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Chapter 4: Computer Organization

Computers are useless. They can only give you answers.

—Pablo Picasso

4.1 Introduction to Computer Organization

When we run a Python program, what’s actually going on inside the

computer? While we hope that recursion is feeling less like magic

to you now, the fact that an electronic device can actually interpret

and execute something as complicated as a recursive program

may seem - what’s the right word here? - alien. The goal of this

chapter is to metaphorically pry the lid off a computer and peer inside to understand what’s

really going on there.

As you can imagine, a computer is a complicated thing. A modern computer has on the

order of billions of transistors. It would be impossible to keep track of how all of those

components interact. Consequently, computer scientists and engineers design and think

about computers using what are called multiple levels of abstraction . At the lowest level,

are components like transistors - the fundamental building blocks of modern electronic

devices. Using transistors, we can build higher level devices called logic gates - they are the

next level of abstraction. From logic gates we can build electronic devices that add, multiply,

and do other basic operations - that’s yet another level of abstraction. We keep moving up

levels of abstraction, building more complex devices from more basic ones.

As a result, a computer can be designed by multiple people, each thinking about their

specific level of abstraction. One type of expert might work on designing smaller, faster, and

more efficient transistors. Another might work on using those transistors - never mind

precisely how they work - to design better components that are based on transistors. Yet

another expert will work on deciding how to organize these components into even more

complex units that perform key computational functions. Each expert is grateful to be

standing (metaphorically) on the shoulders of another person’s work at the next lower level of

abstraction.

By analogy, a builder thinks about building walls out of wood, nails, and sheet rock. An

architect designs houses using walls without worrying too much about how they are built. A



city planner thinks about designing cities out of houses, without thinking too much how they

are built, and so forth. This idea is called “abstraction” because it allows us to think about a

particular level of design using the lower level ideas abstractly; that is, without having to

keep in mind all of the specific details of what happens at that lower level.

Figure 4.1: A three-way light bulb.

This seemingly simple idea of abstraction is one of the most important ideas in computer

science. Not only are computers designed this way, but software is as well. Once we have

basic workhorse functions like map, reduce, and others, we can use those to build more

complex functions. We can use those more complex functions in many places to build even

more complex software. In essence, we modularize so we that we can reuse good things to

build bigger good things.

In this spirit, we’ll start by looking at how data is represented in a computer. Next, we’ll move

up the levels of abstraction from transistors all the way up to a full-blown computer. We’ll

program that computer in its own “native language” and talk about how your Python program

ultimately gets translated to that language. By the end of this chapter, we’ll have a view of

what happens when we run a program on our computer.

4.2 Representing Information

At the most fundamental level, a computer doesn’t really know math or have any notion of

what it means to compute. Even when a machine adds 1+1 to get 2, it isn’t really dealing

with numbers. Instead, it’s manipulating electricity according to specific rules.

To make those rules produce something that is useful to us, we need to associate the

electrical signals inside the machine with the numbers and symbols that we, as humans, like

to use.
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4.2.1 Integers

The obvious way to relate electricity to numbers would be to assign

a direct correspondence between voltage (or current) and numbers.

For example, we could let zero volts represent the number 0, 1 volt

be 1, 10 volts be 10, and so forth. There was a time when things

were done this way, in so-called analog computers. But there are

several problems with this approach, not the least of which would be

the need to have a million-volt computer!

Here’s another approach. Imagine that we use a light bulb to

represent numbers. If the bulb is off, the number is 0. If the bulb is

on, the number is 1. That’s fine, but it only allows us to represent two

numbers.

All right then, let’s upgrade to a “three-way” lamp. A three-way lamp

really has four switch positions: off, and three increasing brightness

levels. Internally, a three-way bulb has two filaments (Figure 4.1), one dim and one bright.

For example, one might be 50 watts, and the other 100. By choosing neither of them, one,

the other, or both, we can get 0, 50, 100, or 150 watts worth of light. We could use that bulb

to represent the numbers 0, 50, 100, and 150 or we could decide that the four levels

represent the numbers 0, 1, 2, and 3.

Internally, a computer uses this same idea to represent integers. Instead of using 50, 100,

and 200, as in our illuminating example above, computers use combinations of numbers

that are powers of 2. Let’s imagine that we have a bulb with a 20-watt filament, a 21-watt

filament, and a 22-watt filament. Then we could make 0 watts by turning none of the

filaments on, we could make 1 watt by turning on only the 20-watt filament, we could make 2

watts by turning on the 21-watt filament, and so forth, up to  watts

using all three filaments.

Imagine now that we had the following four consecutive powers of 2 available to us: 

. Take a moment to try to write the numbers 0, 1, 2, and so forth as high as

you can go by using zero or one of each of these powers of 2. Stop reading. We’ll wait while

you try this.

If all went well, you discovered that you could make all of the integers from 0 to 15 using 0 or

1 of each of these four powers of 2. For example, 13 can be represented as

 . Written another way, this is:

+ + = 720 21 22

, , ,20 21 22 23

+ +20 22 23

13 = 1 ⋅ + 1 ⋅ + 0 ⋅ + 1 ⋅3 2 1 0
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Notice that we’ve written the larger powers of 2 on the left and the

smaller powers of two on the right. This convention is useful, as we’ll

see shortly. The 0’s and 1’s in the equation above - the coefficients

on the powers of 2 - indicate whether or not the particular power of

2 is being used. These 0 and 1 coefficients are called bits, which

stands for binary digits. Binary means “using two values”- here, the

0 and the 1 are the two values.

It’s convenient to use the sequence of bits to represent a number,

without explicitly showing the powers of two. For example, we would

use the bit sequence 1101 to represent the number 13 since that is the order in which the

bits appear in the equation above. Similarly 0011 represents the number 3. We often leave

off the leading (that is, the leftmost) 0’s, so we might just write this as 11 instead.

The representation that we’ve been using here is called base 2 because it is built on powers

of 2. Are other bases possible? Sure! You use base 10 every day. In base 10, numbers are

made out of powers of 10 and rather than just using 0 and 1 as the coefficients, we use 0

through 9. For example, the sequence 603 really means

Other bases are also useful. For example, the Yuki Native American tribe, who lived in

Northern California, used base 8. In base 8 we use powers of 8 and the coefficients that we

use are 0 through 7. So, for example, the sequence 207 in base 8 means

which is 135 (in base 10). It is believed that the Yukis used base 8 because they counted

using the eight slots between their fingers.

Notice that when we choose some base  (where  is some integer

greater than or equal to 2), the digits that we use as coefficients are

0 through . Why? It’s not hard to prove mathematically that

when we use this convention, every positive integer between 0 and 

 can be represented using  digits. Moreover, every

integer in this range has a unique representation, which is handy

since it avoids the headache of having multiple representations of the same number. For

example, just as 42 has no other representation in base 10, the number 1101 in base 2

(which we saw a moment ago is 13 in base 10) has no other representation in base 2.

13 = 1 ⋅ + 1 ⋅ + 0 ⋅ + 1 ⋅23 22 21 20

6 ⋅ + 0 ⋅ + 3 ⋅102 101 100

2 ⋅ + 0 ⋅ + 7 ⋅82 81 80

b b

b − 1

bd − 1 d
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Many older or smaller computers use 32 bits to represent a number in base 2; sensibly

enough, we call them “32-bit computers.” Therefore, we can uniquely represent all of the

positive integers between 0 and 2^32 - 1 , or 4, 294, 967, 295. A powerful modern computer

that uses 64 bits to represent each number can represent integers up to 2^64 - 1, which is

roughly 18 quadrillion.

4.2.2 Arithmetic

Arithmetic in base 2, base 8, or base 42 is analogous to arithmetic

in base 10. For example, let’s consider addition. In base 10, we

simply start at the rightmost column, where we add those digits and

“carry” to the next column if necessary. For example, when adding 

 ,  so we write down a 2 in the rightmost

position and carry the 1. That 1 represents a 10 and is therefore

propagated, or carried, to the next column, which represents the “10’s place.”

Addition in base 2 is nearly identical. Let’s add 111 (which, you’ll

recall is 7 in base 10) and 110 (which is 6 in base 10). We start at

the rightmost (or “least significant”) column and add 1 to 0, giving 1.

Now we move to the next column, which is the  position or “2’s

place”. Each of our two numbers has a 1 in this position. 1 + 1 = 2

but we only use 0’s and 1’s in base 2, so in base 2 we would have 1

+ 1 = 10. This is analogous to adding 7 + 3 in base 10: rather than

writing 10, we write a 0 and carry the 1 to the next column. Similarly,

in base 2, for 1 + 1 we write 0 and carry the 1 to the next column. Do

you see why this works? Having a 2 in the “2’s place” is the same

thing as having a 1 in the “4’s place”. In general having a 2 in the column corresponding to 

 is the same as having a 1 in the next column, the one corresponding to  since 

 .

Takeaway message: Addition, subtraction, multiplication, and division in your favorite

base are all analogous to those operations in base 10!

4.2.3 Letters and Strings

As you know, computers don’t only manipulate numbers; they also

work with symbols, words, and documents. Now that we have ways

to represent numbers as bits, we can use those numbers to

17 + 25 5 + 7 = 12

21

2i 2i+1

2 ⋅ =2i 2i+1



In ASCII, the number

42 represents the

asterisk ( * )

numbers in base 2 to

make sure that it

makes sense to you.

represent other symbols.

It’s fairly easy to represent the alphabet numerically; we just need to

come to an agreement, or “convention,” on the encoding. For

example, we might decide that 1 should mean “A”, 2 should mean

“B”, and so forth. Or we could represent “A” with 42 and “B” with 97;

as long as we are working entirely within our own computer system

it doesn’t really matter.

But if we want to send a document to a friend, it helps to have an agreement with more than

just ourselves. Long ago, the American National Standards Institute (ANSI) published such

an agreement, called ASCII (pronounced “as key” and standing for the American Standard

Code for Information Interchange). It defined encodings for the upper- and lower-case

letters, the numbers, and a selected set of special characters - which, not coincidentally,

happen to be precisely the symbols printed on the keys of a standard U.S. keyboard.

Negative Thinking

We’ve successfully represented numbers in base 2 and done arithmetic with

them. But all of our numbers were positive. How about representing negative

numbers? And what about fractions?

Let’s start with negative numbers. One fairly obvious approach is to reserve one

bit to indicate whether the number is positive or negative; for example, in a 32-

bit computer we might use the leftmost bit for this purpose: Setting that bit to 0

could mean that the number represented by the remaining 31 bits is positive. If

that leftmost bit is a 1 then the remaining number would be considered to be

negative. This is called a sign-magnitude representation. The price we pay is

that we lose half of our range (since we now have only 31 bits, in our example, to

represent the magnitude of the number). While we don’t mean to be too negative

here, a bigger problem is that it’s tricky to build computer circuits to manipulate

sign-magnitude numbers. Instead, we use a system called two’s complement.

The idea behind two’s complement is this: It would be very convenient if the

representation of a number plus the representation of its negation added up to

0. For example, since 3 added to -3 is 0, it would be nice if the binary

representation of 3 plus the binary representation of -3 added up to 0. We

already know what the binary representation of 3 is 11. Let’s imagine that we

have an 8-bit computer (rather than 32- or 64-bit), just to make this example
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easier. Then, including the leading 0’s, 3 would be represented as 00000011.

Now, how could we represent -3 so that its representation added to 00000011

would be 0, that is 00000000?

Notice that if we “flip” all of the bits in the representation of 3, we get 11111100.

Moreover, 00000011 + 11111100 = 11111111. If we add one more to this we

get 11111111 + 00000001 and when we do the addition with carries we get

100000000; a 1 followed by eight 0’s. If the computer is only using eight bits to

represent each number then that leftmost ninth bit will not be recorded! So, what

will be saved is just the lower eight bits, 00000000, which is 0. So, to represent

-3, we can simply take the representation of 3, flip the bits, and then add 1 to

that. (Try it out to make sure that you see how this works.) In general, the

representation of a negative number in the two’s complement system involves

flipping the bits of the positive number and then adding 1.

You can look up the ASCII encoding on the web. Alternatively, you

can use the Python function ord to find the numerical representation

of any symbol. For example:

>>> ord('*')

42
>>> ord('9')

57

Why is the ordinal value of ‘9’ reported as 57? Keep in mind that the

9, in quotes, is just a character like the asterisk, a letter, or a

punctuation symbol. It appears as character 57 in the ASCII

convention. Incidentally, the inverse of ord is chr. Typing chr(42) will

return an asterisk symbol and chr(57) will return the symbol ‘9’.

Each character in ASCII can be represented by 8 bits, a chunk

commonly referred to as a “byte.” Unfortunately, with only 8 bits

ASCII can only represent 256 different symbols. (You might find it

entertaining to pause here and write a short program that counts

from 0 to 255 and, for each of these numbers, prints out the ASCII symbol corresponding to

that number. You’ll find that some of the symbols printed are “weird” or even invisible. Snoop

on the Web to learn more about why this is so.)



There are even

unofficial Unicode

symbols for Klingon!

Piecing It Together

How about representing fractions? One approach (often used in video and

music players) is to establish a convention that everything is measured in units

of some convenient fraction (just as our three-way bulb works in units of 50

watts). For example, we might decide that everything is in units of 0.01, so that

the number 100111010 doesn’t represent 314 but rather represents 3.14.

However, scientific computation often requires both more precision and a wider

range of numbers than this strategy affords. For example, chemists often work

with values as on the order of  or more (Avogadro’s number is

approximately  ), while a nuclear physicist might use values as

small as  or even smaller.

Imagine that we are operating in base 10 and we have only eight digits to

represent our numbers. We might use the first six digits to represent a number,

with the convention that there is an implicit 0 followed by a decimal point, just

before the first digit. For example, the six digits 123456 would represent the

number 0.123456. Then, the last two digits could be used to represent the

exponent on the power of 10. So, 12345678 would represent 

 . Computers use a similar idea to represent fractional

numbers, except that base 2 is used instead of base 10.

It may seem that 256 symbols is a lot, but it doesn’t provide for accented characters used in

languages like French (Français), let alone the Cyrillic or Sanskrit alphabets or the many

thousands of symbols used in Chinese and Japanese.

To address that oversight, the International Standards Organization

(ISO) eventually devised a system called Unicode, which can

represent every character in every known language, with room for

future growth. Because Unicode is somewhat wasteful of space for

English documents, ISO also defined several “Unicode

Transformation Formats” (UTF), the most popular of which is UTF-

8. You may already be using UTF-8 on your computer, but we won’t

go into the gory details here.

Of course, individual letters aren’t very interesting. Humans normally like to string letters

together, and we’ve seen that Python uses a data type called “strings” to do this. It’s easy to

3102

6.02 × 1023

10−12

0.123456 × 1078



My favorite food

chain sells donuts.

That would be more

than a bit annoying!

do that with a sequence of numbers; for example, in ASCII the sequence 99, 104, 111, 99,

111, 108, 97, 116, 101 translates to “chocolate”. The only detail missing is that when you

are given a long string of numbers, you have to know when to stop; a common convention is

to include a “length field” at the very beginning of the sequence. This number tells us how

many characters are in the string. (Python uses a length field, but hides it from us to keep the

string from appearing cluttered.)

4.2.4 Structured Information

Using the same concepts, we can represent almost any information as a sequence of

numbers. For example, a picture can be represented as a sequence of colored dots,

arranged in rows. Each colored dot (also known as a “picture element” or pixel ) can be

represented as three numbers giving the amount of red, green, and blue at that pixel.

Similarly, a sound is a time sequence of “sound pressure levels” in the air. A movie is a

more complex time sequence of single pictures, usually 24 or 30 per second, along with a

matching sound sequence.

That’s the level of abstraction thing again! Bits make up numbers,

numbers make up pixels, pixels make up pictures, pictures make

up movies. A two-hour movie can require several billion bits, but

nobody who is making or watching a movie wants to think about all

of those bits!

4.3 Logic Circuitry

Now that we have adopted some conventions on the representation

of data it’s time to build devices that manipulate data. We’ll start at

a low level of abstraction of transistors and move up the

metaphorical “food chain” to more complex devices, then units that

can perform addition and other basic operations, and finally to a full-

blown computer.

4.3.1 Boolean Algebra

In Chapter 2 we talked about Boolean variables - variables that take the value True or

False. It turns out that Booleans are at the very heart of how a computer works.
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As we noted in the last section, it’s convenient to represent our data in base 2, also known

as binary. The binary system has two digits, 0 and 1 just as Boolean variables have two

values, False and True. In fact, we can think of 0 as corresponding to False and 1 as True

as corresponding to True. The truth is, that Python thinks about it this way too. One funny

way to see this is as follows:

>>> False + 42

42
>>> True + 2

3

Weird - but there it is: in Python False is really 0 and True is really

1. By the way, in many programming languages this is not the case.

In fact, programming language designers have interesting debates

about whether it’s a good idea or not to have False and True be so

directly associated with the numbers 0 and 1. On the one hand,

that’s how we often think about False and True. On the other hand,

it can result in confusing expressions like False + 42 which are

hard to read and prone to introducing programmer errors.

With the Booleans True and False we saw that we could use the

operations and, or, and not to build up more interesting Boolean expressions. For example,

True and True is the same as True while True or False is True and not True is False. Of

course, we can now emulate these three operations for 0 and 1. 1 AND 1 = 1, 1 OR 0 = 1, and

NOT 1 = 0.

Although your intuition of AND, OR, and NOT is probably fine, we can be very precise about

these three operations by defining them with a truth table : a listing of all possible

combinations of values of the input variables, together with the result produced by the

function. For example, the truth table for AND is:

In Boolean notation, AND is normally represented as multiplication; an examination of the

above table shows that as long as x and y are either 0 or 1, x AND y is in fact identical to



multiplication. Therefore, we will often write xy to represent x AND y.

Takeaway message: AND is 1 if and only if both of its arguments are 1.

OR is a two-argument function that is 1 if either of its arguments are 1. The truth table for OR

is:

OR is normally written using the plus sign: . The first three lines of the above table are

indeed identical to addition, but note that the fourth is different.

Takeaway message: OR is 1 if either of its arguments is 1.

Finally, NOT is a one-argument function that produces the opposite of its argument. The truth

table is:

NOT is normally written using an overbar, e.g. 

4.3.2 Making Other Boolean Functions

Amazingly, any function of Boolean variables, no matter how complex, can be expressed in

terms of AND, OR, and NOT. No other operations are required because, as we’ll see, any other

operation could be made out of AND, OR, and NOT s. In this section we’ll show how to do that.

This fundamental result will allow us to build circuits to do things like arithmetic and,

ultimately, a computer. For example, consider a function described by the truth table below.

This function is known as “implication” and is written  .

x + y

x̄

x ⇒ y
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This function can be expressed as . To see why, try building the truth table for 

. That is, for each of the four possible combinations of x and y, evaluate .

For example, when  and  , notice that  is 1. Since the OR of 1 and anything

else is always 1, we see that  evaluates to 1 in this case. Aha! This is exactly the

value that we got in the truth table above for  and . If you continue doing this

for the next three rows, you’ll see that values of  and  always match. In other

words, they are identical. This method of enumerating the output for each possible input is a

fool-proof way of proving that two functions are identical, even if it is a bit laborious.

For simple Boolean functions, it’s often possible to invent an expression for the function by

just inspecting the truth table. However, it’s not always so easy to do this, particularly when

we have Boolean functions with more than two inputs. So, it would be nice to have a

systematic approach for building expressions from truth tables. The minterm expansion

principle provides us with just such an approach.

We’ll see how the minterm expansion principle works through an

example. Specifically, let’s try it out for the truth table for the

implication function above. Notice that when the inputs are 

and , the truth table tells us that the output is 0. However, for

all three of the other rows (that is pairs of inputs), the output is more

“interesting” - it’s 1. We’ll build a custom-made logical expression

for each of these rows with a 1 as the output. First, consider the row

 ;  . Note that the expression  evaluates to 1 for

this particular pair of inputs because the NOT of 0 is 1 and the AND of 1 and 1 is 1. Moreover,

notice that for every other possible pair of values for x and y this term  evaluates to 0. Do

you see why? The only way that  can evaluate to 1 is for  to be 1 (and thus for x to be 0)

and for  to be 1 (since we are computing the AND here and AND outputs 1 only if both of its

inputs are 1). The term  is called a minterm. You can think of it as being custom-made to

make the inputs  ;  “happy” (evaluate to 1) and does nothing for every other

pair of inputs.

We’re not done yet! We now want a minterm that is custom-made to evaluate to 1 for the

input ;  and evaluates to 0 for every other pair of input values. Take a moment

to try to write such a minterm. It’s . This term evaluates to 1 if and only if  and 

. Similarly, a minterm for ;  is math:xy. Now that we have these

minterms, one for each row in the truth table that contains a 1 as output, what do we do

next? Notice that in our example, our function should output a 1 if the first minterm evaluates

to 1 or the second minterm evaluates to 1 or the third minterm evaluates to 1. Also notice the

+ xyx̄
+ xyx̄ + xyx̄

x = 0 y = 0 x̄

+ xyx̄
x = 0 y = 0

x ⇒ y + xyx̄

x = 1
y = 0

x = 0 y = 0 x̄ȳ

x̄ȳ
x̄ȳ x̄

ȳ

x̄ȳ
x = 0 y = 0

x = 0 y = 1
yx̄ x = 0

y = 1 x = 1 y = 1



words “or” in that sentence. We want to OR the values of these three minterms together. This

gives us the expression . This expression evaluates to 1 for the first,

second, and fourth rows of the truth table as it should. How about the third row, the

“uninteresting” case where ;  should output 0. Recall that each of the

minterms in our expression was custom-made to make exactly one pattern “happy”. So,

none of these terms will make the ;  “happy” and thus, for that pair of inputs,

our newly minted expression outputs a 0 as it should!

It’s not hard to see that this minterm expansion principle works for every truth table. Here is

the precise description of the process:

1. Write down the truth table for the Boolean function that you are considering.

2. Delete all rows from the truth table where the value of the function is 0.

3. For each remaining row we will create something called a “minterm” as follows:

a. For each variable that has a 1 in that row, write the name of the

variable. If the input variable is 0 in that row, write the variable with a

negation symbol to NOT it.

b. Now AND all of these variables together.

4. Combine all of the minterms for the rows using OR .

You might have noticed that this general algorithm for converting truth tables to logic

expressions only uses AND, OR, and NOT operations. It uses NOT and AND to construct each

minterm and then it uses OR to “glue” these minterms together. This effectively proves that

AND, OR, and NOT suffice to represent any Boolean function!

The minterm expansion principle is a recipe - it’s an algorithm. In fact, it can be

implemented on a computer to automatically construct a logical expression for any truth

table. In practice, this process is generally done by computers. Notice, however that this

algorithm doesn’t necessarily give us the simplest expression possible. For example, for the

implication function, we saw that the expression  is correct. However, the minterm

expansion principle produced the expression . These expressions are

logically equivalent, but the first one is undeniably shorter. Regrettably, the so-called

“minimum equivalent expressions” problem of finding the shortest expression for a Boolean

function is very hard. In fact, a Harvey Mudd College graduate, David Buchfuhrer, recently

showed that the minimum equivalent expressions problem is provably as hard as some of

the hardest (unsolved) problems in mathematics and computer science. Amazing but true!

+ y + xyx̄ȳ x̄

x = 1 y = 1

x = 1 y = 1

+ xyx̄
+ y + xyx̄ȳ x̄
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4.3.3 Logic Using Electrical Circuits

Next, we’d like to be able to perform Boolean functions in hardware.

Let’s imagine that our basic “building block” is an electromagnetic

switch as shown in Figure 4.2. There is always power supplied to

the switch (as shown in the upper left) and there is a spring that

holds a movable “arm” in the up position. So, normally, there is no

power going to the wire labeled “output”. The “user’s” input is

indicated by the wire labeled “input.” When the input power is off (or

“low”), the electromagnet is not activated and the movable arm

remains up, and output is 0. When the input is on (or “high”), the

electromagnet is activated, causing the movable arm to swing downwards and power to

flow to the output wire. Let’s agree that a “low” electrical signal corresponds to the number 0

and a “high” electrical signal corresponds to the number 1. Now, let’s build a device for

computing the AND function using switches. We can do this as shown in Figure 4.3 where

there are two switches in series. In this figure, we use a simple representation of the switch

without the power or the ground. The inputs are  and , so when  is 1, the arm of the first

switch swings down and closes the switch, allowing power to flow from the left to the right.

Similarly, when  is 1, that arm of the second switch swings down, allowing power to flow

from left to right. Notice that when either or both of the input  are 0, at least one switch

remains open and there is no electrical signal flowing from the power source to the output.

However, when both  and  are 1 both switches close and there is a signal, that is a 1,

flowing to the output. This is a device for computing  AND  . We call this an AND gate.

Similarly, the circuit in Figure 4.4 computes  OR  and is called an OR gate. The function

NOT  can be implemented by constructing a switch that conducts if and only  is 0.

x y x

y
x, y

x y
x y

x y
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Those gate shapes

Figure 4.2: An electromagnetic switch.

Figure 4.3: An AND gate constructed with switches.

Figure 4.4: An OR gate constructed with switches.

While computers based on electromechanical switches were state-

of-the-art in the 1930’s, computers today are built with transistorized

switches that use the same principles but are much smaller, much

faster, more reliable, and more efficient. Since the details of the

switches aren’t terribly important at this level of abstraction, we
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represent, or “abstract”, the gates using symbols as shown in

Figure 4.5

Figure 4.5: Symbols used for AND, OR, and NOT gates.

We can now build circuits for any Boolean function! Starting with the truth table, we use the

minterm expansion principle to find an expression for the function. For example, we used the

minterm expansion principle to construct the expression  for the

implication function. We can convert this into a circuit using AND, OR, and NOT gates as shown

in Figure 4.6.

Figure 4.6: A circuit for the implication function.

4.3.4 Computing With Logic

Now that we know how to implement functions of Boolean variables, let’s move up one more

level of abstraction and try to build some units that do arithmetic. In binary, the numbers from

+ y + xyx̄ȳ x̄



Ouch!

0 to 3 are represented as 00, 01, 10, and 11. We can use a simple truth table to describe

how to add two two-bit numbers to get a three-bit result:

In all, this truth table contains sixteen rows. But how can we apply the minterm expansion

principle to it? The trick is to view it as three tables, one for each bit of the output. We can

write down the table for the rightmost output bit separately, and then create a circuit to

compute that output bit. Next, we can repeat this process for the middle output bit. Finally,

we can do this one more time for the leftmost output bit. While this works, it is much more

complicated than we would like! If we use this technique to add two 16-bit numbers, there

will be  rows in our truth table resulting in several billion gates.

Fortunately, there is a much better way of doing business.

Remember that two numbers are added (in any base) by first

adding the digits in the rightmost column. Then, we add the digits in

the next column and so forth, proceeding from one column to the next, until we’re done. Of

course, we may also need to carry a digit from one column to the next as we add.

We can exploit this addition algorithm by building a relatively simple circuit that does just

one column of addition. Such a device is called a full adder, (admittedly a funny name given

that it’s only doing one column of addition!). Then we can “chain” 16 full adders together to

add two 16-bit numbers or chain 64 copies of this device together if we want to add two 64-

bit numbers. The resulting circuit, called a ripple-carry adder, will be much simpler and

smaller than the first approach that we suggested above. This modular approach allows us

to first design a component of intermediate complexity (e.g. the full adder) and use that

design to design a more complex device (e.g. a 16-bit adder). Aha! Abstraction again!

The full adder takes three inputs: The two digits being added in this column (we’ll call them 

 and ) and the “carry in” value that was propagated from the previous column (we’ll call

that ). There will be two outputs: The sum (we’ll call that ) and the “carry out” to be

propagated to the next column (we’ll call that ). We suggest that you pause here and
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build the truth table for this function. Since there are three inputs, there will be  rows

in the truth table. There will be two columns of output. Now, treat each of these two output

columns as a separate function. Starting with the first column of output, the sum , use the

minterm expansion principle to write a logic expression for . Then, convert this expression

into a circuit using AND, OR, and NOT gates. Then, repeat this process for the second column

of output, . Now you have a full adder! Count the gates in this adder - it’s not a very big

number.

Finally, we can represent this full adder abstractly with a box that has the three inputs on top

and the two outputs on the bottom. We now chain these together to build our ripple-carry

adder. A 2-bit ripple-carry adder is shown in Figure 4.7. How many gates would be used in

total for a 16-bit ripple-carry adder? It’s in the hundreds rather than the billions required in

our first approach!

Figure 4.7: A 2-bit ripple-carry adder. Each box labeled “FA” is a full adder that accepts two

input bits plus a carry, and produces a single output bit along with a carry into the next FA.

Now that we’ve built a ripple-carry adder, it’s not a big stretch to build up many of the other

kinds of basic features of a computer. For example, consider building a multiplication

circuit. We can observe that multiplication involves a number of addition steps. Now that we

have an addition module, that is an abstraction that we can use to build a multiplier!

Take Away Using the minterm expansion principle and modular design, we can now

build virtually all of the major parts of a computer.

4.3.5 Memory

There is one important aspect of a computer that we haven’t seen

how to design: memory! A computer can store data and then fetch

= 823
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those data for later use.(“Data” is the plural of “datum”. Therefore,

we say “those data” rather than “that data”.) In this section we’ll see

how to build a circuit that stores a single bit (a 0 or 1). This device is

called a latch because it allows us to “lock” a bit and retrieve it later. Once we’ve built a

latch, we can abstract that into a “black box” and use the principle of modular design to

assemble many latches into a device that stores a lot of data.

A latch can be created from two interconnected NOR gates: NOR is just OR followed by NOT.

That is, its truth table is exactly the opposite of the truth table for OR as shown below.

A NOR gate is represented symbolically as an OR gate with a little circle at its output

(representing negation).

Now, a latch can be constructed from two NOR gates as shown in Figure 4.8. The input  is

known as “set” while the input  is known as “reset”. The appropriateness of these names

will become evident in a moment.

Figure 4.8: A latch built from two NOR gates.

What in the world is going on in this circuit!? To begin with, suppose that all of , , and 

are 0. Since both  and  are 0, the output of the bottom NOR gate, , is 1. But since  is

1, the top NOR gate is forced to produce a 0. Thus, the latch is in a stable state: the fact that 

 is 1 holds  at 0.

Now, consider what happens if we change  (remember, it’s called “set”) to 1, while holding

R at 0. This change forces  to 0; for a moment, both  and  are zero. But the fact that 
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 is zero means that both inputs to the top NOR gate are zero, so its output, , must

become 1. After that happens, we can return S to 0, and the latch will remain stable. We can

think of the effect of changing  to 1 for a moment as “setting” the latch to store the value 1.

The value is stored at . (  is just used to make this circuit do its job, but it’s the value of 

 that we will be interested in.)

An identical argument will show that  (remember, it’s called “reset”) will cause  to return

to zero, and thus  will become 1 again. That is, the value of  is reset to 0! This circuit is

commonly called the S-R latch.

What happens if both  and  become 1 at the same time? Try this out through a thought

experiment. We’ll pause here and wait for you.

Did you notice how this latch will misbehave? When  and  are both set to 1 (this is trying

to set and reset the circuit simultaneously—very naughty) both  and  will become 0.

Now, if we let  and  return back to 0, the inputs to both NOR gates are 0 and their outputs

both become 1. Now each NOR gate gets a 1 back as input and its output becomes 0. In

other words, the NOR gates are rapidly “flickering” between 0 and 1 and not storing anything!

In fact, other weird and unpredictable things can happen if the two NOR gates compute their

outputs at slightly different speeds. Circuit designers have found ways to avoid this problem

by building some “protective” circuitry that ensures that  and  can never be

simultaneously set to 1.

So, a latch is a one-bit memory. If you want to remember a 1, turn 

to 1 for a moment; if you want to remember a 0, turn  to 1 for a

moment. If you aggregate 8 latches together, you can remember an

8-bit byte. If you aggregate millions of bits, organized in groups of 8,

you have the Random Access Memory (RAM) that forms the

memory of a computer.

4.4 Building a Complete Computer

Imagine that you’ve been elected treasurer of your school’s

unicycling club and its time to do the books and balance the budget.

You have a large notebook with all of the club’s finances. As you

work, you copy a few numbers from the binder onto a scratch sheet,

do some computations using a calculator, and jot those results

down on your scratch sheet. Occasionally, you might copy some of
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Memory is slow. If

those results back into the big notebook to save for the future and then jot some more

numbers from the notebook onto your scratch sheet.

A modern computer operates on the same principle. Your calculator

and the scratch sheet correspond to the CPU of the computer. The

CPU is where computation is performed but there’s not enough

memory there to store all of the data that you will need. The big

notebook corresponds to the computer’s memory. These two parts

of the computer are physically separate components that are connected by wires on your

computer’s circuit board.

What’s in the CPU? There are devices like ripple-carry adders, multipliers, and their ilk for

doing arithmetic. These devices can all be built using the concepts that we saw earlier in

this chapter, namely the minterm expansion principle and modular design. The CPU also

has a small amount of memory, corresponding to the scratch sheet. This memory comprises

a small number of registers where we can store data. These registers could be built out of

latches or other related devices. Computers typically have on the order of 16 to 32 of these

registers, each of which can store 32 or 64 bits. All of the CPU’s arithmetic is done using

values in the registers. That is, the adders, multipliers, and so forth expect to get their inputs

from registers and to save the results to a register, just as you would expect to use your

scratch pad for the input and output of your computations.

The memory, corresponding to the big notebook, can store a lot of

data - probably billions of bits! When the CPU needs data that is

not currently stored in a register (scratch pad), it requests that data

from memory. Similarly, when the CPU needs to store the contents

of a register (perhaps because it needs to use that register to store

some other values), it can ship it off to be stored in memory.

What’s the point of having separate registers and memory? Why not just have all the

memory in the CPU? The answer is multifaceted, but here is part of it: The CPU needs to be

small in order to be fast. Transmitting a bit of data along a millimeter of wire slows the

computer down considerably! On the other hand, the memory needs to be large in order to

store lots of data. Putting a large memory in the CPU would make the CPU slow. In addition,

there are other considerations that necessitate separating the CPU from the memory. For

example, CPUs are built using different (and generally much more expensive) manufacturing

processes than memories.

Now, let’s complicate the picture slightly. Imagine that the process
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of balancing the unicycle club’s budget is complicated. The steps

required to do the finances involve making decisions along the way

(e.g. “If we spent more than $500 on unicycle seats this year, we are

eligible for a rebate.”) and other complications. So, there is a long

sequence of instructions that is written in the first few pages of our

club notebook. This set of instructions is a program! Since the

program is too long and complicated for you to remember, you copy

the instructions one-by-one from the notebook onto your scratch

sheet. You follow that instruction, which might tell you, for example,

to add some numbers and store them some place. Then, you fetch the next instruction from

the notebook.

How do you remember which instruction to fetch next and how do you remember the

instruction itself? The CPU of a computer has two special registers just for this purpose. A

register called the program counter keeps track of the location in memory where it will find

the next instruction. That instruction is then fetched from memory and stored in a special

register called the instruction register. The computer examines the contents of the

instruction register, executes that instruction, and then increments the program counter so

that it will now fetch the next instruction.

John von Neumann (1903-1957)

One of the great pioneers of computing was John von Neumann(pronounced

“NOY-mahn”), a Hungarian-born mathematician who contributed to fields as

diverse as set theory and nuclear physics. He invented the Monte Carlo method

(which we used to calculate  in Section 1.1.2), cellular automata, the merge

sort method for sorting, and of course the von Neumann architecture for

computers.

Although von Neumann was famous for wearing a three-piece suit everywhere—

including on a mule trip in the Grand Canyon and even on the tennis court—he

was not a boring person. His parties were always popular (although he

sometimes sneaked away from his guests to work) and he loved to quote from

his voluminous memory of off-color limericks. Despite his brilliance, he was a

notoriously bad driver, which might explain why he bought a new car every year.

Von Neumann died of cancer, perhaps caused by radiation from atomic-bomb

tests. But his legacy lives on in every computer built today.

π
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This way of organizing computation was invented by the famous mathematician and

physicist, Dr. John von Neumann and is known as the von Neumann architecture. While

computers differ in all kinds of ways, they all use this fundamental principle. In the next

subsection we’ll look more closely at how this principle is used in a real computer.

4.4.1 The von Neumann Architecture

We mentioned that the computer’s memory stores both instructions

and data. We know that data can be encoded as numbers and

numbers can be encoded in binary. But what about the instructions?

Good news! Instructions too can be stored as numbers by simply

adopting some convention that maps instructions to numbers.

For example, let’s assume that our computer is based on 8-bit

numbers and let’s assume that our computer only has four

instructions: add, subtract, multiply, and divide. (That’s very few

instructions, but let’s start there for now and then expand later). Each of these instructions

will need a number, called an operation code (or opcode), to represent it. Since there are

four opcodes, we’ll need four numbers, which means two bits per number. For example, we

might choose the following opcodes for our instructions:

Next, let’s assume that our computer has four registers number 0 through 3. Imagine that we

want to add two numbers. We must specify the two registers whose values we wish to add

and the register where we wish to store the result. If we want to add the contents of register

2 with the contents of register 0 and store the result in register 3, we could adopt the

convention that we’ll write “add 3, 0, 2”. The last two numbers are the registers where we’ll

get our input and the first number is the register where we’ll store our result. In binary, “add 3,

0, 2” would be represented as “00 11 00 10”. We’ve added the spaces to help you see the

numbers 00 (indicating “add”), 11 (indicating the register where the result will be stored), 00

(indicating register 0 as the first register that we will add), and 10 (indicating register 2 as

the second register that we will add).

In general, we can establish the convention that an instruction will be
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encoded using 8 bits as follows: The first two bits (which we’ll call I0

and I1) represent the instruction, the next two bits (D0 and D1)

encode the “destination register” where our result will be stored, the

next two bits (S0 and S1) encode the first register that we will add, and the last two bits (T0

and T1) encode the second register that we will add. This representation is shown below.

Recall that we assume that our computer is based on 8-bit numbers. That is, each register

stores 8 bits and each number in memory is 8 bits long. Figure 4.9 shows what our

computer might look like. Notice the program counter at the top of the CPU. Recall that this

register contains a number that tells us where in memory to fetch the next instruction. At the

moment, this program counter is 00000000, indicating address 0 in memory.

The computer begins by going to this memory location and fetching

the data that resides there. Now look at the memory, shown on the

right side of the figure. The memory addresses are given both in

binary (base 2) and in base 10. Memory location 0 contains the

data 00100010. This 8-bit sequence is now brought into the CPU

and stored in the instruction register. The CPU’s logic gates

decode this instruction. The leading 00 indicates it’s an addition

instruction. The following 10 indicates that the result of the addition that we’re about to

perform will be stored in register 2. The next 00 and 10 mean that we’ll get the data to add

from registers 0 and 2, respectively. These values are then sent to the CPU’s ripple-carry

adder where they are added. Since registers 0 and 2 contain 00000101 and 00001010,

respectively, before the operation, after the operation register 2 will contain the value

00001111.

In general, our computer operates by repeatedly performing the following procedure:

1. Send the address in the program counter (commonly called the PC ) to the memory,

asking it to read that location.

2. Load the value from memory into the instruction register.

3. Decode the instruction register to determine what instruction to execute and which

registers to use.

4. Execute the requested instruction. This step often involves reading operands from

registers, performing arithmetic, and sending the results back to the destination

register. Doing so usually involves several sub-steps.

5. Increment the PC (Program Counter) so that it contains the address of the next



instruction in memory. (It is this step that gives the PC its name, because it counts its

way through the addresses in the program.)

Figure 4.9: A computer with instructions stored in memory. The program counter tells the

computer where to get the next instruction.

“Wait!” we hear you scream. “The memory is storing both instructions and data! How can it

tell which is which?!” That’s a great question and we’re glad you asked. The truth is that the

computer can’t tell which is which. If we’re not careful, the computer might fetch something

from memory into its instruction register and try to execute it when, in fact, that 8-bit number

represents the number of pizzas that the unicycle club purchased and not an instruction! One

way to deal with this is to have an additional special instruction called “halt” that tells the

computer to stop fetching instructions. In the next subsections we’ll expand our computer to

have more instructions (including “halt”) and more registers and we’ll write some real

programs in the language of the computer.

Takeaway message: A computer uses a simple process of repeatedly fetching its next

instruction from memory, decoding that instruction, executing that instruction, and

incrementing the program counter. All of these steps are implemented with digital circuits

that, ultimately, can be built using the processes that we’ve described earlier in this

chapter.

4.5 Hmmm

The computer we discussed in Section 4.4 is simple to understand, but its simplicity means

it’s not very useful. In particular, a real computer also needs (at a minimum) ways to:

1. Move information between the registers and a large memory,
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2. Get data from the outside world,

3. Print results, and

4. Make decisions.

To illustrate how these features can be included, we have designed the Harvey Mudd

Miniature Machine, or Hmmm. Just like our earlier 4-instruction computer, Hmmm has a

program counter, an instruction register, a set of data registers, and a memory. These are

organized as follows:

1. While our simple computer used 8-bit instructions, in Hmmm,

both instructions and data are 16 bits wide. The set of bits

representing an instruction is called a word. That allows us to

represent a reasonable range of numbers, and lets the

instructions be more complicated.

2. In addition to the program counter and instruction register,

Hmmm has 16 registers, named R0 through R15. R0 is

special: it always contains zero, and anything you try to store

there is thrown away.

3. Hmmm’s memory contains 256 locations. Although the

memory can be used for either instructions or data, programs

are prevented from reading or writing the instruction section of

memory. (Some modern computers offer a similar feature.)

Since the Hmmm instruction format has it’s inconvenient to try to

program Hmmm by writing down the bits corresponding to the

instructions. Instead, we will use assembly language, which is a

programming language where each machine instruction receives a

friendlier symbolic representation. For example, to compute R3 =

R1 + R2, we would write:

add r3, r1, r2

A very simple process is used to convert this assembly language

into the 0’s and 1’s - the “machine language” - that the computer

can execute.

A complete list of Hmmm instructions, including their binary

encoding, is given in Figure 4.10.
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4.5.1 A Simple Hmmm Program

To begin with, let’s look at a program that will calculate the

approximate area of a triangle. It’s admittedly mundane, but it will

illustrate (We suggest that you follow along by downloading Hmmm

from

http://www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html and trying

these examples out with us.)

Let’s begin by using our favorite editor to create a file named triangle1.hmmm with the

following contents:

#
# Calculate the approximate area of a triangle.
#
# First input: base
# Second input: height
# Output: area
#

0 read r1  # Get base
1 read r2  # Get height
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 halt

How Does It Work?

What does all of this mean? First, anything starting with a pound sign (“#”) is a comment;

Hmmm ignores it. Second, you’ll note that each line is numbered, starting with zero. This

number indicates the memory location where the instruction will be stored.

You may have also noticed that this program doesn’t use any commas, unlike the example

add instruction above. Hmmm is very lenient about notation; all of the following instructions

http://www.cs.hmc.edu/~cs5grad/cs5/hmmm/documentation/documentation.html
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Needless to say, we don’t recommend the last two options!

So what do all of these lines actually do? The first two (0 and 1) read in the base and height

of the triangle. When Hmmm executes a read instruction, it pauses and prompts the user to

enter a number, converts the user’s number into binary, and stores it into the named

register. So the first-typed number will go into register R1, and the second into R2.

The MULtiply instruction then finds  by calculating R1 = R1  R2. This instruction

illustrates three important principles of hmmm programming: 1. Most arithmetic instructions

accept three registers: two sources and a destination. 2. The destination register is always

listed first, so that the instruction can be read somewhat like a Python assignment

statement. 3. A source and destination can be the same.

After multiplying, we need to divide  by 2. But where can we get the constant 2? One

option would be to ask the user to provide it via a read instruction, but that seems clumsy.

Instead, a special instruction, setn (set to number), lets us insert a small constant into a

register. As with mul, the destination is given first; this is equivalent to the Python statement

R2 = 2.

The DIVide instruction finishes the calculation, and write displays the result on the screen.

There is one thing left to do, though: after the write is finished, the computer will happily try

to execute the instruction at the following memory location. Since there isn’t a valid

instruction there, the computer will fetch a collection of bits there that are likely to be invalid

as an instruction, causing the computer to crash. So we need to tell it to halt after it’s done

with its work.

That’s it! But will our program work

Trying It Out

b × h ×

b × h



got this wrongWe can assemble the program by running hmmmAssembler.py from

the command line: [1] User-typed input is shown in blue and the

prompt is shown using the symbol %. The prompt on your computer may look different.

% ./hmmmAssembler.py
Enter input file name: triangle1.hmmm
Enter output file name: triangle1.hb

----------------------
| ASSEMBLY SUCCESSFUL |
----------------------

0 : 0000 0001 0000 0001        0        read    r1       # Get base
1 : 0000 0010 0000 0001        1        read    r2       # Get height
2 : 1000 0001 0001 0010        2        mul     r1 r1 r2 # b times h into r1
3 : 0001 0010 0000 0010        3        setn    r2 2
4 : 1001 0001 0001 0010        4        div     r1 r1 r2 # Divide by 2
5 : 0000 0001 0000 0010        5        write   r1
6 : 0000 0000 0000 0000        6        halt

If you have errors in the program, hmmmAssembler.py will tell you; otherwise it will produce the

output file triangle1.hb (“hb” stands for “Hmmm binary”). We can then test our program by

running the Hmmm simulator:

% ./hmmmSimulator.py
Enter binary input file name: triangle1.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5
10
% ./hmmmSimulator.py
Enter binary input file name: triangle1.hb
Enter debugging mode? n
Enter number: 5
Enter number: 5
12

We can see that the program produced the correct answer for the first test case, but not for

the second. That’s because Hmmm only works with integers; division rounds fractional

values down to the next smaller integer just as it does in Python.

4.5.2 Looping



If you want to calculate the areas of a lot of triangles, it’s a nuisance to have to run the

program over and over. Hmmm offers a solution in the unconditional jump instruction, which

says “instead of executing the next sequential instruction, start reading instructions

beginning at address n .” If we simply replace the halt with a jump:

#
# Calculate the approximate areas of many triangles.
#
# First input: base
# Second input: height
# Output: area
#

0 read r1  # Get base
1 read r2  # Get height
2 mul r1 r1 r2 # b times h into r1
3 setn r2 2
4 div r1 r1 r2 # Divide by 2
5 write r1
6 jumpn 0

then our program will calculate triangle areas forever.

What’s that jumpn 0 instruction doing? The short explanation is that it’s telling the computer

to jump back to location 0 and continue executing the program there. The better explanation

is that this instruction simply puts the number 0 in the program counter. Remember, the

computer mindlessly checks its program counter to determine where to fetch its next

instruction from memory. By placing a 0 in the program counter, we are ensuring that the

next time the computer goes to fetch an instruction it will fetch it from memory location 0.

Since there will come a time when we want to stop, we can force the program to end by

holding down the Ctrl (“Control”) key and typing C (this is commonly written “Ctrl-C” or just

“^C”’):

% ./hmmSimulator.py
Enter binary input file name: triangle2.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5
10
Enter number: 5
Enter number: 5
12
Enter number: ̂C
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Interrupted by user, halting program execution...

That works, but it produces a somewhat ugly message at the end. A nicer approach might

be to automatically halt if the user inputs a zero for either the base or the height. We can do

that with a conditional jump instruction, which works like jumpn if some condition is true,

and otherwise does nothing.

There are several varieties of conditional jump statements and the

one we’ll use here is called jeqzn which is pronounced “jump to n if

equal to zero” or just “jump if equal to zero.” This conditional jump

takes a register and a number as input. If the specified register

contains the value zero then we will jump to the instruction specified

by the number in the second argument. That is, if the register

contains zero then we will place the number in the second argument

in the program counter so that the computer will continue computing

using that number as its next instruction.

#
# Calculate the approximate areas of many triangles.
# Stop when a base or height of zero is given.
#
# First input: base
# Second input: height
# Output: area
#

0 read r1  # Get base
1 jeqzn r1 9  # Jump to halt if base is zero
2 read r2  # Get height
3 jeqzn r2 9  # Jump to halt if height is zero
4 mul r1 r1 r2 # b times h into r1
5 setn r2 2
6 div r1 r1 r2 # Divide by 2
7 write r1
8 jumpn 0
9 halt

Now, our program behaves politely:

% ./hmmmSimulator.py
Enter binary input file name: triangle3.hb
Enter debugging mode? n
Enter number: 4
Enter number: 5



10
Enter number: 5
Enter number: 5
12
Enter number: 0

The nice thing about conditional jumps is that you aren’t limited to just terminating loops; you

can also use them to make decisions. For example, you should now be able to write a

Hmmm program that prints the absolute value of a number. The other conditional jump

statements in Hmmm are included in the listing of all Hmmm instructions at the end of this

chapter.

4.5.3 Functions

Here is a program that computes factorials:

#
# Calculate N factorial.
#
# Input: N
# Output: N!
#
# Register usage:
#
# r1 N
# r2 Running product
#

0 read r1  # Get N
1 setn r2,1
2 jeqzn r1,6  # Quit if N has reached zero
3 mul r2,r1,r2 # Update product
4 addn r1,-1  # Decrement N
5 jumpn 2  # Back for more

6 write r2
7 halt

(If you give this program a negative number, it will crash unpleasantly; how could you fix that

problem?) The addn instruction at line 4 simply adds a constant to a register, replacing its

contents with the result. We could achieve the same effect by using setn and a normal add,

but computer programs add constants so frequently that Hmmm provides a special

instruction to make the job easier.

( ) = n!



I wouldn’t choose to

write that program.

But suppose you need to write a program that computes . (If you haven’t

seen this formula before, it counts the number of different ways to choose  items from a set

of  distinct items and it’s pronounced ”  choose  ”.)

Since we need to compute three different factorials, we would like

to avoid having to copy the above loop three different times.

Instead, we’d prefer to have a function that computes factorials, just

like Python has.

Creating a function is just a bit tricky. It can’t read its input from the

user, and it must return the value that it computed to whatever code

called that function.

It’s convenient to adopt a few simple conventions to make this all work smoothly. One such

convention is to decide on special registers to be used for parameter passing, i.e., getting

information into and out of a function. For example, we could decide that r1 will contain 

when the factorial function starts, and r2 will contain the result. (As we’ll see later, this

approach is problematic in the general case, but it’s adequate for now.)

Our new program, with the factorial function built in, is:

#
# Calculate C(n,k) = n!/k!(n-k)!.
#
# First input: N
# Second input: K
# Output: C(N,K)
#
# Register usage:
#
# r1 Input to factorial function
# r2 r1 factorial
# r3 N
# r4 K
# r5 C(N,K)
#
# Factorial function starts at address 15
#

0 read r3  # Get N
1 read r4  # Get K

2 copy r1,r3  # Calculate N!
3 calln r14,15  # ...
4 copy r5,r2  # Save N! as C(N,K)

( ) =n
k

n!
k!(n−k)!
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n n k
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5 copy r1,r4  # Calculate K!
6 calln r14,15  # ...
7 div r5,r5,r2 # N!/K!

8 sub r1,r3,r4 # Calculate (N-K)!
9 calln r14,15  # ...
10 div r5,r5,r2 # C(N,K)

11 write r5  # Write answer
12 halt

13 nop   # Waste some space
14 nop

# Factorial function.  N is in R1. Result is R2.
# Return address is in R14.
15 setn r2,1  # Initial product
16 jeqzn r1,20  # Quit if N has reached zero
17 mul r2,r1,r2 # Update product
18 addn r1,-1  # Decrement N
19 jumpn 16  # Back for more

20 jumpr r14  # Done; return to caller

As you can see, the program introduces a number of new instructions. The simplest is nop,

the no-operation instruction, at lines 13 and 14. When executed, it does absolutely nothing.

Why would we want such an instruction? If you’ve already written some small Hmmm

programs, you’ve probably discovered the inconvenience of renumbering lines. By including

a few nops as padding, we make it easy to insert a new instruction in the sequence from 0-

15 without having to change where the factorial function begins.

Far more interesting is the calln instruction, which appears at lines

3, 6, and 9. Calln works similarly to jumpn: it causes Hmmm to start

executing instructions at a given address, in this case 15. But if we

had just used a jumpn, after the factorial function calculated its

result, it wouldn’t know whether to jump back to line 4, line 7, or line

10! To solve the problem, the calln uses register R14 to save the

address of the instruction immediately following the call. [2]

We’re not done, though: the factorial function itself faces the other end of the same dilemma.

R14 contains 4, 7, or 10, but it would be clumsy to write code equivalent to “If R14 is 4, jump

to 4; otherwise if R14 is 7, jump to 7; ...” Instead, the jumpr (jump to address in register)

instruction solves the problem neatly, if somewhat confusingly. Rather than jumping to a fixed
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address given in the instruction (as is done in line 19), jumpr goes to a variable address

taken from a register. In other words, if R14 is 4, jumpr will jump to address 4; if it’s 7 it will

jump to 7, and so forth.

4.5.4 Recursion

In Chapter 2 we learned to appreciate the power and elegance of recursion. But how can

you do recursion in Hmmm assembly language? There must be a way; after all, Python

implements recursion as a series of machine instructions on your computer. To understand

the secret, we need to talk about the stack.

Stacks

You may recall that in Chapter 2 we talked about stacks (remember those stacks of storage

boxes)? Now we’re going to see precisely how they work.

A stack is something we are all familiar with in the physical world: it’s just a pile where you

can only get at the top thing. Make a tall stack of books; you can only see the cover of the

top one, you can’t remove books from the middle (at least not without risking a collapse!),

and you can’t add books anywhere except at the top.

The reason a stack is useful is because it remembers things and

gives them back to you in reverse order. Suppose you’re reading

Gone With the Wind and you start wondering whether it presents

the American Civil War fairly. You might put GWTW on a stack, pick

up a history book, and start researching. As you’re reading the

history book, you run into an unfamiliar word. You place the history

book on the stack and pick up a dictionary. When you’re done with

the dictionary, you return it to the shelf, and the top of the stack has

the history book, right where you left off. After you finish your research, you put that book

aside, and voilá! GWTW is waiting for you.

This technique of putting things aside and then returning to them is precisely what we need

for recursion. To calculate , you need to find  for which you need  and so forth. A

stack can remember where we were in the calculation of  and help us to return to it later.

To implement a stack on a computer, we need a stack pointer,

which is a register that holds the memory address of the top item on

5! 4! 3!
4!



the stack. Traditionally, the stack pointer is kept in the highest-

numbered register, so on Hmmm we use R15.

Suppose R15 currently contains 102, [3] and the stack contains 42 (on top), 56, and 12.

Then we would draw the stack like this:

To push a value, say 23, onto the stack, we must increment R15 to contain the address of a

new location (103) and then store 23 into that spot in memory. The stack will now look like:

Later, to pop the top value off, we must ask R15 where the top is [4] (103) and recover the

value in that location. Then we decrement R15 so that it points to the new stack top, location

102. Everything is now back where we started.

The code to push something, say the contents of R4, on the stack looks like this:

addn r15,1      # Point to a new location
storer r4,r15   # Store r4 on the stack

The storer instruction stores the contents of R4 into the memory location addressed by

register 15. In other words, if R15 contains 103, the value in R4 will be copied into memory

location 103.

Just as storer can put things onto the stack, loadr will recover them:

loadr r3,r15    # Load r3 from the stack
addn r15,-1     # Point to new top of stack

Important note: in the first example above, the stack pointer is incremented before the

storer; in the second, it is decremented after the loadr`. This ordering is necessary to make

the stack work properly; you should be sure you understand it before proceeding further.

Saving Precious Possessions

( )n
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When we wrote the  program in Section 4.5.3, we took advantage of our knowledge of

how the factorial function on line 15 worked. In particular, we knew that it only modified

registers R1, R2, and R14, so that we could use R3 and R4 for our own purposes. In more

complex programs, however, it may not be possible to partition the registers so neatly. This

is especially true in recursive functions, which by their nature tend to re-use the same

registers that their callers use.

The only way to be sure that a called function won’t clobber your data is to save it

somewhere, and the stack is a perfect place to use for that purpose. When writing a Hmmm

program, the convention is that you must save all of your “precious possessions” before

calling a function, and restore them afterwards. Because of how a stack works, you have to

restore things in reverse order.

But what’s a precious possession? The quick answer is that it’s any register that you plan to

use, except R0 and R15. In particular, if you are calling a function from inside another

function, R14 is a precious possession.

Many newcomers to Hmmm try to take shortcuts with stack saving

and restoring. That is to reason, “I know that I’m calling two functions

in a row, so it’s silly to restore my precious possessions and save

them again right away.” Although you can get away with that trick in

certain situations, it’s very difficult to get it right, and you are much

more likely to cause yourself trouble by trying to save time. We strongly suggest that you

follow the suggested stack discipline rigorously to avoid problems.

Let’s look at a Hmmm program that uses the stack. We’ll use the recursive algorithm to

calculate factorials:

# Calculate N factorial, recursively
#
# Input: N
# Output: N!
#
# Register usage:
#
# r1 N! (returned by called function)
# r2 N

0 setn r15,100  # Initialize stack pointer
1 read r2  # Get N
2 calln r14,5  # Recursive function finds N!
3 write r1  # Write result
4 halt

( )n
k



# Function to compute N factorial recursively
#
# Inputs:
#
# r2 N
#
# Outputs:
#
# r1 N!
#
# Register usage:
#
# r1 N! (from recursive call)
# r2 N (for multiplication)

5 jeqzn r2,18  # Test for base case (0!)

6 addn r15,1  # Save precious possessions
7 storer r2,r15  # ...
8 addn r15,1  # ...
9 storer r14,r15  # ...

10 addn r2,-1  # Calculate N-1
11 calln r14,5  # Call ourselves recursively to get (N-1)!

12 loadr r14,r15  # Recover precious possessions
13 addn r15,-1  # ...
14 loadr r2,r15  # ...
15 addn r15,-1  # ...

16 mul r1,r1,r2 # (N-1)! times N
17 jumpr r14  # Return to caller

# Base case: 0! is always 1
18 setn r1,1
19 jumpr r14  # Return to caller

The main program is quite simple (lines 0 - 4): we read a number from the user, call the

recursive factorial function, and write the answer, and then halt.

The factorial function is only a bit more complex. After testing for the base case of , we

save our “precious possessions” in preparation for the recursive call (lines 6 - 9). But what is

precious to us? The function uses registers R1, R2, R14, and R15. We don’t need to save

R15 because it’s the stack pointer, and R1 doesn’t yet have anything valuable in it. So we

only have to save R2 and R14. We follow the stack discipline, placing R2 on the stack (line

7) and then R14 (line 9).

After saving our precious possessions, we call ourselves recursively to calculate 

0!

(N − 1)!
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 (lines 10–11) and then recover registers R14 (line 12) and R2 (line 14) in

reverse order, again following the stack discipline. Then we multiply  by , and

we’re done.

It is worth spending a bit of time studying this example to be sure that you understand how it

operates. Draw the stack on a piece of paper, and work out how values get pushed onto the

stack and popped back off when the program calculates .

4.5.5 The Complete Hmmm Instruction Set

This finishes our discussion of Hmmm. We have covered all of the

instructions except sub, mod, jnezn, jgtzn, and jltzn; we trust that

those don’t need separate explanations.

For convenience, Figure 4.10 at the bottom of the page

summarizes the entire instruction set, and also gives the binary

encoding of each instruction.

As a final note, you may find it instructive to compare the encodings of certain pairs of

instructions. In particular, what is the difference between add, mov, and nop? How does calln

relate to jumpn? We will leave you with these puzzles as we move on to imperative

programming.

4.5.6 A Few Last Words

What actually happens when we run a program that we’ve written in a language such as

Python? In some systems, the entire program is first automatically translated or compiled

into machine language (the binary equivalent of assembly language) using another program

called a compiler. The resulting compiled program looks like the Hmmm code that we’ve

written and is executed on the computer. Another approach is to use a program called an

interpreter that translates the instructions one line at a time into something that can be

executed by the computer’s hardware.

It’s important to keep in mind that exactly when and how the program gets translated - all at

once as in the case of a compiler or one line at a time in the case of an interpreter - is an

issue separate from the language itself. In fact, some languages have both compilers and

interpreters, so that we can use one or the other.

Why would someone even care whether their program was compiled or interpreted? In the

(N − 1)!
(N − 1)! N

3!

a < b



I think a mochaccino

and a donut would be

quite meaningful

right about now.

compiled approach, the entire program is converted into machine language before it is

executed. The program runs very fast but if there is an error when the program runs, we

probably won’t get very much information from the computer other than seeing that the

program “crashed”. In the interpreted version, the interpreter serves as a sort of “middle-

man” between our program and the computer. The interpreter can examine our instruction

before translating it into machine language. Many bugs can be detected and reported by the

interpreter before the instruction is ever actually executed by the computer. The “middle-

man” slows down the execution of the program but provides an opportunity to detect

potential problems. In any case, ultimately every program that we write is executed as code

in machine language. This machine language code is decoded by digital circuits that

execute the code on other circuits.

4.6 Conclusion

Aye caramba! That was a lot. We’ve climbed the levels of abstraction from transistors, to

logic gates, to a ripple-carry adder, and ultimately saw the general idea of a how a computer

works. Finally, we’ve programmed that computer in its native language.

Now that we’ve seen the foundations of how a computer works,

we’re going back to programming and problem-solving. In the next

couple of chapters, some of the programming concepts that we’ll

see will be directly tied to the issues that we examined in this

chapter. We hope that the understanding that you have for the

internal workings of a computer will help the concepts that we’re

about to see be even more meaningful than they would be

otherwise.

Instruction    Description Aliases

System instructions
halt Stop! None

read rX Place user input in register rX None

write rX Print contents of register rX None

nop Do nothing None

Setting register data

setn rX N
Set register rX equal to the integer N (-128 to
+127) None

addn rX N Add integer N (-128 to 127) to register rX None

copy rX rY Set rX = rY mov



Arithmetic
add rX rY rZ Set rX = rY + rZ None

sub rX rY rZ Set rX = rY - rZ None

neg rX rY Set rX = -rY None

mul rX rY rZ Set rX = rY * rZ None

div rX rY rZ Set rX = rY / rZ (integer division; no remainder) None

mod rX rY rZ
Set rX = rY % rZ (returns the remainder of integer
division)

None

Jumps!
jumpn N Set program counter to address N None

jumpr rX Set program counter to address in rX jump

jeqzn rX N If rX == 0, then jump to line N jeqz

jnezn rX N If rX != 0, then jump to line N jnez

jgtzn rX N If rX > 0, then jump to line N jgtz

jltzn rX N If rX < 0, then jump to line N jltz

calln rX N
Copy the next address into rX and then jump to
mem. addr. N

call

Interacting with memory (RAM)

loadn rX N
Load register rX with the contents of memory
address N

None

storen rX N
Store contents of register rX into memory address
N

None

loadr rX rY
Load register rX with data from the address
location held in reg. rY

loadi,
load

storer rX rY
Store contents of register rX into memory address
held in reg. rY

storei,
store

Figure 4.10: The Hmmm instruction set.

Footnotes

[1] On Windows, you can navigate to the command line from the Start menu. On a
Macintosh, bring up the Terminal application, which lives in Applications/Utilities. On
Linux, most GUIs offer a similar terminal application in their main menu. The example
above was run on Linux.

[2] We could have chosen any register except R0 for this purpose, but by convention
Hmmm programs use R14.

[3] We say that R15 points to location 102.

[4] We say we follow the pointer in R15.


