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Introduction

The clairvoyant demon problem

0

1

2

3

4

Y : WAIT

X : GO

X, Y are tokens performing
walks on the same graph: say,
the complete graph Km on m
nodes. In each instant, either X
or Y will move. A demon knows
both (infinite) walks completely
in advance. She decides every
time, whose turn it is and wants
to prevent collision. Say:

X = 233334002 . . .,

Y = 0012111443 . . ..

The repetitions are the demon’s
insertions.
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Introduction

The walks are called compatible if the demon can succeed. A
graph is roomy if two independent random walks X, Y on it are
compatible with positive probability.

Question
Which graphs are roomy?

Until now, no roomy graphs were known. For simplicity, let us
look only at complete graphs. The triangle K3 is definitely not
roomy.

Theorem (Main)
If m is sufficiently large then the complete graph Km is roomy.

Computer simulations suggest that already K5 is roomy, and
maybe even K4. The bound coming from the proof of the
theorem is above 10500.
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Introduction Origin

Origin in distributed computing

Find a leader among a finite number of processes, in a
communication graph.
Proposed algorithm:

At start, each process has a token. Each token performs a
random walk. Collision: tokens merge. The process with
the remaining single token becomes the leader.

Timing is controlled by an adversary (demon).

Non-clairvoyant adversary: leader will be found in O(n2)
expected time.

Clairvoyant:

Question
Can the demon keep two distinct tokens apart forever?
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Introduction Percolation

Percolation

Let us transform the problem into a graphical form.

A related problem: given two finite walks, give a polynomial
algorithm to decide whether they are compatible.

Dynamic programming leads to a 2-dim reachability picture.

Alon: this transforms the scheduling problem into
percolation (Winkler percolation...).

Péter Gács (BU) Clairvoyant demon April 25, 2008 5 / 65



Introduction Percolation

X

Y

0→ , 1→ , 2→ , 3→ .

Random walks on the complete graph K4.
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Introduction Related results

Related results

There are interesting variations of the original problem.

Undirected percolation problem: demon can move backward
on the schedule, as well as forward.

Completely solved by Winkler and, independently, by
Balister, Bollobás, Stacey.

Known exactly for which Markov processes does the
corresponding undirected percolation actually percolate. For
random walks on Km, one needs just m > 3 .

The undirected color percolations have exponential
convergence; the directed case has power-law convergence
(see next), so it needs new methods.

Winkler introduced also a simpler “compatible sequences”
problem. I have also shown it to have power-law behavior
(in a work whose methods are used here).
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Introduction Power law

Power-law behavior

Theorem

P [ (0, 0) is blocked at distance n but not closer ] > n−c

for some constant c > 0 depending on p.

In typical percolation theory, this probability decreases
exponentially in n.
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Introduction Power law

E
n

,k
︷

︸
︸

︷

τ2

A long horizontal wall occurs, with only polynomially small
probability.
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Introduction The method

Method: renormalization

Messy, laborious, crude, but robust. For “error-correction”
situations.
For appropriate ∆1 < ∆2 < · · · , define the square �k = [0,∆k]2.
Let Fk be some ultimate bad event in �k. (Here, that (0, 0) is
blocked in �k.) We want to prove P(

⋃
kFk) < 1 .

1 Identify simple bad events and very bad events: the latter
are much less probable.

2 Define a series M1,M2, . . . of models similar to each other,
where the very bad events of Mk become the simple bad
events of Mk+1.

3 Prove Fk ⊂
⋃

i6kF ′
i where F ′

k says that some bad event of
Mk happens in �k+1.

4 Prove
∑

k P(F ′
k) < 1.
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Introduction Mazeries

Mazeries

Bad event A trap (rectangle) or a wall (stripe).

Good event To each wall, a fitting hole (see “power-law”).
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Introduction Mazeries

Distilled leftovers

Some parts of the model Mk may function as the still needed
effects of suppressed details of M1, . . . ,Mk−1. In our case, these
are the notions of clean points and a condition called slope
constraint.
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Introduction Mazeries

The mazery Mk is a random process consisting of abstract traps
and walls of various types, holes fitting the walls, and set of
clean points. It obeys some conditions.
For example: there will be constant parameter χ < 1 such that
when a kind of wall will have a probability upper bound p, holes
through it will have a probability lower bound

pχ.
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Introduction Renormalization

Renormalization

The operation Mk 7→ Mk+1.
Traps and walls are the bad events (those of Mk); what are the
very bad events (bad events of Mk+1)?

Compound traps (3 kinds)

Compound walls

Emerging walls (2 kinds)
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Introduction Renormalization

Compound traps

An uncorrelated and a horizontal correlated compound trap.
Trap of the missing-hole type: a large wall segment not
penetrated by any hole.
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Introduction Renormalization

Compund walls

Compound wall penetrable only at a fitting pair of holes.
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Introduction Renormalization

Emerging wall: where the conditional probability of a correlated
compound trap or a trap of the missing-hole type is too high.
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Introduction Proof plan

We will have the following properties, with a σ < 1/2.

Initial cleanness {0 is not clean in Mk } ⊂
⋃

i<kF ′
i .

Cleanness density Every square of size 3∆k that does not
contain traps or walls, contains a clean point in its middle
part.

Reachability Lack of walls and traps, cleanness and the slope
constraints imply reachability.

(x1, y1)

clean

No walls or traps
(x2, y2)

clean

σ ≤ y2−y1

x2−x1

≤ 1/σ
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Introduction Proof plan

Lemma (Main)

If m is sufficiently large then the sequence Mk can be constructed,
in such a way that it satisfies the above conditions and also∑

k P(F ′
k) < 1.

Proof of the theorem from the lemma. Assume
⋃

kF ′
k does not

hold.
By the initial cleanness condition, 0 is clean in each Mk.
By the cleanness densition condition, for each k, there is a point
(xk, yk) in [∆k, 2∆k]2 that is clean in Mk.
For each k, it also satisfies the slope constraint 1/2 6 yk/xk 6 2.
Hence, by the reachability condition, is reachable from
(0, 0).
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Introduction Proof plan

3∆1

∆2

2∆2

(x1, y1)

(x2, y2)
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Mazeries formally

Mazeries formally

Let us define all elements of the complex model now.

All our randomness comes from Z = (X, Y) = (Z0, Z1), where
X(t), Y(t) ∈ {1, . . . , m} are independent random walks on the
graph Km for some fixed m. This defines a random lattice
graph, in the northeast quadrant of Z2, fixed throughout.

A mazery M = (M,∆, σ, R, w, q) consists of a random process
M, the parameters ∆ > 0, σ > 0, R > 0, and the probability
bounds w > 0, q. These will be detailed, along with
conditions that they must satisfy.
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Mazeries formally

The random process M

We have M = (Z, T ,W,B, C,S) where

T is the set of rectangles called traps

W,B are the sets of walls and barriers,

C,S are functions telling which points are clean and strongly
clean in various ways.

All these functions of the process Z will be explained.
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Mazeries formally Traps

Traps

The set T of random traps is a set of some closed rectangles of
size 6 ∆. Trap Rect(a, b) starts at its lower left corner a.

Remark
We will build a sequence of mazeries M1,M2, . . . . The first
one’s traps are the missing points of the percolation graph (the
points (i, j) where Xi = Yj). It has no walls, and all its points are
strongly clean in every sense. The other random objects only
come in for the higher-order mazeries introduced by
renormalization.
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Mazeries formally Walls

Walls

It is the walls that seem to distinguish the Winkler percolations.

A wall value is a pair (B, r). Here B is a right-closed interval
of size 6 ∆ called the body, and r > R > 0 is a real number
called the rank.
The rank lower bound R is a parameter of the mazery. (The
role of ranks will be explained later.)
Example: (]5, 10], 108.9).
Let Wvalues be the set of all possible wall values.

We have the random sets W0 ⊆ B0 ⊆ Wvalues, where W0,B0
are the set of vertical walls and vertical barriers respectively.
(Every wall is a barrier.)
The horizontal walls and barriers are in W1,B1.
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Mazeries formally Walls

Why barriers?

There is some tension between the need to reason about
reachability and the need to estimate probabilities.

For any rectangle with projections I× J, the event that it is a
trap is a function of the pair X(I), Y(J).
For any interval I, the event that it is a (say, vertical) barrier
depends only on X(I).
The same is not true of walls.

It is easier to estimate the probability of barriers, but it will
be easier to reason combinatorially about the penetration of
walls.

Let X(I) be a potential wall of rank r if there is an extension
to X1, X2, . . . that makes it a wall of rank r.
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Mazeries formally Walls

Why ranks?

Ranks arise from the need of upper- as well as lower bounds on
certain probabilities.

In defining mazery Mk+1 from mazery Mk, we will drop low
rank walls of Mk, (those with 6 Rk+1). These walls will have
high probability of holes through them, so reachability will
be conserved.

To control the proliferation of walls, a pair of close walls of
Mk will give rise to a compound wall of Mk+1 only if at least
one of the components has low rank.
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Mazeries formally Cleanness

One-dimensional cleanness

Cleanness and strong cleanness are described by the random
functions C,S.

For an interval I = ]a, b] or I = [a, b], the point a or b may be
called clean in I for the sequence X (clean in the horizontal
interval I). It can also be called clean for Y (clean in the
vertical interval I).
A point c is called left-clean for X if it is clean for X in all
intervals of the form ]a, c] and [a, c].
To every notion of one-dimensional cleanness there is a
corresponding notion of strong cleanness.

Intuitively a is clean for X in I = ]a, b] for mazery Mk if there
are no vertical walls of Mi very near it in I, for any i < k.
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Mazeries formally Cleanness

Trap-cleanness

Trap-cleanness is described by the random function T .

For points u = (u0, u1), v = (v0, v1), different kinds of
rectangles: Rect↑(u, v) is bottom-open, Rect→(u, v) is
left-open, Rect(u, v) is closed.

Let Q = Rectε(u, v) where ε =→ or ↑ or nothing. Point u or v
can be trap-clean in Q.
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Mazeries formally Cleanness

Complex sorts of cleanness

In what follows we introduce some definitions that will be
needed in formulating the conditions.
First, we need combinations of one- and two-dimensional
cleanness notions.

An interval ]a, b] is inner clean if both a and b are clean in it.

Point u is clean in rectangle Q when it is trap-clean in Q and
its projections are clean in the corresponding projections of
Q.

If u is clean in all such left-open rectangles then it is called
upper right rightward-clean.

Point u is H-clean in Q if it is trap-clean in Q and its
projection on the x axis is strongly clean in the same
projection of Q. We define V-clean similarly.
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Mazeries formally Hops and good sequences

Hops

Hops are intervals and rectangles with some guarantees that
they can be passed.

A right-closed or closed interval is called a hop if it is inner
clean and contains no wall. It is a jump if it is strongly inner
clean and contains no barrier.

A rectangle is hop if it is inner-clean (both the lower left and
the upper right corners are clean in it) and contains no trap
or wall.
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Mazeries formally Hops and good sequences

Good sequences of walls

Let us define the sequences of walls with some passability.

Two disjoint walls are called neighbors if the interval
between them is a hop.

An interval I is spanned by the sequence of neighbor walls
W1, W2, . . . Wn and intervals I1, . . . , In−1 between them if
I = W1 ∪ I1 ∪W2 ∪ · · · ∪Wn. We allow the sequence to be
infinite.

If there are hops adjacent on the left of W1 and to the right of
Wn then this (possibly infinite) system is called an extended
sequence of neighbor walls.
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Mazeries formally Holes

Holes

A (vertical) hole is a rectangle in a (horizontal) barrier where
we can pass through. It is called good if it is lower-left and
upper-right H-clean.
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Conditions Dependencies

Conditions on the random process
Dependencies

Most conditions are fairly natural. The first set requires the
expected localities and mononotonicities.

For any rectangle I× J, the event that it is a trap is a function
of the pair X(I), Y(J).
For a vertical wall value E the event that it is a vertical
barrier is a function of X(Body(E)).
For any endpoint of a horizontal interval I, the event that it is
strongly clean in I is a function of X(I).
When X is fixed, then for a fixed a, the (strong and not
strong) cleanness of a in ]a, b] is decreasing as a function of
b− a. This function reaches its minimum at b− a = ∆.
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Conditions Dependencies

For any rectangle Q = I× J, the event that its lower left
corner is trap-clean in Q, is a function of the pair X(I), Y(J).
Among rectangles Q with a fixed lower left corner, the event
that this corner is trap-clean in Q is a decreasing function of
rectangles Q (partially ordered by containment). This
function reaches its minimum for squares of size ∆.
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Conditions Density of clean

Density of clean

We want many clean points.

If a (not necessarily integer aligned) right-closed interval of
size > 3∆ contains no wall, then its middle third contains a
clean point.

Suppose that a rectangle I× J with (not necessarily integer
aligned) right-closed I, J with |I|, |J| > 3∆ contains no
horizontal wall and no trap, and a is a right clean point in
the middle third of I. There is an integer b in the middle
third of J such that the point (a, b) is upper right clean.
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Conditions Combinatorial requirements

Combinatorial requirements

These requirements are somewhat subtle. They are needed for
the passing of walls. Their proof in the renormalization will take
some work.
We call an interval external if it does not intersect any walls.
We call a wall dominant if it contains every wall intersecting
with it.

A maximal external interval of size > ∆ or one starting at the
beginning is inner clean.

Suppose that interval I is adjacent on the left to a maximal
external interval that has size > ∆ (or starts at the
beginning). Suppose also that it is adjacent on the right to a
similar interval (or is infinite and contains no such interval).
Then it is spanned by a sequence of neighbor walls. (In
particular, the whole line is spanned by an extended
sequence of neighbor walls.)
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Conditions Probability conditions

Probability conditions
Trap probability bound

In these probability bounds, we have frequently a condition like
Y(b− 1) = k in the conditional probability, since the processes
X, Y are Markov processes, and this is equivalent to conditioning
on the whole past (Y(0), . . . , Y(b− 1)).
The bound on traps: Given a string x = (x(0), x(1), . . .) and an
interval I 3 a,

P
[

a trap starts at (a, b)
with projection in I

∣∣∣ X(I) = x(I), Y(b− 1) = k
]
6 w.
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Conditions Probability conditions

Parameters

Let

λ = 21/2.

and c1, c2 some constants to be chosen later. The probability
bound on a wall of rank r will be

p(r) = c2r−c1λ−r.

The constant

χ = 0.015

is part of the definition. The lower bound for the probability of
holes for rank r, will be, with an appropriate constant c3:

h(r) = c3λ
−χr.
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Conditions Probability conditions

Barrier probability bound

Let
p(r, l)

be the supremum of probabilities (over all points t) that any
barrier with rank r and size l starts at t, conditional over all
possible X(t) = k.
The function p(r) is a parameter in the definition of mazeries
(we will define it explicitly). We require

p(r) >
∑

l

p(r, l).
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Conditions Probability conditions

Cleanness bounds

We require q < 0.1, and following inequalities for
k ∈ {1, . . . , m}, for all a < b, for all sequences y such that u1
(resp. v1) is clean in ]u1, v1]:

q/2 > P [ a is not strongly clean in ]a, b] | X(a) = k ] ,
q/2 > P [ u is not trap-clean in Rect→(u, v) | X(u0) = k, Y = y ] .

As always, there are several similar requirements obtained by
interchanging X and Y, a for b, and so on.
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Conditions Probability conditions

Hole probability lower bound

We need a better lower bound than h(r) for the case when we
approach the wall from a certain distance, as in passing
compound walls.

v

w

u
a

b d c

Q

No traps or vertical barriers

H-clean

H-clean

Given a, u, v, w.

b = a + d(v− u)/2e,
c = a + (v− u) + 1.

Then

prob > (c− b)χh(r).
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Conditions Probability conditions

Given a and u 6 v < w with v− u 6 12∆, define

b = a + d(v− u)/2e, c = a + (v− u) + 1.

Let Y = y be such that B is a horizontal potential wall of rank r
with body ]v, w].
For a d ∈ [b, c− 1] let Q = Q(d) = Rect→((a, u), (d, v)). Let
E = E(u, v, w; a) be the event (a function of X) that there is a d
with

i A vertical hole fitting B starts at d.
ii Q contains no traps, or vertical barriers.
iii Points (a, u) and (d, v) are H-clean in Q,

Then
P
[
E | X(a) = k, Y = y

]
> (c− b)χh(r).
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Conditions Reachability

Reachability

We require 0 6 σ < 1
2 .

Let u, v be points with minslope(u, v) > σ. If they are the starting
and endpoint of a rectangle that is a hop, then u v.
(The rectangle in question is allowed to be bottom-open or
left-open, but not both.)

(x1, y1)

clean

No walls or traps
(x2, y2)

clean

σ ≤ y2−y1

x2−x1

≤ 1/σ
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Conditions Base case

Base case

Example (Base case)
The original clairvoyant demon problem is a special case.

Traps are points (i, j) with X(i) = Y(j).
There are no barriers.

Every point is clean, its projections are also strongly clean.

We have ∆ = 1 and σ = 0.

The trap upper bound is satisfied if m− 1 > 1/w.
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Renormalization

Renormalization

After defining the mazery M∗, eventually we will have to prove
the required properties. To be able to prove the reacheability
condition for M∗, we will introduce some new walls and traps in
M∗ whenever some larger-scale obstacles prevent reachability.
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Renormalization Parameters

Parameters
Distances and slope

Some comments on the parameters of M∗ and others used in
the renormalization itself.

Parameters f � g � ∆, to be determined later, with
∆/g 6 g/f.
Here f is (among others) the minimum tolerated distance of
walls, and g (among others) the minimum tolerated distance
without hole on a wall.

The choice of ∆∗ will make sure 3f 6 ∆∗, since 3f will be an
upper bound on the size of our compound walls.

σ∗ := σ + 500g/f. We will have g/f < (0.5− σ)/1000,
guaranteeing that σk never goes beyond 0.5.
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Renormalization Parameters

Light and heavy

The barrier probability bounds will depend exponentially on
ranks.

The new rank lower bound R∗ can be almost twice as large as
the previous one: it will satisfy R∗ 6 2R− logλ f. Walls of
rank lower than R∗ are called light, the other ones are called
heavy. Heavy walls of M will also be walls of M∗.
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Renormalization Cleanness

Cleanness

The definition of cleanness is straightforward.

1 dim For an interval I, its right endpoint b will be called clean
in I for M∗ if

i It is clean in I for M.
ii I contains no wall of M whose right end is closer to b

than f/3.
b is strongly clean in I for M∗ if it is strongly clean in I for
M and I contains no barrier of M whose right end is closer
to x than f/3.

2 dim A starting point or endpoint u of a rectangle Q is
trap-clean in Q for M∗ if

i It is trap-clean in Q for M.
ii Any trap contained in Q is at a distance > g from u.
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Renormalization New traps

New traps

Uncorrelated A rectangle Q is called an uncorrelated compound
trap if it contains two traps with disjoint projections, with a
distance of their starting points at most f, and if it is minimal
among all rectangles containing these traps.

Correlated and missing-hole This kind of horizontal trap I× J
occurs, where I = [b, c] if

A certain bad event Lj(x, y, I, b), of three possible types
j = 1, 2, 3 occurs.
We have for all k

P
[
Lj(x, Y, I, b) | X(I) = x(I), Y(b− 1) = k

]
6 w2.
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Renormalization New traps

Correlated traps

J 5∆

b

3l j

I

Let (for two versions of bad event leading to correlated traps)

g′ = 2.2g, l1 = 7∆, l2 = g′.

Let I be a closed interval with length |I| = 3lj, and J = [b, b+5∆].
Fixing x(I), y(J), we say that Lj(x, y, I, b) holds if every
subinterval of I size lj contains the projection of a trap from I× J.
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Renormalization New traps

Missing-hole traps

Let I be a closed interval of size g, J = [b, b + 3∆]. Fixing
x(I), y(J), we say that L3(x, y, I, b) holds if there is a b′ > b + ∆
such that ]b + ∆, b′] is a light horizontal potential wall, and no
good hole (recall the meaning) passes through it, at distance
> ∆ from its ends.

b
I

H-clean

H-clean
b′

g

3∆

Example of a good hole. All such holes are missing now.
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Renormalization Emerging walls

Emerging barriers

A vertical emerging barrier is, essentially, a horizontal interval
over which the conditional probability of a bad event Lj is not
small (thus preventing a new trap). But in order to find enough
barriers, the ends are allowed to be sligthly extended.

2∆ 2∆I

I ′

Fix the sequence X over I = ]a, b] as x(I). Consider intervals
I′ = [a′, b′] for any a′ ∈ ]a, u + 2∆], b′ ∈ ]b− 2∆, b]. Interval I is
the body of a vertical barrier of the emerging kind, of type
j ∈ {1, 2, 3} if

∃(I′, k) P
[
Lj(x, Y, I′, 1) | X(I′) = x(I′), Y(0) = k

]
> w2.
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Renormalization Emerging walls

Pre-walls

Not all barriers can be walls. First, we restrict ourselves to
barriers that can be traversed in a predictable way.

hop hophop hop

light

Interval I is a pre-wall if following properties hold:
a Either I is an external hop of M or it is the union of a

dominant light wall and one or two external hops of M, of
size > ∆, surrounding it.

b Each end of I is adjacent to either an external hop of size
> ∆ or a wall of M.
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Renormalization Emerging walls

Emerging walls

The pre-walls that are allowed to become walls will be disjoint.

For j = 1, 2, 3, list all emerging pre-walls of type j in a
sequence (Bj1, Bj2, . . .).
Process pre-walls B11, B12, . . . one-by-one. Select B1n as a
wall if and only if it is disjoint of all earlier selections.

Next process the sequence (B31, B32, . . .), and then the
sequence (B21, B22, . . .) similarly (watch the order),
designating Bin a wall if and only if it is disjoint of all earlier
selections.

To all emerging barriers and walls, we assign one and the
same rank R̂ > R∗ (to be fixed later).
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Renormalization Compound walls

Compound walls

The distance of barriers is measured on an exponential scale:

di =

{
i if i = 0, 1,

dλie if i > 2.

A horizontal compound barrier W1 + W2 occurs wherever
barriers W1, W2 occur (in this order) at a distance
d ∈ [di, di+1[, d 6 f, and W1 is light. Its rank is defined as

r1 + r2 − i.

Call this barrier a wall if W1, W2 are neighbor walls.

Repeat the compounding step, requiring now W2 to be light.
W1 can be any barrier introduced until now, also a
compound barrier introduced in the first compounding step.
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Renormalization Compound walls

Three (overlapping) types of
compound barrier obtained:
light-any, any-light,
light-any-light. Here, “any” can
also be a recently defined
emerging barrier.
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Renormalization Clean-up

Clean-up

Let us finish the construction of M∗:

Remove all traps of M.

Remove all light walls and barriers. If the removed light wall
was dominant, remove also all other walls of M (even if not
light) contained in it.
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Combinatorial conditions Dependencies

Combinatorial conditions
Dependencies

Let us start proving the mazery conditions for M∗.

The dependency conditions (for example, that whether an
interval is a barrier of a certain rank) are easy to verify,
straight from the form of the definition of M∗.
Recall the combinatorial requirements:

A maximal external interval of size > ∆ or one starting at the
beginning is inner clean.
Suppose that interval I is adjacent on the left to a maximal
external interval that has size > ∆ (or starts at the beginning).
Suppose also that it is adjacent on the right to a similar interval
(or is infinite and contains no such interval).
Then it is spanned by a sequence of neighbor walls.

It will take hard work to prove these.
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Combinatorial conditions Clean wall sequences

Let (U1, U2, . . .) be a (finite or infinite) sequence of disjoint walls
of M and M∗, and let I0, I1, . . . be the (possibly empty) intervals
separating them (interval I0 is the interval preceding U1). This
sequence is pure if

a Ij are hops of M.
b I0 is an external interval of M starting at the beginning,

while every Ij for j > 0 is external if its size is > 3∆.

external external

An element is isolated if it is farther than f from its neighbors.
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Combinatorial conditions Clean wall sequences

Initial pure sequence

The grey areas are between maximal external intervals of
size > ∆.

By the condition on M, each one is covered with a sequence
of neighbor walls.
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Combinatorial conditions Clean wall sequences

Adding emerging walls

Start from a pure sequence.

On-by-one, consider emerging walls. Such a wall can only
intersect an isolated light wall of the sequence, and then
cover it.

Add it to the sequence, replacing what it covers.

It can be shown that the new sequence is pure again.
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Combinatorial conditions Clean wall sequences

Forming compound walls

Incorporate all non-isolated light walls of the sequence into
some compound wall.

At the end (before a gap of size > f) we may have to join 3.

It can be shown that this construction satisfies the combinatorial
conditions.
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Combinatorial conditions Clean wall sequences

New hops

Lemma
Suppose that interval I is a hop of M∗. Then it is either also a hop
of M or it contains a sequence W1, . . . , Wn of dominant light
neighbor walls M separated from each other by external hops of
M of size > f, and from the ends by hops of M of size > f/3.
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Combinatorial conditions Finding emerging walls

Finding emerging walls

Lemma
Let us be given intervals I′ ⊂ I, and also x(I), with the following
properties for some j ∈ {1, 2, 3}.

a I is spanned by an extended sequence W1, . . . , Wn of dominant
light neighbor walls of M such that the Wi are at a distance
> f from each other and at a distance > f/3 from the ends of I.

b I′ is an emerging barrier of type j.
c I′ is at a distance > Lj + 7∆ from the ends of I.

Then I contains an emerging wall.

2∆ 2∆

I ′
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Combinatorial conditions Cleanness density

Cleanness density

The proof of the cleanness density conditions for M∗ is
straightforward, one just goes through the motions.
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