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Abstract

Recent work in sensor databases has focused ex-
tensively on distributed query problems, notably
distributed computation of aggregates. Exist-
ing methods for computing aggregates broadcast
queries to all sensors and use in-network aggre-
gation of responses to minimize messaging costs.
In this work, we focus on uniform random sam-
pling across nodes, which can serve both as an
alternative building block for aggregation and as
an integral component of many other useful ran-
domized algorithms. Prior to our work, the best
existing proposals for uniform random sampling
of sensors involve contacting all nodes in the net-
work. We propose a practical method which is
only approximately uniform, but contacts a num-
ber of sensors proportional to the diameter of
the network instead of its size. The approxi-
mation achieved is tunably close to exact uni-
form sampling, and only relies on well-known
existing primitives, namely geographic routing,
distributed computation of Voronoi regions and
von Neumann’s rejection method. Ultimately,
our sampling algorithm has the same worst-case
asymptotic cost as routing a point-to-point mes-
sage, and thus it is asymptotically optimal among
request/reply-based sampling methods. We pro-
vide experimental results demonstrating the effec-
tiveness of our algorithm on both synthetic and
real sensor topologies.

1 Introduction

In the emerging research area of sensor databases, a
central challenge is to develop cost-effective methods
to extract answers to queries about conditions inside
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the sensor network. One typical sensor database sce-
nario involves sensor elements that are prone to failure,
are highly resource-constrained, and must communi-
cate across a lossy network. Sensor networks com-
prised of small battery-powered motes are a represen-
tative instantiation of this scenario [7]. In such an
environment, aggregation queries are particularly ef-
fective, as they are robust to node and link failures,
can be resilient to incorrect or outlying responses, and
are amenable to the use of in-network processing to
minimize messaging cost. For these queries, approxi-
mate answers typically suffice, especially in light of the
very high cost of ensuring 100% reliability in commu-
nications in sensor networks. Recent work has focused
on computation of aggregates using a request/reply
model in which a query is broadcast to a region of in-
terest, individual sensors make best-effort replies, and
responses are aggregated in-network en route to the
origin of the query [3, 11, 20].

In this paper, we argue that there is a rich and rela-
tively under-explored set of classic statistical methods
that have not yet been extensively studied in the do-
main of sensor databases. In particular, we propose
a more careful study of random sampling methods,
which have long been used in other domains to approx-
imately compute aggregates such as MEDIAN, AVG,
and MODE [2, 12, 13]. Random sampling is a par-
ticularly good fit for approximate aggregation queries
in the sensor network domain in light of the poten-
tially modest messaging cost. While we view random
sampling as especially useful in the context of data
management and data aggregation problems, we also
note that it is an integral component of other useful
randomized algorithms that are potentially applicable
to sensor networks, including randomized routing [18].

In the context of sensor networks, a natural abstrac-
tion is spatial sampling, i.e. sampling from geographi-
cal locations within the network uniformly at random.
On a 2-D network with bounded spatial extent, such
an objective can easily be realized by picking an (x, y)
coordinate from within the space at random and us-
ing geographical routing to route to the node closest



to that point. While this is desirable for many appli-
cations, such as computing spatial averages [6], many
other applications and database queries prefer to ig-
nore geometry and instead wish to sample uniformly
from the set of nodes. Examples include querying av-
erage sensor battery life, counting the number of nodes
that are currently capable of executing a given sens-
ing task, determining the 95th quantile of sensor CPU
utilization, or estimating the number of sensors that
will fail within the next day. Our focus is to develop
practical algorithms for uniformly sampling from a set
of sensor nodes with low messaging cost.

Since it is well-known that nodes in a sensor net-
work often have highly irregular placements, spatial
sampling will produce non-uniform samples of the
nodes [5]. Our work relies on spatial sampling as a
starting point, but uses practical methods for smooth-
ing, or regularizing, the non-uniform samples to pro-
duce approximately uniform node samples. The key
idea is to have each sensor node compute and maintain
the area of its Voronoi cell. A uniform node sample is
then realized by sending a sequence of spatial samples
until one is “accepted”. A targeted node in the net-
work “accepts” by responding to a given spatial sam-
ple with an appropriate probability normalized by its
Voronoi cell size, otherwise it “rejects”. The specifics
of this normalization depend on global statistics on the
number of nodes in the network and on an appropri-
ate k-quantile of Voronoi cell sizes across the network.
We argue that these statistics can be updated infre-
quently and consistently. Ultimately, this application
of von Neumann’s rejection method [19] results in ap-
proximately uniform node samples.

As sketched above, our algorithm for generating a
random sample has a messaging cost that is typically
bounded by the messaging cost of a small constant
number of spatial samples in the expectation. This
cost is low since the messaging cost of computing a spa-
tial sample is akin to routing a point-to-point message
using a geographic routing method such as GPSR [8].
In the worst case, such a message traverses the di-
ameter of the network. In contrast, the best existing
methods for node sampling, which can compute an ex-
actly uniform sample, necessitate contacting all nodes
in the network [13]. We note that the additional infre-
quent global update costs incurred by our algorithm
can be amortized by the potentially vast number of
samples that can be taken between updates.

The remainder of the paper is organized as follows:
Section 2 formalizes the uniform sampling problem and
the limitations of existing methods. We summarize the
building blocks of our proposed method in Section 3.
Our rejection-based sensor sampling algorithm is pre-
sented in Section 4. Then in Section 5 we describe
the practical implementation issues, and Section 6 con-
cludes with the broader implications and applications
of our work.

2 Sampling: Problems and Methods

We now formally define our sampling problems.

Definition 1 (Uniform random sampling) An
algorithm samples uniformly at random from a set of
reachable sensors S if and only if it outputs a sensor
ID s ∈ S with probability 1

|S| .

Uniform random sampling is simple if the set of sen-
sor IDs is known in advance and sensors neither fail nor
move. However, it is much more challenging in the re-
alistic case where the set of IDs may not be known and
the set of reachable sensors dynamically changes over
time. For these reasons, we will be content with the
following close approximation to uniform sampling.

Definition 2 ((ε, δ)-sampling) An algorithm per-
forms (ε, δ)-sampling of a reachable set S if and only
if it returns a sample s ∈ S such that no element of
S is returned with probability greater than 1+ε

|S| and at
least (1− δ)|S| elements are output with probability at
least 1

|S| .

By this definition, our goal is to sample from almost
all sensors nearly uniformly with tunable parameters
ε and δ. Our definition allows us to under-sample a
small fraction δ of the nodes.

In a sensor network scenario, we typically wish to
sample from a set of pairs 〈k, v〉 where k identifies a
particular sensor and is unique within the set, and v
is some value associated with the sensor. This value
might be a measurement by the sensor, such as the
local temperature, or an internal statistic such as the
remaining battery life. As motivated earlier, sampling
in sensor networks is more challenging since neither a
full list of sensors nor direct communication with them
is available.

Prior to this work, the following two methods for
near-uniform sampling were proposed in the context
of sensor and other overlay networks.

Min-wise sampling: In [13], the use of min-wise
samples [1] was proposed for sampling a sensor net-
work uniformly at random. Given a hash function h
on sensor IDs, they returned the value associated with
the ID s such that h(s) is minimal (i.e. ∀s′∈S(h(s) ≤
h(s′))). Each sensor would then propagate the value
associated with the smallest observed h(s′). With
careful control of the transmissions, this scheme can
be implemented with each node in the sensor network
sending a constant number of messages, for a total of
Θ(|S|) transmissions. However, since the entire net-
work is involved, this is an expensive operation.

Random walks: Another natural method for sam-
pling is the use of random walks. In the sensor network
domain, one could generate a random sample by prop-
agating a request message along a randomly chosen k-
hop path starting from the query sink, and sampling



the kth sensor reached. Unfortunately, this procedure
would both need to use a large value of k, and would
need to compensate for the fact that the method is
biased toward drawing samples from near the center
of the spatial region where sensors are located, as we
demonstrate in Section 5.1.

Our methods follow a rather different line. Like the
random walk method, we ultimately seek out a single
sensor, but our choice of the route to the sensor avoids
many of the dependencies and complications of the
random walk approach.

3 Prerequisites

Instead of choosing a path at random, we choose a lo-
cation in the sensor coordinate space at random and
route a probe to its closest sensor using geographic
routing techniques. When we partition the coordi-
nate space into regions of ownership by mapping the
nearest neighbor regions (Voronoi cells) to sensors, we
note that these regions are irregularly sized in most
instances. Thus, this naive spatial sampling method is
very likely to generate a biased sample. Therefore, our
last key step is to use von Neumann’s rejection method
to normalize the samples. We now briefly summarize
these three prerequisite ideas.

Geographic routing: If every node in a network is
aware of its own coordinates (e.g. via GPS), then it is
possible to route to a particular position using entirely
local decisions. Most of these local routing decisions
can be made in a greedy fashion, simply choosing the
neighboring node which has the closest coordinates to
the destination. This greedy routing fails when there
is an obstruction, or “void”, which must be circumnav-
igated to reach the destination. GPSR [8] provides an
elegant solution to this problem with just two states.
The default state of GPSR is greedy routing, while the
other state follows the perimeters of voids until greedy
routing can resume. When a packet reaches its target
point, another round of perimeter routing is run to
visit each of the immediately surrounding sensors so
that it can find the sensor nearest to the target point.
For typical topologies in 2-D, geographic routing takes
Θ(

√|S|) steps.

Voronoi diagrams: Once routing to an arbitrary
point is possible, we must also quantify the size of the
region of points that are closest to a particular sensor
s. Formally, the set of points closer to sensor s than
any other sensor is called the Voronoi cell of s [4]. In
the planar case which we consider, the Voronoi cell of
s is a convex polygon containing s, where each edge of
this polygon lies on a perpendicular bisector between
s and another sensor. The exact boundaries of this
Voronoi cell are easily determined exactly by locating
all of the sensors in the immediate vicinity of s. The
areas of these Voronoi cells have been used previously

to weight sensor readings for spatial aggregates [6] and
they are easily computable, but it is well known that
these areas vary widely when the sensors are placed
randomly [16]. This variation leads to a bias in spatial
sampling – each sensor is chosen with probability in
proportion to A(s), the area of its Voronoi cell. For
convenience, we assume the areas are normalized so
that they sum to one, and thus A(s) can also be in-
terpreted as the probability a randomly chosen point
is closest to s.

von Neumann’s rejection method: Much of the
early work on random sampling focused on sampling
complex distributions, assuming the ability to sample
simpler distributions. A well known example of this
is von Neumann’s rejection method [10, 19]. Suppose
we wish to sample from a distribution with probabil-
ity density function f (i.e. an event t has probability
f(t)). If we can sample from a distribution with prob-
ability density function g, then we can sample from
f as follows. First generate a sample t using g, but
only accept and return sample t with probability f(t)

cg(t) ,
where c is a positive constant. If t is not accepted, it
is rejected and the process repeats for a new sample
t. Assuming that c is chosen so that f(t)

cg(t) ≤ 1, then
the probability of picking a particular event t on the
first attempt is g(t) · f(t)

cg(t) = 1
cf(t). It then follows that

after c expected samples from g, we have one sample
from f .

4 Rejection-based Sensor Sampling

We now describe our method to combine ideas of spa-
tial sampling with von Neumann’s rejection method to
flatten out an irregular probability distribution into a
nearly uniform one. For our application, the desired
density function is uniform, i.e. f(t) = 1

|S| , and the
distribution which we can sample from, g(t), is the
distribution of Voronoi cell areas. One weakness in
von Neumann’s method for exactly reproducing a dis-
tribution f is that the constant c must be chosen so
that for all events t, f(t)

g(t) ≤ c. In our application, if
there exists a very small Voronoi cell, then c, and hence
the expected messaging cost, can be very large. Since
we cannot rule out this possibility, we content our-
selves for now with generating approximately uniform
samples. Later, in Section 5.2, we consider strategies
to boost sampling probabilities for the smallest cells to
significantly reduce residual sampling bias. We employ
the following basic algorithm.

Algorithm 1 (Rejection-based Sampling)
1 The random sampler picks a random location in
the sensor field and routes a message to the sensor
s closest to this point, using geographic routing
and pre-computation of Voronoi cells.



(a) MIT sensor testbed. Reproduced with permission
from [17]

(b) James Reserve sensor network. Reproduced with
permission from [5]

Figure 1: Maps of real sensor deployments used in our experiments.

2 With probability min(A(s),τ)
A(s) , s accepts and re-

ports its value, where τ is a threshold to be defined
shortly.

3 Otherwise, s rejects and the random sampler re-
peats Steps 1-3. The random sampler also returns
to Step 1 if it times out waiting for a response.

Intuitively, τ can be thought of as a threshold on
Voronoi cell areas, in which we think of any Voronoi
cell of area at least τ as large and any area less than
τ as small. By our procedure, all large cells will
be selected equiprobably, but small cells will be se-
lected with smaller probability, in proportion to their
area. To ensure that Algorithm 1 results in (ε, δ) sam-
pling, we must guarantee that the fraction of small
cells (sampled non-uniformly) is less than δ, and that
the bias introduced by under-sampling small cells re-
sults in at most (1 + ε)-oversampling of large cells. In
practice, we set τ to be the area of the cell that is
the k-quantile, where k = min

(
δ, ε

1+ε

)
, and prove the

following main result.

Theorem 1 Running Algorithm 1 with k =
min

(
δ, ε

1+ε

)
and setting τ to be the cell area

that is the k-quantile results in (ε, δ)-sensor sampling.

Proof: By our problem definition, it suffices to show
that the method ensures that no element of S is sam-
pled with probability greater than 1+ε

|S| and at least

(1 − δ)|S| elements are sampled with probability at
least 1

|S| . First, we show that all large cells, i.e. cells
with area at least τ , are sampled in a given iteration
of the sampling algorithm with probability at least
1
|S| . The probability that a given sensor s is sampled
in a particular probe is ps = min(A(s), τ), and thus
the probability that a particular probe is successful is∑

s ps ≤ |S|τ . Now let E� denote the event that the
algorithm ultimately samples from a large cell �.

Pr[E�] =
p�∑
s ps

=
τ∑
s ps

≥ 1
|S| .

Now since large cells are at least a (1 − δ) fraction of
all cells by the setting of k ≤ δ, we have that at least
(1 − δ)|S| elements are sampled with probability at
least 1

|S| .
Next we show that no element is sampled with prob-

ability greater than 1+ε
|S| . By construction, large cells

are sampled with highest probability, so we restrict
attention to those cells. Starting from the same prob-
ability bound as before:

Pr[E�] =
p�∑
s ps

=
τ∑

s|A(s)<τ ps +
∑

s|A(s)≥τ ps

=
τ∑

s|A(s)<τ ps +
∑

s|A(s)≥τ τ

≤ τ∑
s|A(s)≥τ τ

≤ τ

(1 − k)|S|τ



≤ τ

(1 − ε
1+ε )|S|τ

≤ 1
(1+ε
1+ε − ε

1+ε )|S|
=

1
( 1
1+ε )|S|

=
1 + ε

|S| .

Thus the theorem follows.
Relating this result back to von Neumann’s method,

this corresponds to a situation in which c = 1
τ |S| . As

with the rejection method, the probability that a par-
ticular sensor s is picked and accepted on the first at-
tempt is A(s)min(A(s),τ)

A(s) = min(A(s), τ). It remains to
select an appropriate threshold τ for our algorithm.

4.1 Threshold Management

Given user-specified values of ε and δ, the threshold τ
should be set to the k-quantile of the Voronoi cell ar-
eas, where k = min

(
δ, ε

1+ε

)
as discussed earlier. The

k-quantile can be computed during an initial prepro-
cessing step using recent techniques developed in the
sensor database community. In particular, work such
as [3, 11] shows how to efficiently count the number
of sensors matching some criteria (e.g. with a cell area
below a specified threshold) and deriving other simple
statistics such as the average cell area. We note that
while these values need to be updated to account for
dynamic changes within the sensor network, they need
not be exact, as bounds on the values suffice for our
methods. Therefore, only infrequent updating of these
global statistics is needed to maintain consistent and
approximately correct values. Updating these statis-
tics can easily be performed either by piggybacking
them on the random probes or on various control and
maintenance messages. Either way, once these statis-
tics are available, the sampler recomputes τ , and sends
it with each probe. Since the sampler’s value of τ is
included in the query, each sensor deciding to accept
or reject a probe acts consistently.

5 Practical Implementation Issues

We now discuss the details of a practical implementa-
tion of Algorithm 1. We begin in Section 5.1 present-
ing experimental results using the basic implementa-
tion outlined in Section 4, and then discuss various
refinements to improve the uniformity of sampling in
Section 5.2.

5.1 Experiments

We experimentally validated our proposed sampling
algorithm using three topologies: two from real sen-
sor deployments and one synthetic topology with 215
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Figure 2: Sample distribution using long random walks
along adjacent Voronoi cells. Each sensor’s cell is la-
beled with its probability relative to the mean. For
example, a sensor labeled 1.3 is picked with probabil-
ity 1.3/|S|.

sensors placed uniformly at random on a unit square.
The first real network, illustrated in Figure 1(a), is
a testbed deployed at MIT [17]. These sensors were
heuristically placed according to expected quality as a
vantage point, and proximity to available power out-
lets. The second real deployment, illustrated in Fig-
ure 1(b), is a sensor network for micro-climate mon-
itoring at the James Reserve [5]. These sensors are
more concentrated in the lower left, where there is
thick foliage.

The objective of these experiments was to demon-
strate that we can cheaply obtain a close approxima-
tion to uniform sampling. Thus, besides examining
ε and δ at for various choices of τ , we also examine
the expected value of the random variable Y, which is
the number of probes sent before a sample is returned.
The actual energy costs of our method depend heav-
ily upon the geographic routing protocol in use. Since
testing the performance of various geographical rout-
ing protocols is beyond the scope of this work, we do
not implement geographic routing in our simulation.

First, we confirm our intuition that random walks
are unsuitable for near-uniform random sampling. We
consider the following random process. Starting at any
sensor in the network, a query repeatedly considers the
sensors with adjacent Voronoi cells and moves to one
chosen uniformly at random. After a sufficient num-
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Figure 3: Resulting distributions for real testbeds. Nodes are in increasing order of Voronoi cell area.

c ε δ E [Y]
naive 1.9 0.6 1.00

1 0.34 0.45 1.34
2 0.047 0.25 2.09
3 0 0 3.00
4 0 0 4.00
5 0 0 5.00

(a) MIT sensor testbed

c ε δ E [Y]
naive 4.3 0.69 1.00

1 0.48 0.46 1.48
2 0.12 0.23 2.24
3 0.041 0.15 3.12
4 0.012 0.038 4.05
5 0.0072 0.019 5.04

(b) James Reserve sensor network

c ε δ E [Y]
naive 3.8 0.57 1.00

1 0.27 0.41 1.27
2 0.051 0.15 2.10
3 0.017 0.06 3.05
4 0.0079 0.026 4.03
5 0.0042 0.017 5.02

(c) 215 randomly placed points

Table 1: Summary of experimental results

ber of steps to converge on the stationary distribution,
the query outputs its current location. Figure 2 shows
the Voronoi diagram of the MIT sensor testbed and
the relative sampling probabilities of each sensor. As
expected, the sensors most likely to be chosen are in
the middle of the network, and the sensors least likely
to be chosen are on the edges of the network. Suffi-
ciently long random walks on this topology can achieve
(0.71, 0.52)-sampling. This is better than naive spatial
sampling, which would achieve (1.90, 0.60)-sampling
on the same topology, but our rejection-based methods
will give much better results.

Figure 3 shows the results of Algorithm 1 on the
real topologies assuming that there are no faults and
each sensor knows the area of its own Voronoi cell.
The areas of both networks are the areas of their min-
imum bounding boxes. The threshold τ was set to

1
c|S| for c = 1, 2, 3, 4, 5, and the naive spatial sampling
method is included as a baseline. As c increases and τ
decreases, the distribution becomes more uniform and
improvements in both ε and δ are clearly visible.

Tables 1(a) and 1(b) summarize the parameters of
the resulting sampling distributions, along with the
expected number of probes for each sample. With the
MIT sensor testbed, setting c = 3 (equiv. τ = 1

3|S| )
results in uniform sampling – this is because there are

no sensors with less than a third of the average cell
area in their Voronoi cell. With the James Reserve
network, one sensor has a cell area of slightly more
than one tenth of the average, so c ≥ 10 is necessary
for uniform sampling. However, this is the only sensor
which is under-sampled for c ≥ 5.

For comparison, Table 1(c) summarizes the corre-
sponding results for a synthetically generated topol-
ogy of 215 randomly placed points on a unit square.
The smallest Voronoi cell in this topology was slightly
smaller than 1

98|S| , so if exact sampling is desired,
an average of c ≥ 99 probes per sample are needed.
However, just setting c = 5 achieves (0.0042, 0.017)-
sampling.

Figure 4 shows the cell size distributions of our test
topologies where the impact of human choices on sen-
sor placement is present. First, humans are prone to
favor interesting or easily accessible points, resulting
in sensors being clustered together, each with below-
average area. This is evident in Figure 4: the two
real sensor networks have a larger fraction of sensors
with below-average Voronoi cell areas than a randomly
generated topology. At the same time, humans are un-
likely to choose very poor placements where many sen-
sors are extremely close together. Figure 4 also hints
at this point, as the smallest Voronoi cells in syntheti-
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cally generated networks are significantly smaller than
the ones in real topologies.

5.2 Algorithmic Modifications

We now consider a variety of heuristics for improving
our baseline algorithm by reducing the impact of small
Voronoi cells on the (ε, δ)-approximation.

Sleeping: Perhaps the simplest method for handling
sensors with very small Voronoi cells is for some of
these sensors to sleep. Sleeping sensors are deacti-
vated, and sampling from them is thus rendered impos-
sible. Putting one small cell to sleep will increase the
size of adjacent cells (which are also likely to be small),
so it is not necessary to put all small cells to sleep to
remove their impact. We note that this approach is
similar in spirit to some routing schemes which use
sleep for power management, particularly in crowded
areas [21]. Because the sensed values from the sleep-
ing nodes are unavailable, this approach may not be
appropriate for some applications.

Pointers: Another method for increasing the sam-
pling probability of small cells is for larger cells to
keep pointers to nearby small cells and forward some
rejected probes to those small cells. That is, when-
ever a large cell would reject a probe, it may instead
redirect the probe to a nearby small cell. The proba-
bility of forwarding a probe can be negotiated between
the cells based on their respective sizes. Essentially, a
large cell would donate part of its “unused” area to its
small neighbor.

Virtual coordinates: Instead of using real-world ge-
ographic coordinates to map points to sensors, we can
use virtual coordinates [14, 15], modified to include ei-
ther a repulsive force between close sensors, or a hard
lower bound on the inter-sensor distances. Virtual co-
ordinate spaces also allow the boundaries of the sensor
network to be pre-defined, instead of explored via pe-
riodic probing [5].

6 Future Work and Conclusions

Uniform random sampling is a standard and useful
primitive underlying many algorithmic and statisti-
cal methods. Our work focused on the unique con-
straints imposed by sensor networks, and the problem
of cheaply selecting one sensor node uniformly at ran-
dom. In future work, there are numerous generaliza-
tions to consider. Our methods immediately general-
ize to queries that wish to sample nodes satisfying a
geometric predicate, such as those within a region of
interest, but we have not yet studied how to efficiently
sample from nodes satisfying a non-geometric predi-
cate. Another interesting question is how best to take
advantage of parallelism when the number of samples
needed or the expected number of attempts is high.
Here, distinct probes may traverse common network
links, so clever strategies may be able to reduce total
transmission costs. We also plan to consider how to op-
timize sampling for queries which do not fall into a re-
quest/reply paradigm. For example, if query patterns
are known in advance, such as periodic fixed queries,
a more streamlined method for sampling that avoids
explicit requests could be implemented in a decentral-
ized fashion. However, our methods may still find use
in answering such queries since their “on-demand” na-
ture allows quick responses to unexpected events or
failures.

Finally, we note that variants of our sampling meth-
ods can be applied much more broadly, outside the
context of sensor networks. For example, uniform node
sampling is also an important problem in structured
P2P networks based on coordinate systems [9]. Vari-
ants of our methods apply to these P2P scenarios and
provide a simpler and more topology-agnostic alterna-
tive to existing methods.
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