor.
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Figure 17: Success rate of targeted completion by
predictor-target relationship.

of neighbors. We focus on three business/routing relation-
ships that may exist between predictor and target: they may be
customer-provider (CP), provider-customer (PC), or peer-peer
(PP). Starting with our previous set of 1-hop AS pairs, we di-
vide pairs into these three groups and examine the same metric
as before (fraction of target unknowns completed). In the CP
group, the predictor seeks to estimate flows passing through
its provider; in the PC group, the predictor seeks to estimate
flows passing through its customer; and in the PP group, the
predictor is estimating flows passing through a peer.
The results are shown in Figure 17. The differences be-

tween the three cases is sharp. The least opportunity for tar-
geted completion occurs when estimating a provider’s flows;
only about 10% can estimate any provider traffic. The situa-
tion is slightly better for peers: about 20% can estimate some
peer flows, and a small percentage can estimate all of a peer’s
flows. However, the situation is very different for customer
flows. Most providers can estimate a significant fraction of
their customer’s flows; and 30% can recover all of the flows
passing through their customers.
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Figure 18: Estimation failure rate vs. number of customer
prefixes.

6. ESTIMATION ACCURACY
Our results so far are in fact somewhat conservative: AICMC

identifies when an element is surely estimable, but this does
not mean that estimation of other elements is necessarily in-
accurate in practice, particularly when using estimation algo-
rithms other than ICMC. In general, it is important to confirm
that the trends observed when using AICMC to analyze vis-
ibility matrices in fact agree with the results obtained when
actually performing TM completion.

6.1 Approach
In order to confirm that our results are valid in practice, we

perform actual matrix completion as it would be done by each
AS. We provide each AS with only the knowledge of the TM
entries as determined by its visibility matrix. We then perform
matrix completion to estimate the entries that are invisible to
that AS. Note that the fraction of the 30 million matrix ele-
ments visible to any AS varies from 0.3% (for the small num-
ber of ASes with highest density) down to 0.001% and lower
for the vast majority of ASes.
Our focus is on evaluating howAS’s visibility affects its TM

completion ability, so it is important that we use similar traffic
for studying each AS.We do not want our results to be affected
by the differing nature of traffic in each AS (and obtaining
actual traffic measures for each of the ASes in our dataset is
out of the question in any case). Hence we take a single traffic
matrix R (of real traffic, measured in the Géant network) and
use it to populate each AS’s TM. The traffic matrix R is a 54
× 54 submatrix of the entire Geant TM, and we have chosen
rows and columns for R such that all 2,916 elements are visible
to Geant (and therefore represent valid measurements). The
elements of R consist of traffic flowing from ASes to prefixes,
which matches the organization of our visibility matrices. We
then populate an experimental TMD of size 133× 225,041 by
tiling D with copies of R. Although R is a rank of 54 matrix,
our analysis of R (not shown) estimates its effective rank as 2
(95% of the variation in R can be captured in a rank-2 matrix),
and so the rank of D is 54 and effective rank of D is 2 as well.
Since one of our goals in this section is to validate previ-

ous results that relied on ICMC, it is important that we use a
different matrix completion algorithm for these experiments.
For that reason we turn to an algorithm that works very differ-
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Figure 19: NMAE vs. number of customer prefixes.

ently from ICMC, namely LMaFit [25]. While ICMC works
by incrementally constructing the matrix factors X and Y at
full accuracy, LMaFit works by computing progressively more
accurate versions of X and Y (in their entirety) via successive
over-relaxation. LMaFit terminates when it (1) converges to
a solution, meaning that visible elements are accurately repre-
sented in the solution or (2) detects an inability to converge, in
which case LMaFit reports failure.
For each AS, we proceed as follows: First, we identify the

visible elements of D (using the same visibility matrices as
in Section 4). We next set the invisible elements in D to be
zero. We then apply LMaFit to estimate the missing elements
of D (using D’s effective rank of 2 as the input value of k for
LMaFit) yielding either failure, or a completed matrix D̂.
We evaluate the results using two metrics: first, we want

to know whether matrix completion can succeed: for this we
note whether LMaFit succeeds in each case. Second, we want
to know the accuracy of estimation that is possible in each
case, which we measure using Normalized Mean Absolute Er-
ror (NMAE):

NMAE =
∑(i, j)/∈Ω |Di j− D̂i j |

∑(i, j)/∈ΩDi j
.

Note that the accuracy metric only applies to those cases where
TM completion is successful.

6.2 Results
Our results compare number of prefixes announced by an

AS’s customers with its estimation failure rate and estimation
accuracy. We sample 20 ASes in logarithmically spaced bins
across the entire range of number of prefixes. In Figures 18
and 19, each point is the bin average, and 95% confidence in-
tervals are shown in Figure 19.
Figure 18 shows that there is a strong relationship between

number of customer prefixes and success rate of LMaFit. This
is entirely consistent with the results in Section 4 and confirms
that the ASes with large customer set can successfully perform
TM completion. Figure 19 shows that the accuracy of TM
completion can be quite good — generally between 0.5 and
1. Thus, as long as TM completion is possible, it can be done
with high accuracy.
In fact, we find this last point to be true across all the exper-

iments, i.e. regardless of the metric used to characterize ASes,



average NMAE is consistently in the range of 0.5 to 1, and
there is no significant change in NMAE across metric values.
This applies not just to number of customer prefixes, but to
k-shell number and degree. In all cases, as long as TM com-
pletion is possible, it can be done with relatively high accuracy.
Thus, the metric that gives the most insight into TM comple-

tion ability is failure rate. We find that k-shell number is not a
good indicator of low failure rate, whereas node-degree is (re-
sults not shown). This confirms our results from Section 4, and
underscores that ASes with good ability to complete their TMs
are generally those whose customers advertise large numbers
of prefixes.

7. DISCUSSION
While the results in this study are suggestive, they do not

precisely identify the TM completion ability of ASes. One
reason is that in Sections 4 and 5 we are only working with a
portion of each AS’s visibility matrix. Although the visibility
matrices we use have over 30 million elements, this is only
about 0.5% of the full visibility matrix of an AS. That said, we
have no reason to believe that the matrix portions we study are
unusual.
Additionally, our results start from the assumption that TMs

have low effective rank. While this fact has been empirically
observed in numerous studies (as described in Section 2.2), all
such observations to date have been at limited scale (hundreds
or thousands of rows or columns). When considering TMs of
the size in this paper (hundreds of thousands of columns) it is
an open question whether and to what degree the property of
low effective rank holds. However, this is a concern only if the
AS seeks to complete its entire TM. For the results in Section 5
(including the business case described in Section 1) an AS is
only concerned with completing a relatively small portion of
its TM.
Broadly, the analytic and empirical sides of our study com-

bine to yield a number of insights. In particular, our results
suggest that:

• ASes in the innermost k-shell of Internet are not neces-
sarily effective at TM completion. Proposition 3.4 showed
that densely-meshed nodes can do TM completion, but
only to a rank limited by the number of their customers.
Empirically we find that densely-meshed ASes are not
uniformly strong at TM completion (Figure 9(a)). In
particular, the ASes that have the most peers are not es-
pecially well suited to complete their TMs (Figure 11(a)).

• ASes with many single-homed customers are best suited
to perform TM completion. Propositions 3.5 and 3.8
show that it is good to have a large single-parent cus-
tomer tree, and it is better for those nodes to be ar-
ranged in a wide tree rather than a deep tree. Empirically
we find ASes with many customers are most effective
at TM completion (Figure 11(a),(b)) and that an AS’s
customers contribute a large number of visible elements
useful for TM completion (Figure 11(b)).

• ASes are most effective at completing matrix entries that
correspond to ‘nearby’ flows. Flows that pass through
neighboring ASes are more easily estimated than flows
that do not pass through neighboring ASes (Figure 15).
It seems that typical routing structures imply that flows

that pass through neighbor ASes are more likely to have
sources or destinations in common with visible flows,
thus making recovery more likely.

• When targeting specific ASes for completion, customer
traffic is most readily estimated. Among (predictor, tar-
get) AS pairs, the greatest completion ability exists when
the predictor and target are neighbors (Figure 16) and in
particular when the target is the customer of the predic-
tor (Figure 17). Thus, not only do customers provide
important information for completing TMs, but they are
particularly good targets for TM completion.

The picture that emerges is that ASes with many direct single-
homed customers have a particularly advantageous platform
for performing TM completion. This suggests that ASes with
many customers have a perhaps-underappreciated resource: not
only do customers provide revenue, but the patterns of traffic
that they send contain considerable information about traffic
in other, more distant parts of the Internet.

8. CONCLUSION
In this paper we have investigated the application of the

emerging concept of matrix completion to the specific case of
Internet traffic matrices. The ability to perform matrix com-
pletion on TMs would provide considerable benefit spanning
scientific, engineering, and commercial domains. Our goal is
to understand how the structure of Internet routing and topol-
ogy affects the ability of a given AS to estimate traffic flows
that it cannot measure. We start by building intuition through
analysis and we then deepen and extend our understanding us-
ing measurements of actual Internet routing.
We find that many ASes have the ability to perform at least

partial TM completion. However which ASes are best at com-
pletion, and which elements they can recover, depends strongly
on the local topology of the network. In particular, our study
focuses attention on an AS’s customers as its most important
resource for TM completion. Customers provide rich informa-
tion about traffic patterns; for example, a large array of single-
homed stub customers provides an AS with the ability to in-
fer invisible traffic even when the missing traffic is relatively
complex (high rank). This suggests that many ASes scattered
throughout the Internet have visibility into local traffic patterns
that is well suited to inferring the nature of more distant, un-
measurable traffic.
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